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  LINEAR EQUATION 
 
  Chickens and Rabbits 
   
 A farm has chickens and rabbits. The farmer counts 26 heads and 82 feet.    
How many chickens and rabbits are in the farm? 
   
 Trial and error.  Before learning algebra, you solve this problem by trial 
and error.  Each chicken has one head and two feet. Each rabbit has one head and 
four feet.  You guess some number of chickens and some number of rabbits, and 
then see if the guess gives 26 heads and 82 feet.  
 For example, you may guess 10 chickens and 16 rabbits.  This guess gives 
that 

  
 

10+16 = 26 heads,

10×2+16× 4=84 feet.
 

This guess gives the right number of heads, but too many feet. 
 You may make another guess.  Since a rabbit has more feet than a chicken, 
you might reduce the number of rabbits.  For example, you guess 11 chickens and 
15 rabbits.  This guess gives that 

  
 

11+15 = 26 heads,

11×2+15× 4=82 feet.
 

Bingo!  You guess right. 
 
 Algebraic method.  After learning algebra, you solve this problem by 
following a procedure, in two steps.   
 Step 1:  Set up equations.  Name every unknown by a symbol, and use the 
symbols to set up equations.  Let the number of chickens be x, and the number of 
rabbits be y.  Each unknown is also called a variable.  The total number of heads 
is 26, and the total number of feet is 82.  You translate the two sentences to two 
equations: 

  
  

x + y = 26,

2x+4y=82.
 

These equations place constraints on the variables x and y.  This step requires 
that you know some facts of the real world:  each chicken has one head and two 
feet, and each rabbit has one head and four feet. 
 Step 2:  solve equations.  Solve these equations to determine the variables 
x and y.  There are many ways to solve the equations.  For example, write the first 
equation as 
    y = 26− x . 
Use this expression to substitute y in the second equation: 
   

  
2x+4 26− x( )=82 . 

This equation has a single unknown, x.  Solving for x, you obtain that   x = 11 .  
Inserting   x = 11  into the equation for heads   x + y = 26 , you obtain that   y = 15 . 



For updated version of this document see http://imechanica.org/node/19709 Zhigang Suo     

January 28, 2017 2 

 The algebraic method reduces the solution of this “real-world problem” to 
a two-step procedure:  set up equations and solve them.  The procedure kills the 
joy of guessing, but will lead to an algorithm for a computer to solve many 
equations of many variables. 
 
 Graphical representation of two variables.  This problem has two 
variables.  The number “two” has a special significance ever since humans 
learned to draw pictures in a plane.  The plane is two-dimensional.  Even though 
we live in a three-dimensional space, we still have not invented a good way to 
draw pictures in the three-dimensional space.  Thus, all graphical representations 
are in a plane.    
 In a plane, draw a horizontal axis to represent the number of chickens, x, 
and draw a vertical axis to represent the number of rabbits, y.  A point in the 
plane represents a pair of numbers,   x,y( ) .  A straight line in the plane represents 
a linear equation of the two variables, x and y.   
 Now look at the two equations in the problem of chickens and hamsters.  
The equation   x + y = 26  represents a straight line that intersects the x-axis at 26 
and intersects the y-axis as 26.  The equation   2x + 4y = 82  represents a straight 
line that intersects the x-axis at 41 and intersects the y-axis as 20.5.  The two 
straight lines intersect at one point,  11,15( ) .  This point in the plane gives the 
solution to the problem:  11 chickens and 15 rabbits.  

   
 
  Rabbits and Hamsters  
 
 Rabbits and hamsters, first try.  Next consider a farm having rabbits 
and hamsters.  The farmer counts 26 heads and 82 feet in total.  How many 
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rabbits and hamsters are in the farm?  Let the number of rabbits be y, and the 
number of hamsters be z. The two variables satisfy two equations: 

  
  

y+ z = 26,
4y+ 4z = 82.

 

Keep the first equation unchanged and divide the second equation by four, and 
the two equations become that 

  
  

y+ z = 26,

y+ z = 20.5.
 

The two equations are incompatible. Consequently, this system of equations has 
no solution.   
 The cause of no solution is obvious from the given data.  Each rabbit or 
hamster has one head and four feet.  Thus, the total number of feet must be four 
times the total number of heads.  However, the total number of feet 82 is not four 
times the total number heads 26.  The farmer must have counted heads or feet 
wrong.  
 In this example, the two equations represent two parallel lines in the 
plane   x,y( ) .  The two parallel lines do not intersect, and give no solution to the 
system of equations.  

   
  
 Rabbits and hamsters, another try.  What happens if the number of 
feet is four times the number of heads, say 26 and 104?  In this case, the 
equations are 

  
  

y+ z = 26,
4y+ 4z = 104.

 

The two equations are equivalent to   
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y+ z = 26,

y+ z = 26.
 

This system of equations has many solutions.  In this example, the two equations 
represent one single line in the plane   x,y( ) .  Every point on the line gives a 
solution.  (Of course, in this example, we look for solutions such that the numbers 
of rabbits and hamsters are both nonnegative integers.) 

   
 The graphical solution is helpful when the number of variables is two.  
Two linear equations of two variables correspond to two straight lines in a plane.  
The two lines either intersect at a single point, or be parallel, or coincide.  The 
three situations correspond to a system of equations of one solution, or no 
solution, or many solutions. 
 
  Chickens, Rabbits, and Hamsters  
 
 Chickens, rabbits, and hamsters.  Now consider a farm having 
chickens, rabbits, and hamsters. Still there are 26 heads and 82 feet in total.  How 
many chickens, rabbits, and hamsters are there? 
 Let the number of chickens be x, the number of rabbits be y, and the 
number of hamsters be z. The three variables satisfy two equations: 

  
  

x + y+ z = 26,
2x + 4y+ 4z = 82.

 

The two equations are equivalent to 

  
  

x = 11,
y+ z = 15.  

The two equations lead to many solutions. 
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 Graphical representation of three variables.  The above problem 
has three variables. In a three-dimensional space, use three axes to represent the 
number of chickens x, the number of rabbits y, and the number of hamsters z.  A 
point in the space represents a triple of numbers   x,y,z( ) .  A plane in the space 
represents a linear equation of the three variables x, y and z.   
 We draw a fake three-dimensional space on a two-dimensional paper (or 
screen).  The three axes represent the numbers of chickens, rabbits, and hamsters.  
The equation of heads,   x + y+ z = 26 , corresponds to a plane that intersects the 
three axes at 26, 26, 26.  The equation of feet,   2x + 4y+ 4z = 82 , corresponds to a 
plane that intersects the three axes at 41, 20.5, 20.5.   
 It takes forever to draw a picture on screen.  The drawing is inaccurate, 
and is of course fake no matter how much you try.    But even this fake picture 
makes an essential point clear:  the two planes intersect at a straight line, 
corresponding to many solutions to the system of equations. 
 

 
 
 The three variables live in a three-dimensional space.  Yet we can only 
draw a picture in a two-dimensional plane.  This imperfect method still helps us 
visualize the structure of the solutions.  For example, two planes may either 
intersect at a line, or be parallel, or coincide. 
 A system of three equations of three variables corresponds to three planes 
in a three-dimensional space.  Many situations may happen.  Here are some 
examples: 

• The three planes intersect at a single point.  In this case, the system of 
equations has a unique solution. 
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• The three planes are parallel to one another.  In this case, the system of 
equations has no solution. 

• The three planes intersect at a line.  In this case, the system of equations 
has many solutions. 

 The graphical representation becomes impossible when we deal with 
more than three variables.   
 
   Summary and Generalization 
 
 Solution set of three types.  A system of linear algebraic equations 
may have either no solution, or one solution, or many solutions.  The collection of 
all solutions is called the solution set of the system of equations. 
 In the example of chickens and rabbits, the system of equations is 

  
  

x + y = 26,

2x+4y=82.
 

The system has a single solution: 

  
  

x = 11

y = 15
 

Thus, the solution set of this system has a single element. 
 In the first example of rabbits and hamsters, the system of equations is 

  
  

y+ z = 26,
4y+ 4z = 82.

 

The system has no solution, so that the solution set is the empty set. 
 In the second example of rabbits and hamsters, the system of equations is  

  
  

y+ z = 26,
4y+ 4z = 104.

 

The system has many solutions.  We write the solution set in the form 
    y = 26− z . 
Any value of z gives a solution.  We call y the basic variable, and z the free 
variable. 
 In the example of chickens, rabbits and hamsters, the system of equations 
is 

  
  

x + y+ z = 26,
2x + 4y+ 4z = 82.

 

The system has many solutions.  We write the solution set in the form 

  
  

x = 11,

y = 15− z.
 

Any value of z gives a solution.  Here x and y are the basic variables, and z is the 
free variable. 
   
 Observations.  The above examples illustrate some general observations: 
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• Solve a real-world problem by a two-step procedure.  Step 1:  set up 
equations.  Step 2:  solve equations. 

• A system of linear algebraic equations has m equations and n variables.  
In general,  m ≠ n . 

• A system of linear algebraic equations may have no solution, one solution, 
or many solutions.  All solutions to a system of equations form a set, 
called the solution set of the system of equations.  

• Graphical representation is sometimes helpful, but not always. 
 
  Row Reduction Algorithm 
 
 The two-step procedure is still too creative for computers.  The first step, 
setting up equations for a real-world problem, is beyond the capability of 
computers today, and is performed by humans.  By contrast, the second step, 
solving the equations, is almost exclusively done by computers.   
 For the time being, we skip the step of setting up the equations, and 
assume that we already have the equations.  We focus on solving the equations.  A 
computer solves any system of linear algebraic equations using a procedure, 
known as the row reduction algorithm. 
 
 Example.  The row reduction algorithm is readily understood by an 
example.  Consider a system of equations:  

  

  

x −2y+ z = 0
2x −2y−6z = 8
−4x + 5y+9z = −9

 

The system has three equations, as well as three variables, x, y, z. Values of the 
variables that satisfy the three equations is called a solution.  We wish to find all 
solutions—that is, the solution set of the system of equations. 
 The fundamental method to solve a system of linear algebraic equations is 
the method of eliminating variables.  In this method, we multiply equations by 
nonzero numbers, and add equations.  The aim is to eliminate variables, until we 
find a solution.  We now streamline the method of elimination, so that even a 
computer can follow it.  
 We list the coefficients of the system of equations by a table: 

  

 

1 −2 1
2 −2 −6
−4 5 9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. 

This table is called the matrix of coefficients.   
 We list the constant terms of the system of equations by a column: 

  

 

0
8
−9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  
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 We collect all the numbers in a table:  

  

 

1 −2 1 0
2 −2 −6 8
−4 5 9 9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. 

This table is called the augmented matrix of the system of equations.  Each row 
of the augmented matrix corresponds to one equation.  The first three columns 
collect the coefficients, and the last column collects the constant terms. 
 Now we watch the row reduction algorithm in action:   

  

  

1 −2 1 0
2 −2 −6 8
−4 5 9 −9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

~
1 −2 1 0
0 2 −8 8
0 −3 13 −9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R2 −2R1

R3 + 4R1

~
1 −2 1 0
0 1 −4 4
0 −3 13 −9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R2 /2

~
1 −2 1 0
0 1 −4 4
0 0 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ R3 +3R2

~
1 −2 0 −3
0 1 0 16
0 0 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R1 − R3

R2 + 4R3

~
1 0 0 29
0 1 0 16
0 0 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R1 +2R2

 

Translate the table back to a system of equations, and we obtain the solution: 

  

  

x = 29
y = 16
z = 3

 

We can verify this solution by inserting into the original equations.     
   
 Row operations.  Now we abstract the ideas.  Note row operations of 
three types: 

1. Swap the positions of two rows, 
  
Ri! Rj . 

2. Multiply a row by a nonzero number,  Ri → cRi . 

3. Replace a row by the addition of itself and another row, 
 
Ri → Ri + cRj . 
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 Reduced row echelon form (rref).  The object of the row reduction 
algorithm is to use row operations to change the augmented matrix of a system of 
linear equations to a simple form, from which we can see the solution set of the 
system of equations.  We now define this “simple form”. 
 A matrix is in reduced row echelon form (rref) if it has the following 
properties: 

1. In each nonzero row, the leftmost nonzero entry is 1.  This entry is called a 
pivot, its position a pivot position, and its column a pivot column. 

2. In each pivot column, all other entries are zero. 
3. The pivot position in one row is to the right of the pivot position in the 

row above it.   
4. As a consequence of 3, rows with all entries being zero are at the bottom 

of the matrix.   
Here are several matrices in reduced row echelon form: 

  
 

1 0 11
0 1 15

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   

 

1 0 0 2 1
0 1 0 0 2
0 0 1 2 7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,  

 

1 0 3 0 1 0

0 1 2 0 3 0

0 0 0 1 7 0

0 0 0 0 0 1
0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.    

   
 Row reduction algorithm.  Given any matrix, the row reduction 
algorithm changes the matrix to its reduced row echelon form.  The algorithm 
goes as follows. 

1. Begin with the leftmost pivot column.  If the entry at the pivot position in 
this column is zero, swap rows to bring a nonzero entry to the pivot 
position.   

2. Use row operations to eliminate entries in the column below the pivot. 
3. Move right to the next pivot column.  Repeat 1-2 for all pivot columns. 
4. Begin with the rightmost pivot.  Use row operations to eliminate entries in 

the column above the pivot. 
5. Move left to the next pivot column.  Repeat 5 for all pivot columns 

 
 Example.  In the above example, we do not need to use the row 
operation of type 1.  Let us look at an example that requires row operations of all 
three types. 
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0 1 0 0 2
1 0 0 2 1
2 1 2 8 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

~
1 0 0 2 1
0 1 0 0 2
2 1 2 8 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R
1
! R

2

~
1 0 0 2 1
0 1 0 0 2
0 1 2 4 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R
3
→ R

3
−2R

1

~
1 0 0 2 1
0 1 0 0 2
0 0 2 4 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R
3
→ R

3
− R

2

~
1 0 0 2 1
0 1 0 0 2
0 0 1 2 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R
3
→ R

3
/2

   

 
 Observations.  Here are some general observations of row operations, 
row reduction algorithm, and reduced row echelon form.   

1) Row operations do not change the solution set of the system of linear 
equations. 

2) If matrix B is obtained by row operations from matrix A, we say that B is 
row-equivalent to A, and write   A ∼ B . 

3) Elementary row operations are reversible.  That is, if   A ∼ B , then   B ∼ A . 
4) Each matrix A is row-equivalent to one and only one reduced row echelon 

form, denoted   rref A( ) .    
 
  Solution Set of Three Types  
 
 The collection of all solutions to a system of equations is called the 
solution set. Given a system of linear equations, we can form its augmented 
matrix, and then use row operations to change the augmented matrix to the 
reduced row echelon form.  The reduced row echelon form lets us write the 
solution set.  Three types of solution sets are possible. 
 The solution set is the empty set.  If the rightmost column is a pivot 
column, the system has no solution. 
 The solution set has a single element.   If the rightmost column is not a 
pivot column, and the number of pivots is the same as the number of variables, 
the system has a unique solution. 
 The solution set has infinitely many elements. If the rightmost column is 
not a pivot column, and the number of pivots is less than the number of variables, 
the system has infinite many solutions. 
 We next look at the three types of solution sets in turn. 
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 A system having no solution.  A system of linear equations has no 
solution if and only if the rightmost column of the augmented matrix is a pivot 
column. 
 For example, look at the following augmented matrix: 

  

 

1 0 3 5 1 0
0 1 2 0 3 0
0 0 0 0 0 1
0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. 

The matrix is already in the reduced row echelon form, and has three pivot 
columns.  For the rightmost column to be a pivot column, its pivot position must 
be in the bottom nonzero row (the third row in the example).  In this row, the 
rightmost entry must be 1, and all other entries must be zero.  This row 
corresponds to equation 
   0 = 1 . 
Thus, the system of equations has no solution.       
 
 A system having a unique solution.  A system of linear equations has 
a unique solution if and only if the number of pivots is the same as the number of 
variables.  
 For example, look at the following augmented matrix: 

  

 

1 0 0 5
0 1 0 2
0 0 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. 

This augmented matrix corresponds to a system of equations: 

  

  

x = 5
y = 2
z = 3

 

  
 A system having infinitely many solutions.  A system of linear 
equations has an infinite many solutions if and only if the number of pivots is less 
than the number of variables. 
 Look at a system of equation:    

  

  

x +2y+3z = 1,
4x + 5y+6z = 2,
7x +8y+9z = 3.

 

This system of equations corresponds to the augmented matrix: 

  

 

1 2 3 1
4 5 6 2
7 8 9 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. 
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The numbers are very special, so you can easily remember this example.   
 We next follow the row reduction algorithm to change this matrix to its 
reduced row echelon form: 

  

  

1 2 3 1
4 5 6 2
7 8 9 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

~
1 2 3 1
0 −3 −6 −2
7 8 9 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R2 → R2 − 4R1

~
1 2 3 1
0 −3 −6 −2
0 −6 −12 −4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R3 → R3 −7R1

~
1 2 3 1
0 1 2 2 /3
0 −6 −12 −4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R2 → R2 / −3( )

~
1 2 3 1
0 1 2 2 /3
0 0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R3 → R3 +6R2

~
1 0 −1 −1 /3
0 1 2 2 /3
0 0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R1 → R1 +2R2

 

From the reduced row echelon form, we see that the matrix of coefficients has 
two pivot columns.  The system of equations has three variables.   
 The augmented matrix in the reduced row echelon form means three 
equations: 

  

  

x − z = −1 /3
y+2z = 2 /3
0 = 0

 

The two variables x and y correspond to two pivot columns, and are called basic 
variables.  The variable z does not correspond to a pivot column, and is called a 
free variable.  The free variable can take any value.  The system of equations has 
infinitely many solutions.  We write the solution set in a parametric form: 

  

  

x = − 1
3
+ z

y = 2
3
−2z

 

The free variable z can take any value.  Each value of z gives a solution to the 
system of equations. 
 Next look at the following augmented matrix of a system of equations: 
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1 0 3 0 1 2
0 1 2 0 3 4
0 0 0 1 5 6
0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

The matrix is in the reduced echelon form.   In this example, the augmented 
matrix has four rows and six columns, corresponding to a system of four 
equations of five variables.  The system has three pivot columns:  column 1, 
column 2, and column 4.  The three pivot columns correspond to three basic 
variables:   x1 ,x2 ,x4 .  The matrix of coefficients has two nonpivot columns:  
column 2 and column 5.  The two nonpivot columns correspond to two free 
variables:   x3 ,x5 .   
 Translate the augmented matrix back to a system of equations: 

  

  

x1 +3x3 + x5 = 2

x2 +2x3 +3x5 = 4

x4 + 5x5 = 6

 

Move the free variables to the right side: 

  

  

x1 = 2−3x3 − x5

x2 = 4−2x3 −3x5

x4 = 6− 5x5

 

These expressions express the solution set of the system of equations, with the 
basic variables on the left side, and the free variables on the right side.  Each 
choice of the free variables   x3 ,x5  gives a solution to the system of equations. 
 
 From a system of equations to its solution set.  Given a system of 
linear algebraic equations, how do you find its complete solution set? 

1. Translate the system of linear algebraic equation into its augmented 
matrix. 

2. Convert the augmented matrix to its reduced row echelon form. 
3. In the reduced row echelon form, identify pivot columns, which 

correspond to basic variables, and identify nonpivot columns, which 
correspond to free variables. 

4. Translate the reduced row echelon form back to a system of equations. 
5. Move the free variables to the right side of the equations.   

The resulting expressions give the complete solution set of the system of 
equations.  Each choice of values of the free variables gives a solution.   
 
 Same solution set, different choices of free variables.  Given a 
system of equations, we have some flexibility in choosing free variables.  For 
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example, inspecting the solution set of the last problem, we can chose 
  
x

4
, rather 

than 
  
x

5
, as free variable.  Rewrite the last equation as 

  
  
x

5
= 6

5
− 1

5
x

4
 

Then insert this equation into the first two equations.  We obtain a new 
expression of the solution set: 

  

  

x
1
= 2−3x

3
− 6

5
− 1

5
x

4

⎛
⎝⎜

⎞
⎠⎟

x
2
= 4−2x

3
−3

6
5
− 1

5
x

4

⎛
⎝⎜

⎞
⎠⎟

x
5
= 6

5
− 1

5
x

4

 

Of course, the system of equations has one solution set.  The two choices of free 
variables give alternative expressions of the same solution set.  You can find other 
choices of free variables. 
 
  Rank and Nullity   
    
 So far we have focused on row operations.  Given a matrix, its reduced 
row echelon form is unique.   
 Given a system of equations, we can list its variables in any order.  A 
change of the order of the variables corresponds to a swap of columns of the 
matrix of coefficients.  The change in the order will not change the solution set, 
but will change the augmented matrix, and will change the row reduced echelon 
form.  Consequently, the positions of the pivots may change.  But a change in the 
order of the variables will not change the number of pivots. 
 The number of pivots of a matrix A is called the rank of the matrix, 
written   rankA .  The rank of the matrix is invariant when we swap columns.  The 
rank of the matrix is, of course, also invariant when we swap rows.    
 The number of nonpivot columns of a matrix A is called the nullity of the 
matrix, written   nullityA .  Of course, 
    rankA+nullityA = n . 
   
 Example.  To compute the rank of a given matrix A, we use row 
operations to convert A to its reduced row echelon form, and then count the 
number of pivots.  Look at the reduced row echelon form of a matrix A: 
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rref A( ) =
1 0 3 0 7 0
0 1 2 0 3 0
0 0 0 1 5 0
0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. 

The rank of the matrix is the number of pivot columns,  rankA = 4 .  The nullity of 
the matrix is the number of nonpivot columns,  nullityA = 2 . 
 
  The Invention of the Row Reduction Algorithm 
 
 The row reduction algorithm was invented in antiquity.  The earliest 
record of this algorithm is found in a textbook, The Nine Chapters on the 
Mathematical Art (九章算术), written in Chinese, over 2200 years ago, by 
unknown author(s).  Ancient Chinese did not know Arabic numbers.  The 
algorithm represented numbers by rods placed in an array of cells. The 
arrangement looks the same as the matrix used today.  The algorithm might have 
been taught to illiterates.    
 Incidentally, in the 1950s, George Forsythe, the founding chair of the 
computer science department at Stanford University, started to call the algorithm 
Gaussian elimination, in honor of the German mathematician Gauss (1777-1855).  
Both names, row reduction and Gaussian elimination, are in common use today. 
 
  Division of Labor 
   
  Divide labor between humans and computers.  We live in a 
historical period when computers are coming between us.  Some tasks are easier 
for humans, and others easier for computers. We divide labor between humans 
and computers: 

1. Pose a real-world problem, and set up a system of linear algebraic 
equations (humans). 

2. Solve the equations and determine the solution set (computers). 
3. Use the solution set of the equations to act on the real-world problem 

(humans) 
The division of labor solves problems economically. 
  
 Automation, loss of jobs, and new division of labor.  Of course, 
what is easy to do changes when circumstances change. As new tools and 
applications emerge, it behooves us to renegotiate a more economical division of 
labor. The history of computers offers excellent lessons on such divisions and 
renegotiations.  The division of labor is better appreciated historically and 
economically. 
 The division of labor between humans and computers is recent.  Before 
electronic computers were developed in 1950s, people had to solve equations.  
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The people in the profession of solving equations are called computers.  Since 
then, electronic computers have completely replaced human computers. 
 Because the division of labor will evolve in your lifetime, it is important 
that you appreciate the entire process, rather than just particular tasks.  In some 
limited ways, computers have already begun to replace humans in tasks 1 and 3.  
These replacements will continue in your lifetime.  You may become a person 
who creates a new division of labor, or a person who loses job. 
 The choice may be yours. 
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