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ABSTRACT 

CENTRAL to the J-based fracture mechanics approach is the existence of a HRR near-tip field which 
dominates the actual field over size scales comparable to those over which the micro-separation processes 
are active. There is now general agreement that the applicability of the J-approach is limited to so-called 
high-constraint crack geometries. We review the J-annulus concept and then develop the idea of a J-Q 
annulus. Within the J-Q annulus, the full range of high- and low-triaxiality fields are shown to be members 
of a family of solutions parameterized by Q when distances are measured in terms of J/ao, where tr 0 is the 
yield stress. The stress distribution and the maximum stress depend on Q alone while J sets the size scale 
over which large stresses and strains develop. Full-field solutions show that the Q-family of fields exists 
near the crack tip of different crack geometries at large-scale yielding. The Q-family provides a framework 
for quantifying the evolution of constraint as plastic flow progresses from small-scale yielding to fully 
yielded conditions, and the limiting (steady-state) constraint when it exists. The Q value of a crack geometry 
can be used to rank its constraint, thus giving a precise meaning to the term crack-tip constraint, a term 
which is widely used in the fracture literature but has heretofore been unquantified. A two-parameter 
fracture mechanics approach for tensile mode crack tip states in which the fracture toughness and the 
resistance curve depend on Q, i.e. Jc(Q) and JR(Aa, Q), is proposed. 

1. INTRODUCTION 

THE J-INTEGRAL (RICE, 1968) and  the H R R  crack-tip field (HuTcHINSON, 1968 ; RICE 
and  ROSENGREN, 1968) provide the basis for non l inea r  fracture mechanics. To the 
extent that  the H R R - s i n g u l a r  field (scaled by J)  exists and  dominates  the actual  field 
over size scales comparable  to those over which the micro-separat ion processes are 
active, a cri terion for the onset  of  growth can be phrased in terms of  the a t t a inment  
of a critical value of  J. Existence of  a J - annu lus  in deeply cracked bend geometries 
has been shown by full-field numerical  calculations.  In  tens ion-domina ted  crack 
geometries, the size of  the J - annu lus  depends on the extent of  plastic yielding and 
strain hardening  properties. Fo r  example, it is know n  that  when moderate-size tensile 
crack geometries (overall specimen size less than  20 cm) are loaded to general yield, 
the J - annu lus  is smaller than microstructural ly  relevant length scales and  the zone of  
finite strains. These issues of  J -dominance  are discussed by MCMEEKING and  PARKS 
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(1979), SHIH and GERMAN (1981), NEEDLEMAN and TVERGAARD (1983), and SHIH 
(1985). An excellent account of the status of the J-based approach can be found in a 
review article by HUTCHINSON (1983). 

The limitations of a one-parameter J-based fracture mechanics approach have 
prompted investigators to consider various alternatives. Nevertheless an approach 
which advantageously uses and builds upon what is already known about the J- 
approach appears to be lacking. Recently, some progress has been made on two- 
parameter characterization of crack-tip states. Ll and WANG (1986) showed that the 
high and low triaxial stress fields that develop at large-scale yielding can be character- 
ized by J and a second parameter k2 which is the amplitude of the second term of the 
asymptotic series of the small-strain plastic crack-tip fields. The values of'k,  were 
determined by matching the two-term expansion with the full-field solutions of SHin 
and GERMAN (1981) and NEEDLEMAN and TVERGAARI) (1983). BETEG6N and HANCOCK 
(1990) and AL-ANI and HANCOCK (1991) have successfully matched the different 
near-tip fields at large-scale yielding in bend and tension geometries with the small- 
scale yielding fields obtained by a modified boundary layer formulation based on the 
Kt-field and the T-stress of the asymptotic series of the elastic field. DRUGAN and 
CHEN (1989) and CHEN and DRUGAN (1990) have obtained an 'm-family' of fields for 
growing cracks in isotropic, incompressible, elastic-perfectly-plastic material which 
can reproduce the entire range of stress triaxiality that arises in mode I plane strain 
bending- and tension-dominant crack geometries. 

In this study we build upon the above observations. We direct attention to the 
mode I plane strain stationary crack problem and adopt a geometrically rigorous 
formulation which takes full account of crack-tip blunting. We consider a two-term 
expansion of the plastic crack-tip fields in which Q is a dimensionless amplitude factor 
of the second-order field. The J Q annulus is investigated using a two-parameter 
boundary layer formulation whereby the remote tractions are given by the K~-field 
and the transverse T-stress. Each crack-tip field distribution is shown to be a member 
of a one-parameter family of solutions parameterized by Q when distances are nor- 
malized by J/~o. Specifically, the stress distribution and the maximum stress are 
determined by Q alone while J sets the size scale over which large stresses and strains 
develop. 

Ordinarily a small-strain analysis would be adequate for the purpose of investigating 
the existence of a J Q annulus. Nonetheless we undertook a finite deformation 
analysis because our objectives go beyond those of investigating the J Q  annulus. 
The finite geometry fields associated with blunting provide certain information not 
directly accessible from the small-strain analysis. For example, the blunted opening, 
given roughly by J/ao, sets the local size scale over which large stress triaxiality and 
large strain develop, and consequently the size scale on which microscopic ductile 
fracture processes may be presumed to act (RICE and JOHNSON, 1970; MCMEEKING, 
1977). 

Through detailed comparisons, we have shown that the Q-lamily of crack-tip fields 
continues to exist near the tip in different crack geometries at large-scale yielding 
when the relevant crack dimension L is much larger than J/oo. We show that Q is a 
measure of the stress triaxiality or constraint of the crack geometry. The Q-family of 
fields provides a framework for quantifying the evolution of constraint as plastic flow 
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progresses from small-scale yielding to fully yielded conditions, and the limiting 
(steady-state) constraint when it exists. 

2. J-Q ANNULUS 

2.1. Q-family of  solutions 

Consider a boundary layer formulation in which the remote tractions are given 
by the first two terms of the small-displacement-gradient linear elastic solution 
(WILLIAMS, 1957), 

K, 
aij - ,/~r~r fj(O) + T6,i6 ij. (2.1) 

Using different combinations of the two loading parameters, K, and T, near-tip plastic 
fields of different magnitudes are generated. Now observe that T has dimension of 
stress. Thus (Kt/go)2 or equivalently J/go provides the only length scale in the two- 
parameter boundary layer formulation. Therefore displacements and quantities with 
dimensions of length must scale with it. Furthermore, the fields can depend on distance 
only through r/(J/ao), i.e. the fields are of the form 

g~j = gof j  , O; T/go • (2.2) 

Using numerical solutions generated by a small-strain analysis of the above boundary 
layer formulation BErEOSN and HANCOC~¢ (1990) have provided an approximate 
explicit relation for the hoop stress which is consistent with (2.2). However, their 
result is not suited for applications to fully yielded crack geometries since the T-stress 
has no relevance under fully yielded conditions. 

It proves useful to identify members of the above family by a parameter Q which 
arises in the plasticity analysis. Looking ahead to applications to fully yielded crack 
geometries, we write 

tr~j=g0fj , ;Q e~j=e0go , 0 ; Q  , u i=- -h~  , 0 ; Q  , (2.3) 
go 

where the additional dependence of f j, gij, and hi on dimensionless combinations of 
material parameters is understood. Indeed our numerical solutions show that the 
stress and strain distributions with the same Q-value collapse onto a single curve when 
the distance from the tip is normalized by J/go, i.e. the distributions depend on Q 
alone. 

The crack-tip opening displacement 6,  defined by the opening where the 45 ° lines 
drawn backwards from the crack tip intersect the deformed crack faces, has the form 

J 
6, = d(~e0, n, Q) - - .  (2.4) 

o" 0 

Here the dimensionless factor d depends strongly on n but weakly on ~e0 and Q. This 



992 N. P. O'DOWD and C. F. SHIn 

relation, which is a specialization of the last equation in (2.3), generalizes an earlier 
result derived from the H R R  field alone (SHIH, 1981). For  an n = 10 material, d ~ 0.5. 

The crack-tip fields in finite width crack geometries must also be of the form in 
(2.3) when the characteristic crack dimension L is much larger than J/cro. The argu- 
ment requires that the material has sufficient strain hardening capacity so that the 
governing equations remain elliptic as the plastic deformation spreads across the 
ligament. 

The form in (2.3) is also applicable to generalized plane strain and 3-D tensile mode 
crack-tip states. This can be argued by considering a neighborhood of the crack front 
which is sufficiently far away from its intersection with the external surface of the 
body. As r ~ 0, the 3-D fields approach the 2-D fields given by (2.3) so that the Q- 
family of solutions still applies; however, the Q value will be affected by every 
nonvanishing T-term. PARKS (1989) has discussed the three T-terms which arise in 
3-D crack problems. 

2.2. Asymptotic series for power-law material 
In order to obtain more information about the nature of the fields in (2.3) we 

consider a two-term asymptotic expansion based on a small-strain theory. By taking 
advantage of the simplified form of the small-strain solution, a procedure for assigning 
a definite Q value to each member of the field in (2.3) is developed. The approach 
under discussion is completely general and can apply to both plane strain and plane 
stress formulations as well as mixed-mode fields. Our attention is directed to the mode 
I plane strain problem. 

Consider a material which deforms under uniaxial tension according to 

e/co = cr/Cro +~(a/~r0) n, (2.5) 

where n is the strain hardening exponent, ~ a material constant, and 80 the reference 
strain given by ao/E, with E being the Young's modulus. Generalizing to multiaxial 
states by J2 deformation plasticity theory leads to 

l + v  l - 2 v  3 / /~a~ " i s .  
eij- E s,+ 3-E (Tkk(~iJ'q-20~'£O~o) O0- (2.6) 

Here sij is the deviatoric stress, ae = ~/3sijslj/2 is the effective stress, and v is Poisson's 
ratio. Within a small-strain formulation, the mode I stresses can admit the following 
asymptotic expansion : 

a q _ (  J ~1,,(~+,) ( r )l 
ao \~eo~oI, r/ ff~j(O;n)+Q J/ao aej(O;n)+higher-orderterms, (2.7) 

where r and 0 are polar coordinates centered at the tip [see Fig. l(a)]. The first 
term in the above expansion is the H R R  singularity (HuTcHINSON, 1968 ; RICE and 
ROSENGREN, 1968) with J as its amplitude. The second term has Q, a dimensionless 
parameter (undetermined by the asymptotic analysis), as its amplitude. The form of 
the second term is consistent with (2.3). The plane strain and plane stress angular 
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FIG. I. Geometries investigated: (a) two-parameter boundary layer formulation, (b) biaxially loaded 
center-cracked panel, and (c) three-point bend bar. 

functions 5~j and the integration constant In for 1 < n ~< 20 have been tabulated by 
SYMINGTON et al. (1968). 

2.3. Fields in forward sector of  the plastic zone 

For distances sufficiently close to the crack tip but still outside the zone of finite 
strains, the two-term expansion 

,,o,,,,,o  oo:,  oo:' ,,6,o 6oo/ 
(2.8) 

should adequately represent the actual in-plane stresses. 
The method we have used to determine the essential features of the second-order 

term in (2.8) is described below. The full-field numerical solution to the two-parameter 
boundary layer formulation (2.1) is taken to be the exact solution. The second-order 
field is obtained by subtracting the HRR distribution (scaled by the applied J)  from 
the full-field solution. An examination of the second-order field reveals that Iql << 1 
and that the polar components of the second-order stresses 6ij in the forward sector, 
- re/2 ~< 0 ~< zc/2, vary slowly with 0. Moreover the magnitude OfdrO is small compared 
to those of  6,r and 6o0. Within the sector 101 ~< hi4, the ratio 6,,/600 is nearly unity, i.e. 
the second-order field almost corresponds to a uniform hydrostatic stress state. 

LI and WANG (1986) have investigated the second-order field using a numerical 
asymptotic expansion technique of the plane strain solution using the Airy stress 
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function. Assuming that the second-order field has the same separable form for all 
values of  0, they have determined numerically that for n = 3, q = -0 .012,  and for 
n = 10, q --= 0.07, i.e. the second-order terms are slowly varying functions of  r. Their 
solutions have been confirmed by a recent numerical study of SHARMA and ARAVAS 
(1991) based on a Galerkin finite-element technique. For 5 ~< n ~< 20, a range typical 
to ductile metals, the latter authors obtained q-values in the range 0 < q < 0.1. The 
weak dependence of the second-order fields on r is consistent with our numerical 
results. 

Our numerical results show that the full range of near-tip fields at large-scale 
yielding in different crack geometries are consistent with the Q-family of  solutions 
constructed from the modified boundary layer formulation. Moreover we have found 
indirect support of  our results in the analytical solutions of  DRUGAN and CHEN (1989) 
and CHEN and DRUGAN (1990). They have obtained an "m-family' of fields for growing 
cracks in isotropic, incompressible, elastic-perfectly-plastic material. While they did 
not provide results for the 'constant-stress'  plastic sector ahead of the growing crack, 
they gave explicit forms for the second-order stress field in the extension of the 
'centered-fan' plastic sector which extends from 4 5  ~< 0 ~< 112 for all m values. The 
field has this structure: 6r0 = 0, d,.r and 6~, are independent of 0, and d,r/doo = 
1/(1 + m). As fully plastic conditions are approached, m assumes values ranging from 
0 to about 2 for the geometries studied. These features of their growing-crack solutions 
are consistent with our numerically determined second-order solutions. 

Based on our full-field solutions we suggest that the following two-term approxi- 
mation of the expansion (2.8) 

cro \aro aoo/ \c~soaj,  r /  \fifo :r~ol 

adequately represents the near-tip fields in the forward sector [0q < n/2. In the above 
representation, it is convenient to normalize the angular functions 6ij(O) by requiring 
if00(0 = 0) equals unity. Since our calculations show that drr ~ doo and Id~o{ << [doo[, 
Q is essentially a stress triaxiality parameter. We note that, if 6¢0 vanishes, then the 
second-order term in (2.9) satisfies the equations of  equilibrium to second order, if 
6~r = 60O = constant [see also SHARMA and ARAVAS (1991)]. 

We do not dismiss the possibility that the second-order terms in (2.9), constructed 
in the manner described above, could include contributions from higher-order terms. 
The point to be made is th is - - the  Q-family of  solutions can be justified by the general 
result in (2.3) and the small-strain specialization (2.8). The latter is consistent with 
the solutions obtained by LI and WANG (1986) and SHARMA and ARAVAS (1991). We 
chose to work with the simpler approximate form in (2,9) for two reasons- - to  help 
with the interpretation of Q and to simplify the evaluation of Q in finite width crack 
geometries. 

Using the two-term expansion (2.8) in (2.6) and retaining the two leading terms, 
the strains and displacements are of the form for n > 2 

c~e,o \~e,~aoLr/ ,~,,j(O)+Q J/ao c~roaoI, r :,~j(O) (2.10) 
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~eo - \-Cteo~oI~,/ r'/~"+')u'(O)+Q J~o ~ rZ/~"+')fi'(O)' 

(2.11) 

where u ° are rigid body translations, and the dimensionless angular functions, gu and 
~i, for 1 < n ~< 20 have been tabulated by SVMIN6TON et al. (1988). The full-field 
strain and displacement solutions including the details of  the dimensionless angular 
functions g~j and ~i will be discussed in Part II in connection with fracture mechanisms 
and criteria. 

2.4. Criteria for investigatin# the size of the J Q annulus 

The plane strain Q-family of  fields, (2.3), generated by the solutions to the two- 
parameter boundary layer formulation, provides the comparison fields for assessing 
the existence of  the J-Q annulus. Our argument is as follows : if a J-Q annulus exists 
in a finite width crack geometry, then the stress and strain distribution near the tip, 
when the distance is normalized by J/ao, must match a member solution of the 
Q-family of fields. 

An alternative and equally valid approach for investigating the existence of the J-Q 
annulus in a finite width crack geometry is by direct comparison of  the near-tip 
fields with the small-strain two-term expansion in (2.8) or (2.9). Here it is necessary 
that the comparison be made over distances beyond the zone of finite strains. We 
have applied both criteria to the crack geometries under study, and in every case we 
reached similar conclusions regarding the size of the J-Q annulus. 

3. NUMERICAL PROCEDURE 

3.1. Finite deformation plasticity 

The finite-element calculations use the semi-implicit integration method developed 
by MORAN et aL (1990). In this scheme, the deformation gradient is decomposed into 
elastic and plastic parts via 

F = c~x/~X = F* "F p, (3.1) 

where x is the current position of  a material particle, and X is its position in the 
undeformed state. Here Fe is the deformation solely due to plastic flow, and F* is the 
remaining contribution to F. The stresses are computed from a hyperelastic potential, 
phrased in the so-called intermediate configuration obtained by applying the mapping 
F p to the undeformed state. An isotropic neo-Hookean elastic response is assumed 
wherein 

S* = 2 log (F*)C* ~ + / t O - C * - 1 ) .  (3.2) 

In (3.2) S* is the second Piola-Kirchhoff stress on the intermediate configuration 
defined in terms of  the Kirchhoff stress ~ as S* = F*-  l . r . F , - r ,  F* = det F*, 
C* = F *r" F*, I is the identity tensor, and 2 and/~ are the Lam6 constants. 

Plastic deformation is described by J2 flow theory and the rate of  plastic defor- 
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mation D *p = sym {[~P" 17p I} phrased also on the intermediate configuration is given 
by 

D *p = ~P sym {R*}. (3.3) 

Here R* is the current direction of the plastic deformation rate, and ~P is the effective 
plastic strain rate given by a flow law with strain hardening. In J2 flow theory 

R* = 3 C*" S*'" C*, (3.4) 

where S*' is the deviatoric part of S* defined by S*' = S * - 1 / 3 ( S *  :C*)C*-~. The 
effective stress, ~, is defined as 

~2 = ~(s*'. c*)  : ( s * ' . c * ) .  (3.5) 

law material strain rate sensitivity and strain hardening In the present work, power 
were assumed in the form 

~p= 

~p= 

where 

0, ~ ~</4(g~) (3.6) 

gpll:" 
H(g p) = tro 1+ 

~o/ 
(3.7) 

is a hardening function with exponent, n, a0 is a reference yield stress, ~0 and ~0 are 
reference strain and strain rate, respectively, gP is the accumulated effective plastic 
strain, and m is the strain rate sensitivity exponent. To assess the effect of finite 
deformation the above formulation has been specialized to a small-strain version. 

Our present study is restricted to rate-independent material behavior and test 
calculations with several crack problems show that rate-independent response is 
reproduced by using a value for m of  0.005. The rate of loading is such that the 
maximum strain rate is of the order of ~0 and no overstress is generated by rate 
dependence. Thus our analysis pertains to a rate-independent material of hardening 
exponent n and initial yield stress a0. 

3.2. Finite-element model 

The finite deformation analysis employs an assumed strain formulation which 
prevents locking associated with fully developed plastic flow. This is implemented 
using a four-node isoparametric element (MORAN et al., 1990). 

For finite deformation analysis, the crack tip is assigned a finite root radius. In the 
boundary layer analysis, the initial notch radius is about 10-5 times the distance to 
the boundary at which tractions are applied. The ratio of the smallest to the largest 
element is also about 10 -5 and the mesh in the radial direction is generated by 
exponential scaling. Because of symmetry we need only model the upper-half plane. 
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The mesh for the boundary layer analysis has about 1000 four-node elements. We 
experimented with several notch root radii and observed that once the crack tip has 
been blunted to about  3 times the initial notch root radius, the solutions did not 
depend on the initial root  radius. A picture of  a mesh similar to the one used here is 
given in MORAN et  al. (1990). 

A typical mesh for the finite width crack geometry has about 1200 elements. The 
results that we present are obtained with an initial notch root radius of  about 10-5 
times the characteristic crack dimension. Several different root radii were investigated, 
and as in the boundary layer calculations we found that the stress and strain dis- 
tributions do not depend on the initial root radius when the crack tip has been blunted 
beyond about 3 times the initial root radius. Thus the solutions are independent of 
the initial root radius and may be interpreted as those pertaining to an initially sharp 
crack. 
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4. Q-FAMILY OF FIELDS 

Plane strain results are presented for a moderately hardening material characterized 
by n = 10, ao/E = 1/300, and reference strain e0, given by e0 = ao/E, where E is the 
Young's modulus. Poisson's ratio v is taken as 0.3. To show that the overall features 
of  the fields can be regarded as typical of  materials with sufficient hardening capacity, 
selected results for n = 5 are also presented in Fig. 6. 

4.1. Two-parameter boundary layer./brmulation 

In the boundary layer formulation, the tractions consistent with the stresses in (2.1) 
are applied at the remote circular boundary of distance R, as shown in Fig. l(a). 
LARSSON and CARLSSON ( 1 9 7 3 )  demonstrated, by numerical solutions to the modified 
boundary layer problem, that the T-stress has a significant effect on the plastic zone 
size and shape, and that the small plastic zones in actual specimens are adequately 
predicted by the inclusion of the T-stress as a second crack-tip parameter. Their 
numerical results and the interpretation of T-stress effects given by RIcF: (1974) suggest 
that the near-tip stress distribution can be significantly affected by the T-stress though 
the value of the J-integral is unaffected. BILBY et al. (1986) have shown that negative 
T-stresses reduce the triaxial stress levels ahead of the crack. They also recognize that 
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the near-tip stress distribution depends on T, but is independent of K. Recently 
BEXEC_,rN and HANCOC~ (1990), through the small-strain boundary layer formulation 
(2.1), provided details regarding the effect of  T-stress on near-tip stress distribution, 
and have used these solutions to correlate the near-tip fields in several crack geometries 
at large-scale yielding. 

Our calculations proceed by applying increments of  K~ and T at the circular bound- 
ary of Fig. 1 (a) while keeping the ratio T/KI fixed throughout a particular analysis. 
We experimented with several different values of  the ratio so that solutions at the 
desired value of T/fro are obtained for different values of applied /(1. Small-scale 
yielding conditions are enforced by not allowing the plastic zone size rp to exceed 
0.2R. We have confirmed that the stress distribution depends only on the value of 
T/tro but is independent of/(1 when distance is normalized by J/ao. 
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The J-integral (RICE, 1968) in its finite deformation form (ESHELBY, 1970) is 
calculated by the domain integral method [e.g. LI et al. (1985), and MORAN and SmH 
(1987)] which is a further development of  the virtual crack extension method (PARKS, 
1977). J shows a strong path dependence in the finite-strain zone and approaches 
zero for paths close to the blunted tip but is essentially path-independent for contours 
with mean radii greater than about 53,. Beyond the zone of finite strains, the J value 
obtained agrees with the result J = (I - v2)KZ/E and does not depend on T. 

Stress distributions obtained from the small- and finite-strain analysis for T = 0 
are compared with the mode I H R R  field in Fig. 2. Here r is the radial distance of 
the material in the undeformed state measured from the tip and is normalized by J/ao. 
0 is the angle measured from the crack line ahead of the tip. Stresses are normalized 
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by the yield stress a0. Within the distances shown, the small-strain solution indicated 
by the dash lines is within 6% of the H R R  field indicated by the open symbols. 
Observe that the hoop and radial stresses of  the H R R  field are nearly identical at 
0 = 45 °. Likewise, the small-strain solutions for the hoop and radial stresses are 
almost indistinguishable at 0 = 45 °. 

For  the finite-strain analysis we have plotted the Kirchhoff  stress which is related 
to the Cauchy stress by • = det (F)a. For  metals, det (F) ,~ 1 so that • ~ ~r. It  can be 
seen that finite-strain effects are significant for r/(J/ao)< 1. In the interval 
1 < r/(J/ao) < 3, finite-strain effects are still evident. The hoop stress along 0 = 0 and 
n/4 is elevated slightly above the small-strain distribution and is actually closer to the 
H R R  distribution. This behavior is in agreement with a well-known argument that 
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and  4. (c) and  (d) Rad ia l  d i s t r ibu t ion  of  n o r m a l  stresses a t  0 = 0. (e) and  (f) Rad ia l  d i s t r ibu t ion  of  n o r m a l  

stresses a t  0 = n/4. H R R  field ind ica ted  by open  circles. 
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the tractions that would be supported by the region r/(J/ao) < 1 are transferred to 
the material ahead of  the finite-strain zone, thus raising the hoop stresses in the 
interval I < r/( J/~ro) < 3. 

The radial stress along 0 = re/4 shown in Fig. 2(b) is considerably lower than the 
small-strain solution and the H R R  field. Beyond r/(J/ao) = 3 the small- and finite- 
strain stress distributions are in good agreement but are slightly below the H R R  
distribution. Surprisingly, there is good agreement between all three distributions for 
the shear stress at 0 = re/4 for r/(J/ao) > 1. This supports our observation that the 
second-order shear stress is vanishingly small. 

The good agreement between the small- and finite-strain solutions allows us to use 
(2.9) to characterize the near-tip field. 

4.2. Construction of Q-fields' 

T-stress in the range - 1 ~< T/ao ~< 1 is considered in the boundary layer analysis. 
Solutions for IT/aol > 1 cannot be generated by the present boundary layer for- 
mulation since the condition that R >> rp cannot be satisfied. Though not shown, a 
similar agreement between finite- and small-strain solutions to that seen in Fig. 2 has 
been observed for the range of  T values considered. Thus we can apply the form of  
(2.9) to the finite-strain solutions to assign a Q value to every distribution obtained. 

The angular and radial distributions of  the Kirchhoff shear stress are shown in Fig. 
3. The H R R  field is indicated by the open circles. This comparison shows that the 
shear stresses in the sector 101 < re/2 for the full range of  T/ao are reasonably well 
predicted by the H R R  distribution. The fields for T/ao = 0, 0.34 and 1 continue to 
maintain agreement with the H R R  field for 101 > re/2 whereas the agreement is poor 
for the fields for T/~ro = - 0 . 3 4 ,  - 0 . 5 6 ,  - 0 . 7 9 ,  and - 1 .  Looking ahead to Figs 4 
and 5 it can be seen that the second-order shear stress term within the forward sector 
is small in comparison with the other second-order stress components.  By symmetry 
shear stress terms of  all orders vanish at 0 = 0. 
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The radial variations of  the hoop stress along 0 = 0, re/4, and re/2 are shown in Fig. 
4(a), (c), and (e). It can be seen that the distribution for T/ero = 0 agrees well with 
the H R R  field (indicated by the solid circles) while the stress distributions for 
T/ao = 0.34 and 1 lie slightly above the HRR distribution• The stress distributions 
associated with negative T-stresses fall considerably below the H R R  distribution. 

Using results obtained from a small-strain analysis BETEGrN and HANCOCK (1990) 
have provided a plot similar to Fig. 4(a). The trends of their solutions are similar to 
ours. However there are slight differences in the details. Du and HANCOCK (1991) have 
investigated T-stress effects in an elastic~erfectly-plastic material• Their numerical 
calculations for T/ao > 0.4 produce stress distributions which approach the Prandtl 
field from below the implication being that the H RR distribution is the limiting 
high-triaxiality distribution• 

For  T/ao > 0, our calculations produce stress levels which are slightly higher than 
that for Tier o = 0. Moreover the distributions for T/ao > 0.5 appear to saturate at a 
level slightly above the HRR distribution• In light of  the earlier discussion of  finite- 
strain effects on the near-tip stresses, the limiting distribution may indeed be given by 
the H R R  field. 
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The distribution o f  the radial stress at 0 = 0, ~/4, and ~/2 are shown in Fig. 4(b), 
(d), and (f). The stresses ahead of  the crack for T/ao >1 0 agree well with the H R R  
distribution. Along 0 = n/4 and 1:/2 the radial stresses are slightly lower than the 
corresponding H R R  stresses. 

The second-order  stress terms Qioo and Qgrr, defined as the difference between the 
full-field solution and the H R R  field, are plotted in Fig. 5(a) and (b). Finite-strain 
effects dominate  for r/(J/ao) < 1, while terms of  higher order  than Q can be significant 
at large distances. For  these reasons, we show the fields in the interval 1 < r/ 
(J/ao) < 5. The weak dependence o f  Q'foo and Qgrr on distance r for 0 = 0 can be seen. 
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Similar behavior is seen at all angles within the forward sector. Shown in Fig. 5(c)- 
(f) are the angular variations of  f00 and frr at two distances, r/(J/ao) = 2 and 4. The 
stresses vary slowly with 0 in the sector 101 < ~/2 and the ratio f00/frr is close to unity 
here. Observe that the magnitudes of  Qfoo and Q f ,  are greater than that of  Qfro as 
inferred from Fig. 3. All these features lend support to the form in (2.9) and allow us 
to interpret Q as the triaxiality parameter. Q values can be directly extracted from 
Fig. 5(a) since the angular functions fij are normalized by requiring f00(0 = 0) = 1. 

It is natural to enquire if the above features are particular to an n = 10 material. 
To answer this question, we have plotted in Fig. 6 the solutions to the same boundary 
layer problem for n = 5 at the same values of  T/ao. The features reported for the 
n = 10 material are also seen here. 

The pattern of  the plastic zones depends quite strongly on the T-stress. Tensile T- 
stresses cause the plastic zones to rotate backwards (towards the crack faces) and to 
shrink in size when lengths are normalized by (Kl/ao) 2. For large T-stresses, 
T/ao > 0.6, the plastic zones rotate backwards and increase in size. Compressive T- 
stresses cause the plastic zones to expand in size along the direction of  0 = ___ 60 °. The 
latter plastic zones are about 4 times larger than those induced by tensile T-stresses 
of comparable magnitude. Similar features were reported by LARSSON and CARLSSON 
(1973). 
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FIG. 10. Center-cracked panel, a/W = 0.1, and B = 0.5. (a) and (c) Hoop stress at 0 = 0 and n/4 for 
a~y/ao = 0.5, 1.0, 1.5, and 1.9, corresponding to aao/J = 1400, 85, 30, and 10. H R R  field is indicated by 

solid circles. (b) and (d) Second-order terms at 0 = 0 and n/4 at the fully yielded state, a~/ao = 1.9. 



1006 N. P. O ' D o w l )  and C. F. SHIH 

5. F INITE W I D T H  C R A C K  GEOMETRIES 

In this and subsequent sections we direct attention to finite width crack geometries. 
The material properties used in the calculations are the same as those described in 
Section 4. The plane strain results are discussed. 

5.1. Shallow crack tension 9eometry, a/W = 0.1 

The center-cracked panel loaded in biaxial tension is shown in Fig. 1 (b). The state 
of  biaxiality is given by B -  7/  ~ = cr~,~c~,,. Three biaxiality ratios, B 0, 0.5, and l, are 
investigated. 

Figure 7 shows the plastic zones in the right half of  the panel at fully yielded 
conditions corresponding to a(;./~r0 = 1.1, 1.9, and 2.0 for B = 0, 0.5, and 1, respec- 
tively. For biaxiality B >~ 1, the plastic zone does not spread across the ligament but 
instead it engulfs the crack completely. The stresses ahead of the crack for B = 0 are 
shown in Fig. 8(a) and (c). The corresponding H R R  distributions scaled by the path- 
independent J value are indicated by the solid circles. At a~/co = 0.2, corresponding 
to small-scale yielding, the full field is well approximated by the H R R  field. As the 
load increases, the fields fall off substantially from the H R R  distribution. These lower 
triaxiality stress distributions can be identified with members of the Q-family of  fields 
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discussed in Section 4. Figure 8(b) and (d) show the dependence o f  the second-order  
terms on the extent o f  yielding. Fully yielded condit ions are reached at a~y/ao = 1.1. 
Beyond this load level the stress distribution is unchanged and a steady-state Q value 
is obtained. 

The distribution o f  the full field and the second-order  terms along 0 = lr/4 are 
shown in Fig. 9. No te  that  the behavior  is similar to that  for 0 = 0 and that  the 
second-order  shear stress term is essentially zero. Though  the angular  distributions 
are not  shown, we have observed only weak angular  dependence in the sector 10[ < 1r/2. 

Figure 10(a) and (c) show the stress distribution at 0 -- 0 and ~/4 for B = 0.5 at 
loads a~y = 0.5, 1.0, 1.5, and 1.9, corresponding to conditions which range f rom small- 
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FIG. 12. Stresses in center-cracked panel, a/W = 0.1, at load levels shown in Fig. 7 for B = 0, 0.5, and 1.0. 
Two-term expansion shown by open circles. Q = - 1.2, -0.4, and 0.2, ~,r = 1.3, 1.3, and 1.0, respectively. 
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scale yielding to fully yielded conditions. At the latter three loads levels, the stresses 
have settled to nearly identical stress distributions. The second-order stresses at the 
fully yielded state for B = 0.5 are plotted in Fig. 10(b) and (d). 

Figure 11 show the stress distributions produced by the high-biaxiality case B = 1. 
Good  agreement between the full.-field solution and the H R R  field over the entire 
load range can be seen. Q reaches a steady-state value almost immediately. 

The distributions for all biaxial load states can be identified with members of  the 
Q-family of  fields shown in Figs 3 and 4. B = 0 corresponds to a low-constraint state 
Q < 0, B = 0.5 corresponds to an intermediate state, and B = 1 corresponds to a 
high-constraint state Q ~> 0. We have carried out calculations for B > 1 but have not 
been able to generate near-tip stress levels higher than those produced by B = 1. 

A comparison of  the stresses at the fully yielded state, aao/J = 8, 12, and 10, for 
B = 0, 0.5, and 1 with the two-term expansion (2.9) is provided in Fig. 12. In Fig. 
12(a) and (b) distance is normalized by the ligament length b, and in Fig. 12(c) by 
the crack length a as these are the relevant lengths (see Fig. 7). The Q values of  - 1.2, 
- 0 . 4 ,  and 0.2, respectively, were chosen to give the best fit with the full-field hoop 
s t r e s s  o v e r  5 %  o f  t h e  p l a s t i c  z o n e .  I n d e e d ,  t h e  g o o d  a g r e e m e n t  o v e r  a s i g n i f i c a n t  

fraction o f  the plastic zone confirms the existence of  a J-Q annulus. 

5.2 .  Deep crack tension geometry, a / W  = 0 . 7  

The plastic zones in the right half o f  the panel at fully yielded conditions, for B = 0, 
1, and 2 are shown in Fig. 13. For B ~> 2, the plastic zone does not spread across the 
ligament. Instead it evolves backwards to the mid-section and finally links up to form 
a plastic annulus that completely surrounds the crack. We attempted to generate even 
higher-triaxiality near-tip fields using B > 2. However, we found that the maximum 
stress levels that develop for load states B > 2 did not exceed the level for B = 2. 

The trends of  the full-field solutions for deeply cracked geometry are similar to 
those for the shallow-crack geometry. To illustrate this point, the second-order stress 
terms ahead of  the crack Q¢oo and Q f ,  are plotted in Fig. 14 for the three biaxiality 
load states. The similarity with the distributions in Figs 8(b) and (d), 10(b), and 11 (b) 
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is seen. Though not shown we observe weak angular dependence of  the second-order 
terms in the sector 101 < ~/2. Figure 15 shows the full-field solution for B = 0, 1, and 
2 at bao/J = 60, 35, and 35, respectively. The two-term expansion shown by the open 
circles accurately represents the full-field solution. Here the Q values are - 0.9, - 0.45, 
and - 0.15, respectively. 

5.3. Shallow-crack three-po&t bend geometry, a/W = 0.1 

The geometry of  the three-point bend bar is shown in Fig. 1 (c). The plastic zones 
corresponding to two states of  contained yielding, a/(J/ao) = 30 and 20, and the fully 
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yielded state, a/(J/ao) = 5 are shown in Fig. 16. Figure 17(a) and (b) show the behavior 
of the stresses ahead of the crack for the full range of states from small-scale yielding 
to fully yielded conditions corresponding to a/(J/ao) = 850, 200, 110, 50, 15, and 5; 
the HR R  distribution is indicated by the solid circles. The second-order terms are 
shown in Fig. 17(b) and (d). Figure 18 shows the behavior of these quantities along 
0 = ~/4. Note that i~,~ is practically zero at all load levels. Observe that Q'coo for 
a/(J/ao) = 5 decreases with distance at both angles [see Figs 17(b) and 18(b)]. This 
behavior arises because the crack opening is now a sizable fraction of the crack length. 
Under these conditions, the relevance of  fracture mechanics is questionable. 

Figure 19 provides a comparison of the two-term expansion and the full-field 
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solution for three load levels. Here the Q values are -0.75,  -0.75,  and -0 .8 ,  
respectively. The fields are in good agreement over a sizable fraction of a, the relevant 
dimension of the shallow-crack geometry. However, the excessive blunting in Fig. 
19(c) is noted. The agreement in this case may be fortuitous. 

We have also analyzed this geometry with a/W = 0.2, 0.3, and 0.5. The fields that 
evolve in the a/W = 0.2 geometry are rather similar to those for the a/W = 0.1 shown 
in Figs 17 and 18. Our results show that the a/W = 0.5 geometry behaves exactly like 
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FIG. 18. Stresses in three-point bend bar, a / W =  0.1, at the load levels given in Fig. 17. (a), (c) and (e) 
Stresses at 0 = n/4. HRR field is indicated by solid circles. (b), (d) and (f) Second-order terms at 0 = n/4. 

that of a deeply cracked geometry as reported by McMEEKING and PARKS (1979), 
SHIH and GERMAN (1981), and NEEDLEMAN and TVERGAARD (1983). In each case the 
fields that develop can be identified with members of  the Q-family provided that the 
characteristic crack dimension is much larger. Our results are consistent with the 
conclusions reached by AL-ANI and HANCOCK (1991), who have conducted an exten- 
sive investigation of  the shallow-crack geometry. 

6. CONCLUDING REMARKS 

We have demonstrated that the plastic near-tip fields are characterized by two 
parameters, J and Q. The stress distribution and the maximum stress depend on Q 
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FIG. 19. Stresses in three-point  bend bar,  a/W = 0.1, at al(J/t7o) = 30, 20, and 5. Two- te rm expansion 
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alone while J sets the size scale over which large stresses and large strains develop. 
Furthermore, we have observed that this Q-family of fields continues to exist in 
different crack geometries at large-scale yielding when the relevant crack dimension 
is much larger than J/ao. The Q value depends on crack geometry and the extent of 
plastic yielding. For certain crack geometries Q reaches a steady-state value when 
fully plastic conditions are approached. The range - 2.0 < Q < 0.2 covers every stress 
distribution that has been generated in this investigation. 

The Q-family of solutions provides a framework for quantifying the evolution of 
constraint from small-scale yielding to fully yielded conditions, and the limiting 
(steady-state) constraint when it exists. Thus Q can be used to rank crack geometries 
according to constraint. More importantly, fracture toughness and possibly fracture 
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resistance curve can be phrased  as a funct ion of  Q, i.e. J c ( Q )  and JR(Aa, Q).  For  
example ,  the toughness  values de te rmined  from low-cons t ra in t  specimens (Q < 0), 
e.g. shal low-crack geometries ,  and high-const ra in t  specimens (Q >~ 0), e.g. deeply 
cracked bend bars,  can be organized into a single toughness  curve by the Q-parameter .  
Specifically, toughness  values for Q ~> 0 can be de te rmined  using test specimens which 
meet the required size restr ict ions tk~r J -dominance  as discussed in A S T M  Standa rds  
E 813-87 for J/c testing. 
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