Compatibility Conditions for the Left Cauchy Green Tensor Field in 3-D

Amit Acharya

OxPDE Seminar Series
Oxford, Mathematical Institute, Nov. 12, 2008
Continuum Mechanics Problem for Left/Right Cauchy Green Compatibility (LCG/RCG)

Prescribed \(C(\cdot) \), \(B(\cdot) \) as functions of \(x \)

Find \(y(\cdot) \)

\[
\frac{\partial y}{\partial x}
\begin{bmatrix}
\frac{\partial y}{\partial x}^T
\end{bmatrix}
(x) = C(x) \in P_{sym} \quad \text{RCG}
\]

\[
\frac{\partial y^k}{\partial x^\alpha} \frac{\partial y^k}{\partial x^\beta} = C_{\alpha\beta}
\]

\[
\frac{\partial y}{\partial x}
\begin{bmatrix}
\frac{\partial y}{\partial x}^T
\end{bmatrix}
(x) = B(x) \in P_{sym} \quad \text{LCG}
\]

\[
\frac{\partial y^i}{\partial x^\alpha} \frac{\partial y^j}{\partial x^\alpha} = B^{ij}
\]
Are the RCG and LCG compatibility problems really different?

RCG

\[\frac{\partial y}{\partial x} = F \iff \text{curl } F = 0 \]

\[F^T F = \text{specified}(x) \in P_{\text{sym}} \]

LCG

\[\frac{\partial y}{\partial x} = F \iff \text{curl } F = 0 \]

\[FF^T = B \]

\[\iff F^{-T} F^{-1} = B^{-1} \]

\[\Im(F)^T \Im(F) = \text{specified}(x) \in P_{\text{sym}} \]

Using RCG method one has

\[\text{curl } \Im(F(x)) = 0 \]

\[\varepsilon_{ijk} \frac{\partial F}{\partial x^j} F_{nk}^{-1} = 0 \]

but need \[\varepsilon_{ijk} \frac{\partial F}{\partial x^j} F_{nk}^{-1} = 0 \]
Motivation

- **Continuum Mechanics**
 - Interesting geometry question for classical kinematical measure
 - Cauchy stress for Frame-indifferent, isotropic elastic material is a function only of B
 - Sharp contrast in uniqueness from the more studied RCG case
 - Open in 3-D

- **Mathematics**
 - Interesting questions involving
 - Geometry
 - Nonlinear PDE
 - Algebra
 - Even in the C^∞ local existence case
Riemannian Geometry in charts

Given two coordinate patches for a Riemannian manifold, with points denoted generically by

\[x \leftrightarrow x^\alpha \leftrightarrow (x^1, x^2, x^3) \]
\[y \leftrightarrow y^\alpha \leftrightarrow (y^1, y^2, y^3) \]

and

\[y = y(x) \]
\[\det \left(\frac{\partial y}{\partial x} \right) \neq 0 \]

\[\exists 3 \times 3 \text{ sym, + def matrix fields} \]

\[(x) C, \quad (y) C, \quad (x) B := (x) C^{-1}, \quad (y) B := (y) C^{-1} \]

satisfying

\[(x) C_{\alpha\beta} = \frac{\partial y^k}{\partial x^\alpha} \left[(y) C \right]_{km} \frac{\partial y^m}{\partial x^\beta} \]

\[(y) B^{ij} = \frac{\partial y^i}{\partial x^\alpha} \left[(x) B \right]^{\alpha\beta} \frac{\partial y^j}{\partial x^\beta} \]

Notational agreement:
Evaluate anything like

\[(x) (\cdot) \text{ at } x \]
and

\[(y) (\cdot) \text{ at } y(x) \]
The question of equivalence of quadratic forms

Given two local P_{sym} matrix fields on manifold M, $\text{dim}(M) = N$, they are equivalent if one can find two local charts in \mathbb{R}^N related $1-1$ with

$$\det \left(\frac{\partial y}{\partial x} \right) \neq 0$$

satisfying transformation rules. (WHY???)

On tangent space T_{p_0} of $p_0 \in M$ spanned by

$$\left(\frac{\partial p}{\partial y^1}, \frac{\partial p}{\partial y^2} \right) \text{ or } \left(\frac{\partial p}{\partial x^1}, \frac{\partial p}{\partial x^2} \right)$$

any vector $a \in T_{p_0}$

$$a = (x) a^\alpha \frac{\partial p}{\partial x^\alpha} = (x) a^\alpha \frac{\partial p}{\partial y^i} \frac{\partial y^i}{\partial x^\alpha} = (y) a^i \frac{\partial p}{\partial y^i} \Rightarrow (y) a^i = (x) a^\alpha \frac{\partial y^i}{\partial x^\alpha}$$

Now, let there be a quadratic form for each chart s.t. for a, b

$$(x) a^\alpha C_{\alpha\beta} (x) b^\beta =: \text{physical scalar indep. of chart}$$

But, no chart is special; $\therefore (x) a^\alpha C_{\alpha\beta} (x) b^\beta = (y) a^i C_{ij} (y) b^j$
Mapping compatibility question to Riemannian Geometry

\[(x) C_{\alpha\beta} = \frac{\partial y^k}{\partial x^\alpha} \left[(y) C \right]_{km} \frac{\partial y^m}{\partial x^\beta} \]

\[(y) B^{ij} = \frac{\partial y^i}{\partial x^\alpha} \left[(x) B \right]^{\alpha\beta} \frac{\partial y^j}{\partial x^\beta} \]

choose

\[(y) C \equiv I \quad \text{RCG compatibility} \]

\[\frac{\partial y^k}{\partial x^\alpha} \frac{\partial y^k}{\partial x^\beta} = C_{\alpha\beta} \]

\[(x) B \equiv I \quad \text{LCG compatibility} \]

\[\frac{\partial y^i}{\partial x^\alpha} \frac{\partial y^j}{\partial x^\alpha} = B^{ij} \]

Overdetermined Problems
Machinery of Riemannian Geometry thanks to Christoffel

Recall notation, for any patch Z where

$$(z) B = (z) C^{-1}$$

defined as

$$(z) \Gamma_{rs}^i := \frac{(z) B^{ip}}{2} \left[\frac{\partial (z) C_{rp}}{\partial z^s} + \frac{\partial (z) C_{sp}}{\partial z^r} - \frac{\partial (z) C_{rs}}{\partial z^p} \right]$$

Necessary condition for existence of $y(x)$ satisfying metric transformation rules is

$$\frac{\partial y^i}{\partial x^\alpha \partial x^\beta} = (x) \Gamma^\rho_{\alpha \beta} \frac{\partial y^i}{\partial x^\rho} - (y) \Gamma_{rs}^i \frac{\partial y^r}{\partial x^\alpha} \frac{\partial y^s}{\partial x^\beta}$$

Roughly:

For RCG

$$(y) C \equiv I \quad \Rightarrow \quad (y) \Gamma_{rs}^i \equiv 0$$

Linear problem for $\frac{\partial y}{\partial x}$

For LCG

$$(x) B \equiv I \quad \Rightarrow \quad (x) \Gamma^\rho_{\alpha \beta} \equiv 0$$

Quasilinear problem for $\frac{\partial y}{\partial x}$
RCG compatibility

- Riemann
- Christoffel
- Brothers Cosserat
-
-
- Shield
- Deturck and Yang

Interesting associated facts, especially uniqueness question
 - if two deformations have same RCG field, then they differ by rigid deformation

- Reshetnyak (according to Ball and James)
 - Inadequacy of single-well energy for prediction of microstructure with compatible elastic deformation (Ball & James)

- Friesecke, Muller, James

- An invertible tensor field F may have nonvanishing curl even if its RCG field (F^TF) is compatible
Complete Integrability of Pfaff PDE (T.Y. Thomas, 1934)

Theorem: Consider PDE

$$\frac{\partial w^i}{\partial x^\alpha}(x) = \psi^i_\alpha(w(x), x) \quad i = 1 \text{ to } R ; \alpha = 1 \text{ to } n$$

$$\psi^i_\alpha \in C^1(\Omega), \Omega \text{ open connected subset of } \mathbb{R}^R \times \mathbb{R}^n$$

Suppose the integrability condition

$$\frac{\partial \psi^i_\alpha}{\partial w^j} \psi^j_\beta + \frac{\partial \psi^i_\alpha}{\partial x^\beta} = \frac{\partial \psi^i_\beta}{\partial w^j} \psi^j_\alpha + \frac{\partial \psi^i_\beta}{\partial x^\alpha}$$

holds in Ω. (motivated by equality of second partial derivs.)

Then for arbitrary $(w_0, x_0) \in \Omega$, \exists a unique local solution around x_0 satisfying $w(x_0) = w_0$. Therefore, solution allows R arbitrary constants to be specified.
RCG compatibility

Motivated by necessary condition, consider

\[
\frac{\partial y^i}{\partial x^\alpha} = u^i_\alpha
\]

\[
\frac{\partial u^i_\alpha}{\partial x^\beta} = (x) \Gamma^\gamma_{\alpha\beta} u^i_\gamma = u^i_\gamma \frac{C^{\gamma\mu}}{2} \left[\frac{\partial C_{\alpha\mu}}{\partial x^\beta} + \frac{\partial C_{\beta\mu}}{\partial x^\alpha} - \frac{\partial C_{\alpha\beta}}{\partial x^\mu} \right]
\]

Integrability Condition (nice and 'separably' factored in \(x\)-dependent terms and \(u\)-dependent terms)

\[
u^i_\mu\left[\frac{\partial (x) \Gamma^\nu_{\alpha\beta}}{\partial x^\rho} - \frac{\partial (x) \Gamma^\nu_{\alpha\rho}}{\partial x^\beta} + (x) \Gamma^\nu_{\gamma\rho} (x) \Gamma^\gamma_{\alpha\beta} - (x) \Gamma^\nu_{\gamma\beta} (x) \Gamma^\gamma_{\alpha\rho} \right] = 0
\]

\[\therefore\] require Riemann-Christoffel curvature tensor to vanish. Guarantees existence of \(u\) with arbitrarily specifiable value \(u_0\) at one point, and because of symmetry of \(\Gamma\) in lower indices, of \(y\).

Remains to be shown that \(u^i_\alpha u^i_\beta = C_{\alpha\beta}\)
RCG Compatibility

Assign $u(x_0)$ such that $u^T u(x_0) = C(x_0)$.

Continuity \Rightarrow u invertible locally around x_0.

Define $\nu = u^{-1}$; noting $\delta_{ij} = \nu_i^\alpha C_{\alpha\beta} \nu_j^\beta(x_0)$

$$
\frac{\partial}{\partial x^\mu} \left(\nu_i^\alpha C_{\alpha\beta} \nu_j^\beta \right) = \nu_j^\beta \nu_i^\rho \left[\frac{\partial C_{\rho\beta}}{\partial x^\mu} - C_{\alpha\beta}(x) \Gamma_{\rho\mu}^\alpha - C_{\rho\alpha}(x) \Gamma_{\beta\mu}^\alpha \right] = 0 \text{ !!!}
$$

covariant derivative of covariant metric tensor

Ricci: metric tensors covariantly constant

(merely smoothness, and defn. of Γ !!!)

$$
\therefore \delta_{ij} = \nu_i^\alpha C_{\alpha\beta} \nu_j^\beta \Rightarrow u^T u = C = \left(\frac{\partial y}{\partial x} \right)^T \frac{\partial y}{\partial x} \text{ locally } \square
$$

Carnegie Mellon
Left Cauchy Green Compatibility

- **2-D**
 - **Blume (1989)**
 - Formulation based on Polar Decomposition (for both 2/3-D)
 - Find a rotation tensor field
 - Compatibility condition for 2-d problem is derived
 - ‘Explicit’ characterization of the condition
 - Uniqueness is analyzed
 - **Duda & Martins (1995)**
 - Plane case
 - Polar Decomposition
 - Analysis of possible cases; construction of the rotation field
 - Insightful and detailed analysis of the uniqueness question
 - Demonstration of nonuniqueness through constructive examples systematically using Thomas

- **3-D - open**
 - **Acharya (1999)**
 - geometric formulation
 - provides condition for local existence in 3-d
 - Much can be done in ‘explicit’ characterization of the existence condition
Consider necessary condition for existence of y^i such that
\[
\frac{\partial y^i}{\partial x^\alpha} \frac{\partial y^j}{\partial x^\alpha}(x) = (y)B^{ij}(x) \quad \text{holds.} \quad \text{(and } (x)B^\alpha{}^\beta(x) = \delta^\alpha{}^\beta \text{ constant)}
\]

Around arbitrary x_0, the map y is then locally invertible and so
\[
\frac{\partial B_{rp}}{\partial y^s} = \frac{\partial B_{rp}}{\partial x^\alpha} \frac{\partial x^\alpha}{\partial y^s} \quad \text{where } \left[(y)B^{-1} \right]_{rp} : = B_{rp} = (y)C_{rp}
\]

Recall $(z)B = (z)C^{-1}$
\[
(z)\Gamma^i_{rs} := \frac{(z)B^{ip}}{2} \left[\frac{\partial (z)C_{rp}}{\partial z^s} + \frac{\partial (z)C_{sp}}{\partial z^r} - \frac{\partial (z)C_{rs}}{\partial z^p} \right]
\]

\[
\frac{\partial y^i}{\partial x^\alpha \partial x^\beta} = (x)\Gamma^\rho_{\alpha\beta} \frac{\partial y^i}{\partial x^\rho} - (y)\Gamma^i_{rs} \frac{\partial y^r}{\partial x^\alpha} \frac{\partial y^s}{\partial x^\beta}
\]

\[
\therefore (x)\Gamma^\rho_{\alpha\beta} \equiv 0, \quad \text{and} \quad \frac{\partial y^i}{\partial x^\alpha \partial x^\beta} = -\frac{B^{im}}{2} \left[\frac{\partial B_{rm}}{\partial y^r} \frac{\partial y^r}{\partial x^\alpha} + \frac{\partial B_{sm}}{\partial y^s} \frac{\partial y^s}{\partial x^\alpha} - \frac{\partial B_{rs}}{\partial y^r} \frac{\partial y^r}{\partial x^\alpha} \frac{\partial y^s}{\partial x^\beta} - \frac{\partial B_{rs}}{\partial y^r} \frac{\partial y^r}{\partial x^\alpha} \frac{\partial y^s}{\partial x^\beta} \right]
\]
Left Cauchy Green Compatibility
Governing PDE System

Original – nonlinear, first order system
Formulated as – Quasilinear, Pfaffian system

\[u^i_\rho u^j_\rho = B^{ij} \]

\[\frac{\partial y^i}{\partial x^\alpha} = u^i_\alpha \]

\[\frac{\partial u^i_\alpha}{\partial x^\beta} = -\frac{B^{im}}{2} \left[\frac{\partial B_{rm}}{\partial x^\beta} u^r_\alpha + \frac{\partial B_{sm}}{\partial x^\alpha} u^s_\beta - \frac{\partial B_{rs}}{\partial x^\rho} \sum_m (u) u^r_\alpha u^s_\beta \right] \]

Matrix inverse function

\[\left[(y) B \right]^{ij} (x) =: \left[B \right]^{ij} (x) \]

\[\left[(y) B^{-1} \right]_{rp} =: B_{rp} = (y) C_{rp} \]
Setup

Seek functions

\[w^i(x), \quad i = 1, 2, \ldots, R \]

that satisfy

\[\frac{\partial w^i}{\partial x^\alpha}(x) = \psi^i_\alpha(w(x), x) \quad \alpha = 1, 2, \ldots, n \]

(for definiteness think of domain of \(\psi^i_\alpha \) to be open connected set of \(\mathbb{R}^R \times \mathbb{R}^n \))

Refer to domain of \(\psi^i_\alpha \) as \((z, x)\)

Associate \(w^i \rightarrow u^i_\alpha \); so \(R = 3 \times 3 = 9 \); \(n = 3 \).

\[\frac{\partial u^i_\alpha}{\partial x^\beta} = A^i_{\alpha\beta} \left(u, (y)B(x), \frac{\partial (y)C}{\partial x}(x) \right) \]

\[\frac{\partial y^i}{\partial x^\alpha} = u^i_\alpha \]
Sufficient condition for local existence: the completely-integrable situation

Hypothesis: Suppose

\[F^{(1)}(u,x) := \left(\frac{\partial A^i_{\alpha \beta}}{\partial u^k_{\mu}} A^k_{\mu \gamma} + \frac{\partial A^i_{\alpha \beta}}{\partial x^\gamma} - \frac{\partial A^i_{\alpha \gamma}}{\partial u^k_{\mu}} A^k_{\mu \beta} - \frac{\partial A^i_{\alpha \gamma}}{\partial x^\mu} \right) (u,x) \equiv 0 \quad \text{locally in } (u,x) \]

(seek symmetry in \(\beta, \gamma \) for each \(i, \alpha \) \(\Rightarrow \) 27 nonlinear algebraic equations)

If so, Thomas guarantees solution to \(u \) and therefore \(y \) with arbitrary data at one \(x_0 \).

So - specify conditions on \(B \) field for when identity can be satisfied:

Unlike RCG case, \(F^{(1)} \) is

- cumbersome (downright scary!) • nonlinear in \(u \) • does not readily separably factorize into at least 1 solely \(x \)–dependent term

- need separability (seems to me) for identity with control only on \(x \)–dependent terms
- need (algebraic-geometric?) theorem for when this can happen

Given field \((y)B(x) \) and algebraic structure of array \(A \).
Sufficient condition for local existence: the completely-integrable situation

Initial data to match $uu^T(x_0) = (y)B(x_0) \in P_{ym}$ can be constructed. Then local diffeomorphism y around x_0 satisfying $\partial y / \partial x = u$ exists (and u is invertible)

Now define $(y)\Gamma^{i}_{rs}(y') := \left(\frac{(y)B^{ip}_{rp} \circ x}{2} \left[\frac{\partial (y)C_{rp} \circ x}{\partial y^s} + \frac{\partial (y)C_{sp} \circ x}{\partial y^r} - \frac{\partial (y)C_{rs} \circ x}{\partial y^p} \right] \right)(y')$

(Notation: $y^{-1} := x$) Then,

$$\frac{\partial u^i}{\partial x^\beta}(x(y')) = -(y)\Gamma^{i}_{rs}(y') [u^r_{\alpha} u^s_{\beta}](x(y'))$$

Define $v = u^{-1}$, consider$$\frac{\partial}{\partial y^m} \left[\left(B^{ij}_v v^\alpha_i v^\beta_j \right) \circ x \right]$$

Since u invertible,$$
\frac{\partial}{\partial x} u^{-1} = 0 \Rightarrow \frac{\partial y}{\partial x} \left(\frac{\partial y}{\partial x} \right)^T = B
$$

Ricci: covariant deriv. of contravariant Metric tensor = 0

\[\begin{bmatrix}
\frac{\partial}{\partial y^m} \left[B^{ij}_v v^\alpha_i v^\beta_j \right] = \begin{bmatrix}
\frac{\partial (y)B^{ij}}{\partial y^m} + (y)B^{kj}_{(y)} \Gamma^{i}_{km} + (y)B^{ik}_{(y)} \Gamma^{j}_{km}
\end{bmatrix} v^\alpha_i v^\beta_j = 0
\]
Sufficient condition for NOT completely integrable case

Let \(F^{(l)}(z, x) \neq 0 \) identically. \((F^{(l)} \) defines complete integrability condition)

Define \(F^{(j+1)}_{\alpha}(z, x) := \left(\sum_{i=1}^{R} \frac{\partial F^{(j)}}{\partial z^i} \psi^i_{\alpha} + \frac{\partial F^{(j)}}{\partial x^\alpha} \right)(z, x) \)

and consider two integers \(N, R \) with
\[1 \leq N \leq R \quad ; \quad 1 \leq M \leq R. \]

Assume that

- there exist \(M \) equations in the sets \(F^{(1)} = 0 \) through \(F^{(N)} = 0 \) denoted by
 \(\tilde{G}_{\lambda} = 0, \ \lambda = 1 \) to \(M, \)

and \(M \) of the variables \(z^i \) (from the list \(z^i, i = 1 \) to \(R \)) denoted by
 \(\tilde{z}^i, \quad i = 1 \) to \(M \) identified through a known one-to-one map \(\kappa: \{1, 2, \ldots, M\} \rightarrow \{1, 2, \ldots R\} \)

by \(\tilde{z}^i := z^{\kappa(i)} \)

which satisfy \(\det \left[\frac{\partial \tilde{G}_{\lambda}}{\partial \tilde{z}^i}(z, x) \right] \neq 0 \) locally in \((z, x)\) space.
Not Completely Integrable Case, contd.

Denote remaining \(R - M =: P \) variables \(z \) as \(\hat{z}^i, i = 1 \) to \(P \), defined by
\[
\mu : \{1, 2, \ldots, P\} \rightarrow \{1, 2, \ldots, R\} \quad \hat{z}^i := z^{\mu(i)}.
\]

Assume that around a point \((\hat{z}_0, x_0) := (\hat{z}_0^1, \ldots, \hat{z}_0^P, x_0^1, \ldots, x_0^n) \), the solution \(\bar{z}^i = \varphi^i \left(\hat{z}_0^1, \ldots, \hat{z}_0^P, x_0^1, \ldots, x_0^n \right), \quad i = 1, 2, \ldots, M \), of \(\tilde{G}_\lambda = 0, \quad \lambda = 1, 2, \ldots, M \) satisfies all the equations of the sets
\[
F^{(1)} = 0 \quad \text{through} \quad F^{(N+1)} = 0
\]
identically in a neighborhood of \((\hat{z}_0, x_0) \) in \((\hat{z}, x) \) space.

Then \(\exists \) a function \(w(x) \) satisfying
\[
\frac{\partial w^i}{\partial x^\alpha}(x) = \psi^i_\alpha \left(w(x), x \right) \quad \alpha = 1, 2, \ldots, n, \quad i = 1, 2, \ldots, R
\]
determined by \(P \) constants.
Proof: Not completely Integrable case

Let $\Pi(\bar{z}, \hat{z}, x) \mapsto (z, x)$. Define,

$$G_{\lambda}(\bar{z}, \hat{z}, x) = \tilde{G}_{\lambda}(\Pi(\bar{z}, \hat{z}, x)), \quad \lambda = 1, 2, \ldots, M$$

$$\psi_{\alpha}^i(\bar{z}, \hat{z}, x) = \psi_{\alpha}^{k(i)}(\Pi(\bar{z}, \hat{z}, x)), \quad i = 1, 2, \ldots, M, \quad \alpha = 1, 2, \ldots, n$$

$$\psi_{\alpha}^j(\bar{z}, \hat{z}, x) = \psi_{\alpha}^{\mu(j)}(\Pi(\bar{z}, \hat{z}, x)), \quad j = 1, 2, \ldots, P, \quad \alpha = 1, 2, \ldots, n$$

Since $F^{(N+1)}(\varphi(\hat{z}, x), \hat{z}, x) \equiv 0$ in (\hat{z}, x)

$$\left[\frac{\partial G_{\lambda}}{\partial \bar{z}^i} \psi_{\alpha}^i + \frac{\partial G_{\lambda}}{\partial \hat{z}^j} \psi_{\alpha}^j + \frac{\partial G_{\lambda}}{\partial x^\alpha} \right] \varphi(\hat{z}, x), \hat{z}, x) = 0 \quad (I)$$

For arbitrarily fixed path $f(t)$ with $f(0) = x^* \exists$ solution to ODE

$$\frac{dg^j}{dt}(t) = \left[\psi_{\alpha}^j \circ (\varphi \circ (g, f), g, f) \frac{df^\alpha}{dt} \right](t) \quad ; \quad g^j(0) = \hat{z}^* \text{ (arbitrary)},$$

and g satisfies $G_{\lambda} \circ (\varphi \circ (g, f), g, f)(t) = 0$ for t in some local interval around 0.
Proof: Not Completely Integrable Case

Differentiating w.r.t. t, combining with (I), and using arbitrariness of path f, $\hat{\alpha}^*$, and x^* yields,

$$\overline{\psi}_\alpha^i \left(\varphi \left(\hat{\alpha}, x \right), \hat{\alpha}, x \right) - \frac{\partial \varphi^j}{\partial \hat{\alpha}^j} \left(\hat{\alpha}, x \right) \hat{\psi}_\alpha^j \left(\varphi \left(\hat{\alpha}, x \right), \hat{\alpha}, x \right) - \frac{\partial \varphi^i}{\partial x^\alpha} \left(\hat{\alpha}, x \right) \equiv 0 \ (II)$$

locally in $(\hat{\alpha}, x)$ space.

$F^{(1)}(\varphi(\hat{\alpha}, x), \hat{\alpha}, x) \equiv 0$ combined with (II) implies that the conditions of complete integrability for

$$\frac{\partial g^j}{\partial x^\alpha}(x) = \hat{\psi}_\alpha^j \left(\varphi \left(g \left(x \right), x \right), g \left(x \right), x \right) \ (III)$$

are satisfied. Thus \exists solution to (III) with P arbitrary constants.

Then it can be shown that

$$h^i(x) := \varphi^i \left(g \left(x \right), x \right) \ i = 1, 2, \ldots, M$$

$$g^j(x) \ j = 1, 2, \ldots, P$$

satisfy

$$\frac{\partial h^i}{\partial x^\alpha}(x) = \psi^j \circ \left(h, g, Id \right)(x) \quad \frac{\partial g^j}{\partial x^\alpha}(x) = \psi^\mu \circ \left(h, g, Id \right)(x). \ \square$$

If $u_0 u_0^T = B \left(x_0 \right)$ cannot be accommodated by P constants, stick in $uu^T(x) = B(x)$ in $F^{(1)}$. Then use standard idea with Ricci to show B compatibility.
Comments

- Proof adapted from Eisenhart, 1927, Veblen and Thomas, 1926
 - They claim necessity as well; I couldn’t

- Guess:
 - Related to Cartan’s Method of Equivalence
 - Modern treatment – R B Gardner CBMS-NSF-SIAM