Statistical Mechanics
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Probability


An experiment that has many possible outcomes.  We have tossed a coin many times, and this is what we have found.  Each toss produces either a head or a tail, but we cannot predict which one will be produced before the toss.  This experiment shares salient features with other experiments.  We next paraphrase these features in the language of sets.  


A possible outcome of an experiment is called a sample point.  The set of all possible outcomes of an experiment is called the sample space.  A subset of possible outcomes is called an event.   

We label the sample points of an experiment by 
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 The subscripts differentiate outcomes of the experiment, but do not imply any order among them.  The sample space 
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 of the experiment is the set of all possible outcomes:
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Here are some sets:  
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The set A is the event that either 
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 occurs.  The point 
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 belongs to the event A, 
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, is the event that either 
[image: image15.wmf]1

g

 or 
[image: image16.wmf]2

g

 or 
[image: image17.wmf]3

g

 or 
[image: image18.wmf]4

g

 occurs.  The intersection of two sets, e.g., 
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 occurs.  The event C is a subset of event A, namely, 
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; consequently, if event C occurs, event A must also occur.  The event D shares no sample points with event A, namely, 
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 = empty set, so that the events A and D are mutually exclusive.     

      


Examples.  (a) Tossing a coin once.  The sample space of tossing a coin once is the set 
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· the experiment produces a head, 
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· the experiment produces either a head or a tail, 
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, which is the sample space;

· the experiment produces both a head and a tail, 
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, which is an empty set;

· the experiment produces neither a head nor a tail, which is also an empty set.


(b) Tossing a coin twice.  The sample space for tossing the coin twice is the set 
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.  Some possible events are:

· the experiment produces two heads, 
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· the experiment produces exactly one head, 
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· the experiment produces at least one head, 
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· the experiment produces no head, 
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(c) Throwing a die.  A die thrown once produces one of six possible outcomes, depending on which face is on the top.  The sample space of throwing a die once is the set 
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}

6

,

5

,

4

,

3

,

2

,

1

.  The sample space of throwing a die twice is the set
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(d) Throwing both a coin and a die once.  The sample space of throwing both a coin and a die once is the set
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(e) A system of molecules.  Consider a system of molecules, such as a gas, a liquid, or a solid.  The system has many quantum states, and does an “experiment” all by itself:  the system rapidly switches from one quantum state to another.  Each quantum state of the system is a sample point of the experiment.  


Construct a sample space at a suitable level of detail.  The sample space is a special event, so is every sample point.  Also, we can regard an event as a sample space:  a subset may be considered as a set in its own right; we speak of a subset merely to indicate that we have a larger set in the back of our minds.  Furthermore, we can divide a sample space into a class of disjoint events, and then regard each event as a sample point.


This last change of view is particularly important because individual outcomes of an experiment are often too numerous to interest us; we would rather focus on some aggregates of outcomes.  When tossing a coin, a gambler is interested in whether the outcome is a head or a tail.  Of course, the coin is made of atoms, each atom is made of electrons, protons and neutrons, and each neutron is made of…  Associated with a head, the coin has numerous quantum states.   But this mode of description is too detailed to interest the gambler, unless she happens to be a physicist.       
 

Probability of an event.  Probability is a map from a set of events to a set of nonnegative numbers.  Denote the probability of event A by 
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(a) P(sample space) = 1;

(b) 
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 for any two mutually exclusive events A and B. 


Let us label all the possible points of an experiment as 
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  A point is a special event.  Denote the probability of sample point 
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Once the probabilities for individual points are known, we can calculate the probability of any event by 
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The sum is taken over the points that constitute the event A. 


Conditioning.  Consider a large number of computers shipped from several cities in Asia:  Hong Kong, Taiwan, Shanghai, etc.  Denote the set of all the computers by 
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, the set of defective computers by D, and the set of computers from Hong Kong by H.  Thus, 
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 is the set of computers both defective and from Hong.   Of the total number of N computers,
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 computers come from Hong Kong, and 
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 computers from Hong Kong are defective.   If we pick one computer randomly from the N computers, the probability that the computer is from Hong Kong is 
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In general, let events H and D be subsets of a sample space 
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, and 
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In the above example, by 
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 we mean the probability that a computer is from Hong Kong given that it is from Asia.  We ought to write 
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The above equation may be written as
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This equation can be interpreted as picking a computer in two steps:  first from the cities in Asia pick a particular city (Hong Kong), and then from the computers from this city pick a particular computer.  The probability that a computer is both defective and from Hong Kong given that the computer is from Asia, 
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, is the probability that a computer is from Hong Kong given that the computer is from Asia, 
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We usually drop the reference to the sample space, and write the above equation as
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The two events in 
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 play symmetric roles, which can be switched.  Thus,   
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We have already interpreted the left hand side of this equation.  The right hand side means we determine 
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 by choosing a computer in by two steps via an alternative route.  First, we determine the probability that a computer is defective given that the computer is from Asia.  Second we determine the probability that a computer is from Hong Kong given that the computer is defective. 


Independent events.  When a fair coin is tossed once, the probability to get the head is ½.  When a fair die is thrown once, the probability to get face 5 is 1/6.  If the two events are independent, the probability to get the head of the coin and face 5 of the die is 1/12.  We can also view the composite of the two experiments as a single experiment.  The composite has 12 sample points, which are equally probable if the coin and the die are independent, so that the probability of each sample point of the composite is 1/12. 


In general events A and B are said to be independent if the probability for both events to occur is the product of their individual probabilities, namely, 
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Random variable.    A random variable is a map from a sample space to a set of numbers.  Let the sample space of an experiment be 
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, and the random variable be X.  When the experiment produces an outcome 
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.  The domain of the map is the sample space, which consists of outcomes of an experiment, objects that are usually not numbers.  The range of the map is a set of numbers, which obey usual rules of algebra, such as addition and multiplication.  What is random in a random variable is the outcome of the experiment; once the outcome is known, the value of the variable is known and not random.    


Examples.  (a) Tossing a coin once.  We can assign a random variable X for the experiment of tossing a coin.  When a toss produces a head, the random variable is one.  When a toss produces a tail, the random variable is zero.  Thus,
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(b) Tossing a coin seven times.  Tossing a coin seven times produces sequences like HTHTTTH.  A total of 
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 distinct sequences constitute the sample space of this experiment.  Let K be the number of heads in a sequence; for example, 
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.  This experiment is a composite of seven independent tosses.   Let 
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 be the random variable defined above for the ith trial.  Thus, for the sequence HTHTTTH, these random variables take the following values:
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For any sequence, the random variable K is the sum of these random variables:
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(c) Human characteristics.  For example, let the sample space be a population of people 
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 is an individual person.  Not all human characteristics can be reduced to numbers, but many can.  For example, for each individual person 
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Use a random variable to specify an event.   One way to specify an event is to specify sample points by placing a restriction on a random variable.  Here are some examples:

· All people of 40 years old, 
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· All people between 100 to 160 pounds, 
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· All people of 40 years old and between 100 to 160 pounds, 
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Use a random variable to dissect a sample space.  A random variable is a map from a sample space to a set of number.  This map is often many-to-one, rather than one-to-one.  The sample space can be divided into a family of events such that each event consists of all the sample points having the same value of the random variable.  These events are mutually exclusive, and their union is the sample space.  For example, in a population of people, a subpopulation of people are 40 years old, and another subpopulation of people are 41 years old, etc.  Thus, the age of a person can be used to divide the population into a family of subpopulations.



Probability distribution of a random variable.      Let 
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 be a random variable defined on a sample space 
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Mean of a random variable.  Let 
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 be the corresponding probabilities of the sample points.  When the outcome of the experiment is 
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The sum is taken over all sample points.  The mean is a map, whose domain is a set of functions defined on the sample space, and whose range is a set of numbers.


We can divide the sample space into a class of events A, B,… such that, within each event, every sample point has the same value of X.  These events are disjoint, and there union is the sample space.  Consequently, the class of the events constitutes a dissection of the sample space.  Let 
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This sum is taken over all events in the family.  


Variance of a random variable.  Define the variance of a random variable X by
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The sum is taken over all sample points.  The calculation of fluctuation is often aided by the following identity:
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A dimensionless measure of the fluctuation of a random variable.   The unit of the mean is the same as that of the random variable.  The unit of the variance is the square of that the random variable.  The fluctuation of the random variable X can be measured by a dimensionless ratio
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If we double the random variable, the mean will double and the variance will quadruple, but the fluctuation remains the same.


Example.  Let
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, where i is the number on a face of a fair die.  Thus,
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