There is an example in that book as follows:
EXAMPLE 4.15 Find Green's function for three-dimensional Poisson's equation,

$$
\begin{equation*}
\nabla^{2} G+\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0 \Rightarrow G_{, i i}+\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0 \tag{4.61}
\end{equation*}
$$

where $\nabla^{2}=\frac{\partial^{2}}{\partial x_{i} \partial x_{i}}, i=1,2,3$ and $\delta\left(\mathrm{x}-\mathrm{x}^{\prime}\right)=\delta\left(x_{1}-x_{1}^{\prime}\right) \delta\left(x_{2}-x_{2}^{\prime}\right) \delta\left(x_{3}-\right.$ x_{3}^{\prime})
After some assumptions and Algebra operations finally comes to

$$
G_{, i i}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)=-\int_{-\infty}^{\infty} \bar{G}(\xi) \xi_{i} \xi_{i} \exp \left(i \xi \cdot\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\right) d \xi
$$

And Prof, Li have given elegant solution to this problem.

My puzzlements are as follows:

During solving this integration, Prof. Li use the coordinate transformation,

$$
\begin{aligned}
G\left(\mathrm{x}-\mathrm{x}^{\prime}\right) & =\frac{1}{\left(2 \pi^{3}\right)} \int_{-\infty}^{\infty} \frac{1}{\xi^{2}} \exp \left(i \boldsymbol{\xi} \cdot\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\right) d \boldsymbol{\xi} \\
& =\frac{1}{\left(2 \pi^{3}\right)} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{\xi^{2}} \exp \left(i \boldsymbol{\xi} \cdot\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\right){\xi^{2} d \xi \sin \theta d \theta d \phi}^{\text {而 }}
\end{aligned}
$$

This is the illustration in Li’s book

Figure 4.3. Inversion of three-dimensional Fourier transform

But to my understand, the relation between Cartesian coordinates and Spherical Coordinates is as follows

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.
$$

And the volume fragment relation in these two coordinate is

$$
d V_{x y z}=\rho^{2} \sin \phi d V_{\rho \phi \theta}=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

From these two pictures, we may note the difference, in Li’s book, the angle θ is not the angle between the ξ and vertical axis ξ_{3}, why he could get the same transformation?

