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Abstract

We have studied diffusion controlled growth of an isolated, misfitting precipitate

in a supersaturated matrix using a phase field model. Treating our simulations as

computer experiments, we have critically compared our simulation results with those

from Zener-Frank and Laraia-Johnson theories for the growth of non-misfitting and

misfitting precipitates, respectively. The agreement between simulations and the ZF

theory is very good for 1D systems. In 2D systems with interfacial curvature, we still

get good agreement between simulations and both ZF and LJ theories, but only for

large supersaturations. At small supersaturations, the growth coefficient from our

simulations does converge towards that from theory, but a large gap does remain

when the simulations end due to overlap of diffusion fields. An interesting finding

from the simulations is the less complete realization of the Gibbs-Thomson effect

during growth, particularly in more supersaturated alloys. Thus, even at the same

precipitate size, the curvature effects are less severe in more supersaturated alloys.
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1 Introduction

In their classic study of diffusional growth of an isolated precipitate into a su-

persaturated matrix, Zener [1] and Frank [2] established the parabolic growth

law: the square of the precipitate size (radius) increases linearly with time.

They used what is now referred to as a ’sharp interface’ model. Fig. 1 shows

a schematic of a composition profile in the precipitate p and matrix m phases

during growth. Local equilibrium at the (sharp) interface yields the matrix

interfacial composition, cm
I , which is used as a boundary condition for solving

the diffusion equation; the far-field composition, c
∞

is the other boundary

condition. Neglecting interface curvature (capillarity) effects, cm
I is the same

as cm
e , the equilibrium matrix composition obtained from the phase diagram,

and the precipitate grows under a supersaturation of (c
∞
− cm

e ).

The Zener-Frank (ZF) theory was extended by Laraia and Johnson (LJ) to

diffusional growth of elastically misfitting precipitates; the work of LJ built

on the work of Eshelby [3], Larche and Cahn [4–7], Johnson and Alexander [8]

and Leo and Sekerka [9]. The main result of the LJ study is that the parabolic

growth law continues to be valid for precipitates with misfit, but the growth

coefficient depends on (a) misfit, (b) elastic moduli of the two phases and (c)

interfacial stress and (d) compositional stress.

In the sharp interface model used by LJ, the effect of dilatational misfit (with-

out capillary effects) is to raise the matrix interfacial composition from cm
e to

cm
E , and therefore, to decrease the supersaturation (by a constant factor) to

c
∞
− cm

E . Thus, the LJ theory predicts that the growth coefficient α in misfit-
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ting systems is the same as that in non-misfitting systems with (c
∞
− cm

E ) as

the supersaturation. This conclusion is valid for systems in which diffusivity

is independent of the state of stress; our study is restricted to these systems

(as already mentioned, LJ have studied other stress-induced effects).

Direct experimental verification of the LJ results is extremely difficult, not only

due to the ‘isolated particle’ assumption, but also due to lack of reliable data

on stress effects on diffusion. Moreover, the assumption of isotropic interfacial

energy may also be difficult to realize experimentally in crystalline alloys.

Thus, simulations can act as ‘computer experiments’ for validating the LJ

results, since their parameters can be so tuned to make the computational

model resemble that used in the LJ theory as closely as possible. Thus, the

first goal of our study is a critical comparison of the sharp interface results of

LJ with those from our simulations based on a (diffuse interface) phase field

model.

In ZF and LJ theories, which neglect interface curvature effect, the diffusion

fields at different times are self-similar. This self-similarity is broken when

capillarity effect is included, since cm
I (in Fig. 1a and b) is size dependent.

Capillarity, then, not only decreases the growth rate α, but also renders it

size-dependent. The second goal of this study is to evaluate the extent of this

reduction in α with a view to identifying the supersaturation and precipitate

size regimes in which it is likely important.

Our results also allow us to address two other issues:

(a) Our simulation results on systems with low supersaturation can be used to

verify the predictions of Johnson and Alexander [8] and of Leo and Sekerka [9]

on the composition of a misfitting precipitate.
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Fig. 1. Schematica of the composition profile in the matrix and precipitate phases

during growth in (a) non-misfitting and (b) misfitting systems. The solid curve in

the matrix shows the profile considered in the theories of (a) ZF and (b) LJ. Due

to capillarity, the profile would be given by the dashed curve.

4



(b) Many phase field models (including the one used in this study) make use of

a phase field variable η whose primary role is to help distinguish one phase from

the other. In some settings such as precipitation of an ordered phase, η may be

associated with a long-range order parameter. In other settings (such as in the

present work, or in solidification), η lacks a direct physical significance, and

its role in the model is justified through mathematical convenience. In such

cases, it is important that the computational models reproduces well-known

results from analytical theories, before they are deployed in studies of more

realistic systems where the latter cannot be used.

Our study is organized as follows: Section 2 presents an outline of our phase

field model. In Section 3, we first establish the essential correctness of the use

of a phase field variable η through a critical comparison of its results against

those of 1D ZF theory, in which capillarity and elastic effects are absent. We

then use the same model to study the growth of non-misfitting and misfitting

circular precipitates, and critically compare our results with those from ZF

and LJ theories. These results are analyzed for elucidating the elastic and

capillarity effects. These results are critically discussed in Section 4, followed

by a set of conclusions in Section 5.

2 Phase Field Model

2.1 Formulation

We consider a binary alloy at constant temperature; an isolated precipitate

of phase p grows into a matrix phase m. We normalize compositions in such

a way that the scaled equilibrium compositions of m and p phases are zero
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and unity respectively. A two-phase microstructure in this alloy is described

in terms of compositon c(r, t) (conserved variable) and order parameter η(r, t)

(non-conserved variable) in a periodic domain. The order parameter field η is

defined in such a way that η = 0 in the m-phase and η = 1 in the p-phase; see

Eq. 6 below.

The microstructural evolution in our system is governed by the Cahn-Hilliard

equation [10] and the Allen-Cahn equation [11]:

∂c

∂t
= ∇. M ∇µ, (1)

∂η

∂t
= −L

δ(F/NV )

δη
, (2)

where, M is the atomic mobility, µ is the chemical potential and L is the

interface mobility. Chemical potential µ is defined as the variational derivative

of the total free enery per atom, F , with respect to the local composition c,

µ =
δ(F/NV )

δc
. (3)

The total free energy of the system F is assumed to be given by the sum of a

chemical contribution F ch and an elastic contribution F el:

F = F ch + F el. (4)

The chemical contribution F ch is given by the following functional:

F ch = NV

∫

Ω

[f(c, η) + κc(∇c)2 + κη(∇η)2]dΩ, (5)

where f(c, η) is the bulk free energy density of the system, κc and κη are the

gradient energy coeffecients for gradients in composition and order parameter,

respectively, and NV is the number of atoms per unit volume.
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The bulk free energy density f(c, η) is given by,

f(c, η) = fm(c)

(

1 − W (η)

)

+ f p(c)W (η) + Pη2

(

1 − η

)2

, (6)

where P, a constant, sets the height of the free energy barrier between the

m-phase and p-phase.

In Eq. 6, fm(c) and f p(c) stand for free energies of m (matrix phase) and p

(precipitate) phases respectively. In our work, they are assumed to take the

following simple forms:

fm(c) = Ac2, (7)

f p(c) = B(1 − c)2 (8)

with positive constants A and B. In Eq. 6, W (η) is an interpolation func-

tion [12], given by:

W (η) =























































0; for η < 0,

η3(10 − 15η + 6η2); for 0 ≤ η ≤ 1,

1; for η > 1.

(9)

The elastic contribution to the free energy is:

F el =
1

2

∫

Ω

σel
ijǫ

el
ijdΩ (10)

where

εel
ij = εij − ε0

ij, (11)

σel and ǫel are elastic stress and strain tersors respectively, and ε0 is the the

position dependent eigenstrain (misfit strain). The total strain εij is:

εij =
1

2

{

∂ui

∂rj

+
∂uj

∂ri

}

, (12)
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where, ui is the the displacement field.

Assuming both the m and p phases to be linear elastic, we have:

σel
kl = Cijklε

el
ij, (13)

where Cijkl is the elastic modulus tensor.

The stress field σel
ij obeys the equation of mechanical equilibrium:

σel
ij,j = 0. (14)

The eigenstrain ε0

ij and the elastic moduli Cijkl are assumed to depend on

order parameter as follows:

ε0

ij(η) = β(η)εTδij , (15)

Cijkl(η) = Ceff

ijkl + γ(η)∆Cijkl, (16)

where εT is a constant that determines the strength of the eigenstrain, δij is

the Kronecker delta, β(η) and γ(η) are scalar (interpolation) functions, where,

Ceff

ijkl is an “effective” modulus, Cp
ijkl and Cm

ijkl are the elastic moduli tensor

of the p and m phases respectively and ∆Cijkl = Cp
ijkl − Cm

ijkl. All the model

parameters used in our simulations are listed in their non-dimensional form

in Table 1. Our non-dimensionalization procedure is the same as that used in

Ref. [13].

For a configuration at time t, the equation of mechanical equilibrium, Eq. 14,

is solved using an iterative Fourier spectral technique with periodic boundary

conditions (described in detail in Gururajan and Abinandanan [13]; see also

Refs. [14–18]) to yield the elastic stress and strain fields; these, in turn, are used

to integrate the Cahn-Hilliard (Eq. 1) and Cahn-Allen (Eq. 2) equations over a
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time step ∆t to yield the configuration at t+∆t. For this time integration step,

we use a semi-implicit Fourier spectral technique, due to Chen et al [19]; the

Fourier transforms are performed using the fftw-package developed by Frigo

and Johnson [20]. Microstructural evolution is simulated through a repeated

application of this procedure on the new configuration at the end of each

time-step.

3 Results

In our simulations, we place a small particle of initial radius Ro and composi-

tion cp
e at the centre of our simulation cell with periodic boundary conditions;

the initial composition outside the particle is set to c
∞

everywhere; with the

normalizing scheme we have used, c
∞

is numerically the same as the super-

saturation (or, equilibrium volume fraction) ξ = (c
∞
− cm

e )/(cp
e − cm

e ). As the

simulation proceeds, we track the particle radius, operationally defined as the

distance from the centre where η = 0.5, and hence the growth coefficient α.

The simulations end when either the diffusion field or the elastic stress field

from neighbouring simulation cells begin to overlap; the value of α obtained

just before the simulation ends is used in the plots.

3.1 Zener-Frank Theory

We first compare our 1D simulation results with those from the Zener-Frank

theory. In (Fig. 2), we have plotted the growth coefficient α against matrix

supersaturation ξ. The data points from our 1D simulations are in excellent

agreement with the analytical results of ZF theory for 1D systems (the lowest
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Table 1

Parameters used in the simulations

Parameter Type Parameters Non-dimensional values

Elastic Parameters

Gm/NV 800

ν 0.3

Az 1.0

δ 0.5, 1.0 and 2.0

εT 0.01

α c3(10 − 15c + 6c2) − 1

2

β c3(10 − 15c + 6c2)

Cijkl
eff

1

2
(Cijkl

m + Cijkl
p )

Simulation Parameters

∆x 0.4

∆y 0.4

∆t 0.2

System size 1024X1024

2048X2048

Allowed error ≤ 10−8

in displacements
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Fig. 2. Dependence of growth coefficient α on matrix supersaturation ξ. The three

curves are from the ZF (sharp interface) theory for growth in 1D, 2D and 3D. The

data points are from our 1D and 2D phase field simulations. In the legend, S and P

stand for sharp interface theory and phase field simulations, respectively.

curve) for all supersaturations. This agreement is not just in the growth coef-

ficient, but also in the composition profile in the matrix phase in Fig. 2 and

Fig. 3(a).

Thus, this excellent agreement in the baseline case – the one without interface

curvature and without misfit strains – is our main evidence for the essential

correctness of the use of a phase field variable η in our model.

Fig. 2 also displays a comparison of the 2D growth coefficients from the ZF

theory and our simulations. Values of α from our simulation are in excellent

agreement with those from ZF theory for a supersaturation of ξ = 0.4 (within

0.4% at a final particle size of Rf = 60), but becomes less so at lower supersat-
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urations. At ξ = 0.1, growth coefficients from Z-F theory and our simulations

differ by about 13 % at Rf = 21. The main conclusion from these results is

that small particle sizes, which experience a stronger effect due to interface

curvature, grow slower than predicted by ZF theory.

As shown in Fig. 1a, the curvature effect may be explained using the elevation

of matrix interfacial composition from cm
e from zero to cm

I , which results in

a reduced supersaturation. Since the reduction in supersaturation for a given

particle size is a larger fraction of the original supersaturation in a less con-

centrated matrix, the curvature effect on growth coefficient is much higher

at ξ = 0.1 than at ξ = 0.4. Thus, in Fig. 4 where the instantaneous values

of growth coefficient is plotted against instantaneous particle size, the data

points from our simulations are much closer to the ZF result in the latter,

even at a particle size of R = 20. We return to a discussion of the curvature

effect in Section 4.

Similar to the 1D case in Fig. 3(a), the composition profile in the matrix at

two different sizes obtained from our simulations show good agreement, in Fig.

3(b), with that from the Z-F theory for a matrix composition of ξ = 0.4.

3.2 Effect of a misfit strain: Laraia-Johnson Theory

In these simulations, we have used a dilatational misfit of 1 percent. The

precipitate and matrix phases are elastically isotropic, with a Poisson’s ratio

of 0.3. The shear moduli of the two phases, however, can be different. We have

considered three different cases with (µp/µm) = δ = 0.5, 1.0 and 2.0, though,

for the sake of clarity, we present our plots only for δ = 0.5.
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Fig. 3. A comparison of scaled composition profiles in (a) 1D and (b) 2D in a system

with ξ = 0.4. The dashed curve in the matrix is from the ZF sharp interface theory,

while the solid and dotted curves are from phase field simulations at two different

particle sizes. The distance on the x-axis is scaled by the instantaneous particle size.
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Fig. 4. Effect of capillarity on instantaneous growth coefficient α, plotted as a func-

tion of instantaneous particle radius R in 2D, non-misfitting systems. The horizontal

lines are from the ZF sharp interface theory (without considering capillarity effects),

and the data points are from our 2D phase field simulations.

As we mentioned in Section 1, if curvature effects are neglected, the growth

coefficient vs. supersaturation curve (dashed curve in Fig. 6) from the LJ

theory for the misfitting case is obtained by shifting the ZF curve (solid curve,

for the non-misfitting case) to the right by cm
E .

In Fig. 6, the growth coefficients α from our simulations are plotted against

supersaturation, along with the LJ result for a system with elastically soft

precipitates (δ = 0.5). The agreement is quite good at high supersaturations

(with a difference of just 0.1 % at a particle size of R = 57 in an alloy

with ξ = 0.4). With decreasing solute concentration, however, the agreement

becomes worse; at ξ = 0.1, for example, the difference between LJ theory and
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Fig. 5. Dependence of growth coefficient α on matrix supersaturation ξ in a mis-

fitting system with δ = 0.5. The dashed curve is for LJ sharp interface theory in

2D, and the data points are from 2D simulations. The solid curve, from the 2D ZF

theory for non-misfitting precipitates, is also shown for comparison.

Fig. 6. Diffusion growth function for a two dimensional system modified for elastic

inhomogeneity δ = 0.5, along with phase field results. The lines are from the sharp

interface theory, and symbols are from phase field simulations.

simulations is about 18% at R = 21 and δ = 0.5. Thus, the combined effect of

misfit and capillarity in Fig. 6 mimics that of capillarity alone in Fig.2.

In Fig. 7, we find a good agreement between the simulated (scaled) composi-

tion profile for two different times with that for the LJ model. This agreement

is similar to that for the non-misfitting case in Fig. 3b.
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Table 2

Precipitate growth coefficients(α) for different supersaturations(c∞) and elastic

misfit(δ)

Misfit Type c∞ Radius α Analytical α Simulation Error (%)

Without Misfit

0.1 21 0.369 0.321 -13.01

0.2 35 0.628 0.604 -03.82

0.3 48 0.897 0.885 -01.34

0.4 60 1.199 1.194 -00.42

Soft Precipitate δ = 0.5

0.1 21 0.246 0.202 -17.89

0.2 32 0.514 0.502 -02.33

0.3 44 0.775 0.776 +00.13

0.4 57 1.061 1.060 -00.09

Inclusion δ = 1.0

0.1 19 0.208 0.145 -30.29

0.2 31 0.482 0.469 -02.70

0.3 43 0.742 0.744 +00.27

0.4 56 1.023 1.031 +00.78

Hard Precipitate δ = 2.0

0.1 16 0.178 0.068 -61.80

0.2 30 0.458 0.444 -03.06

0.3 42 0.717 0.722 +00.70

0.4 55 0.996 1.003 +00.70
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Fig. 7. A comparison of scaled composition profiles in a 2D misfitting system with

ξ = 0.4. The dashed curve in the matrix is from the ZF sharp interface theory, while

the solid and dotted curves are from phase field simulations at two different particle

sizes. The distance on the x-axis is scaled by the instantaneous particle size.

3.3 Effect of interface curvature

A more detailed assessment of the role of capillarity is possible by considering

cp
I , the precipitate interfacial composition. In the sharp interface model, the

difference ∆cp
I = (cp

I − cp
e), is proportional to ∆cα

I = (cα
I − cα

e ):

∆cp
I =

Ψm

Ψp
∆cα

I (17)
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where Ψ = [∂2f/∂c2]ce

in the designated phase, and ∆cm
I is given by the

generalized Gibbs-Thomson effect [21]:

∆cm
I =

σm
ij (εm

ij − εp
ij) + [σp

ij(ε
p
ij − εT δij) − σm

ij ε
m
ij ]/2

(cp
e − cm

e )Ψm
+

χγ

(cp
e − cm

e )Ψm
. (18)

In the above equation, σij and εij are the stresses and strains, respectively,

in the designated phase, εT is the dilatational eigenstrain and χ is the mean

interface curvature. In our 2D simulations, χ = 1/R; from Eq. 7 and Eq. 8

(with the parameter values of A = B = 1), we get Ψm = Ψp = 2. For the

values of misfit, shear modulus and Poisson’s ratio used in this study (see

Table 1), the (constant) elasticity contribution to ∆Cm
I – the first term on

the right hand side of Eq. 18) – is 0.044, 0.056 or 0.066 for systems with

δ = (µp/µm) = 0.5, 1.0 or 2.0, respectively.

In simulations using diffuse interface models, interfacial compositions cp
I and

cm
I cannot be measured, as the composition changes continuously across an

interface region of finite width. However, if we assume that the chemical poten-

tial gradients are negligible inside the precipitate, the composition anywhere

in the precipitate should be the same as cp
I .

In Fig. 8, we have plotted cp
I , obtained from simulations against the inverse of

particle size R in (a) non-misfitting and (b) misfitting systems. In Fig. 8a, the

straight line represents the Gibbs-Thompson result (Eq. 18 without the stress

and strain terms), and the data points are from our simulations; for clarity, we

have presented data only for two supersaturations: ξ = 0.1 and ξ = 0.4. This

figure shows that, in a growth setting, particles growing in more concentrated

alloys display a smaller Gibbs-Thompson effect.

In Fig. 8b, we compare the theoretical value of cp
I (the dashed line) with those
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Fig. 8. Dependence of precipitate composition on particle radius in (a) non-misfitting

and (b) misfitting systems. The straight line is for cp
I , precipitate composition at

a curved interface, given by the Gibbs-Thomson effect (see Eqs. 17 and 18). The

data points are from our simulations with ξ = 0.1 (open circles) and ξ = 0.4 (filled

circles).
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from simulations for ξ = 0.1 and ξ = 0.4. This figure also shows that the

Gibbs-Thompson effect is less completely realized for more supersaturated

alloys, leading to a better match between α from simulations and that from

theory (see Fig. 2 and 6).

Thus, Fig. 8 reveals yet another reason for the closer agreement between ZF

theory and our 2D simulations for more concentrated alloys: Gibbs-Thompson

effect is less completely realized in systems with a higher supersaturation.

At ξ = 0.1, even though our results were obtained in a growth setting, the

small supersaturation ensures that the precipitate experiences a large part of

the Gibbs-Thomson effect is realized. Thus, we find a good agreement in cp
I

values from simulations with those calculated from Eq. 18. This agreement in

Fig. 8b may be taken as an indirect verification of the predictions of Johnson

and Alexander [8] and Leo and Sekerka [9] on the phase compositions across

a sharp interface.

4 Discussion

As we mentioned in Section 1, the primary aim of this paper is to use our

‘computer experiments’ to validate the Laraia-Johnson (LJ) theory of elastic

stress effects during precipitate growth. The following features of our phase

field model make it resemble closely the alloy model used in the LJ theory:

isotropic interfacial energy, isotropic atomic mobility, constant atomic diffu-

sivity in the matrix (and in the precipitate too, though it’s not an essential

part of the LJ theory), and constant misfit the precipitate phase. While LJ

theory includes cases where composition gradients may engender stress, our
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model parameters are such that they do not.

However, interfacial curvature (and hence, the Gibbs-Thomson effect) is one

feature which is always present in phase field simulations (except in 1D),

but absent in LJ and ZF theories. Its primary consequence is to dampen the

growth rate. However, this dampening effect keeps decreasing with increasing

particle size, and the instantaneous growth coefficient keeps rising towards

that predicted by ZF and LJ theories (see Fig. 4).

Our 2D simulations (with and without misfit) show that the Gibbs-Thompson

effect is only partially realized during growth, especially at large supersatu-

rations. Since Gibb-Thompson effect dampens the growth rate, its partial

realization helps bring the growth rate closer to the theoretically predicted

rate in these alloys – see Figs. 2 and 6 for 2D growth.

Clearly, with higher (lower) atomic mobility in the p phase, Gibbs-Thompson

effect can be realized more (less) completely. Thus, if the atomic mobility in

the p phase is higher (lower), the approach of the growth coefficient (in Fig. 4)

towards the ZF or LJ result will be delayed (hastened) to larger precipitate

sizes. Our simulations, however, cannot address this issue, since they use a

constant mobility in both m and p phases.

Finally, we turn to other similar studies that compared results from sharp and

diffuse interface models. Specifically, we mention Chen and co-workers, who

have compared their phase field results on diffusion fields around a precipitate

with those obtained by solving a diffusion equation. However, the focus of

their work was on diffusion fields in ternary systems [22] or on lengthening

and thickening of plate-like precipitates [23].
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5 Conclusion

(1) Using a our phase field simulations as ’computer experiments’, we have

validated the Laraia-Johnson theory of growth of misfitting particles in

systems in which composition differences do not engender stress.

(2) Capillarity effects decrease instantaneous growth rates, with this damp-

ening effect being more pronounced at smaller sizes and at smaller super-

saturations.

(3) At constant particle size, capillarity has a smaller effect in alloys with

larger supersaturations, because Gibbs-Thomson effect is less completely

realized.

(4) At low supersaturations, the Gibbs-Thomson effect is more completely re-

alized, and our results on precipitate compositions are in agreement with

those predicted from the theory of thermodynamics of stressed solids.
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