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   RELATION 
 
  Binary Relation 
 
 Relation.  A binary relation is a collection of ordered pairs.  If there is 
no danger for confusion, we will simply call a binary relation a relation.   
 Thus, a relation is a set, each element of which is an ordered pair.  If an 
ordered pair 

  
x,y( )  belongs to a relation R, we write  

  
  

x,y( )∈R . 
We say that the items x and y stand in the relation R.  
  
 Specify a relation by a collection of ordered pairs. We specify a 
relation in the same way as we specify any set, by specifying the elements of the 
set.   
 Here is a collection of three ordered pairs: 

 
red, blue( ),  conservative, libral( ),  elephant, donkey( ){ } . 

Do we call this collection a relation?  Yes, any collection of any ordered pairs 
defines a relation.  This set may or may not be a useful relation, but it surely fits 
the definition of a relation.  We can, of course, try to discover the “meaning” of 
this relation, or the property that specifies this relation. But we do not have to do 
anything to call the set a relation.   
 
 Specify a relation by a property.  This said, we do want to know the 
“meaning” of a relation.  Like a useful set, a useful relation is often specified by a 
property, a rule that picks the ordered pairs in the relation.   
 Consider a collection of two ordered pairs: 
    

 
Lisa, Eric( ), Daniel, Michael( ){ } . 

By talking to the people, we learn that this relation is specified by a property:  
each ordered pair is a pair of siblings. 
 We also learn that Lisa and Daniel stand in another relation:  they are 
married.  Among the four people, the relation of marriage has a single element: 
the ordered pair  
  

 
Lisa, Daniel( ) .   

 Knowing these two relations, we can deduce another relation: 
  

 
Lisa, Michael( ), Daniel, Eric( ){ } . 

The collection of ordered pairs specifies the siblings-in-law relation. 
 The people and their cities of birth also form a relation: 

 
Lisa, Shanghai( ), Daniel, Boston( ), Eric, Detroit( ), Michael, Santa Barbara( ){ } . 

 Here is yet another relation: 
  

 
Lisa, fish( ), Daniel, pork( ), Eric, shrimp( ), Michael, beef( ){ } . 
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We can guess the “meaning” of this relation:  the four people have just ordered 
dishes in a restaurant. 
 
 Specify a relation by the set-building notation. Given a property 
that determines the membership of a relation, we can specify the relation using 
the set-building notation.   
 People and their countries of birth form a relation R, which can be defined 
using the set-building notation: 
  

  
R = x,y( ) person x  was born in country y{ } . 

The property (phrase) “people and their countries of birth” does not tell us any 
people or any countries.  Nor does it tell us who was born where.  But the 
property is a call to build.   We ask people where they were born, and build this 
set of ordered pairs. 
 The hyperlinks in webpages from a relation: 
  

  
x,y( ) webpage x  links to webpage y{ } . 

This relation enables PageRank, an algorithm pioneered by Google to rank 
webpages. 
 A similar relation is 
  

  
x,y( ) paper x  cites paper y{ } . 

This relation is significant to researchers. 
 
 Unstructured set of ordered pairs.  In defining a relation, the order 
of the two items in each pair is significant, but the order in which all the pairs 
appear in the set is insignificant. 
 Consider the relation 
  

  
L = x,y( ) person x  likes person y{ } . 

The fact “x likes y” does not imply “y likes x”.  That is, the fact 
  

x,y( )∈L  does not 

imply that 
  

y,x( )∈L . 
 For example, three people a, b, and c can form a total of six ordered pairs: 
  

  
a,b( ), a,c( ), b,a( ), b,c( ), c,a( ), c,b( ) . 

We find that only two pairs belong to the relation L:  
  

  
L = a,b( ), c,b( ){ } . 

The relation tells that a likes b, and c likes b.  In particular, we find that 
  

  
b,a( )∉L, b,c( )∉L .   

 The relation L is the same if we change the order in which the two pairs 
appear in L: 
    

  
a,b( ), c,b( ){ } = c,b( ), a,b( ){ } . 
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 Union and intersection.  A relation is a type of set.  Given two 
relations, we can form their union and intersection. 
 Here are two examples: 
  

  
1,2( ), a,b( ), 1,a( ){ }∪ a,b( ), 2,b( ){ } = 1,2( ), a,b( ), 1,a( ), 2,b( ){ } , 

  
  

1,2( ), a,b( ), 1,a( ){ }∩ a,b( ), 2,b( ){ } = a,b( ){ } .  
 
 Subrelation.  A subset of a relation is called a subrelation.  For example, 
the relation 
  

 
red, blue( ),  conservative, libral( ){ }  

is a subrelation of the relation 
  

 
red, blue( ),  conservative, libral( ),  elephant, donkey( ){ } . 

 Compare two relations: 
  

  
R = x,y( ) person x  was born in country y{ } , 

  
  
Q = x,y( ) person x  has spent time in contury y { } . 

A person who was born in a country must have spent some time in the country.  A 
person who has spent some time in a country may or may not be born in a 
country. Thus, R is a subset of Q.  We write 
   R⊂ Q . 
We say that R is a subrelation of Q. 
 
 Partition of relation.  Recall that a partition of a set S is a family of 
nonempty subsets of S, which are disjoint, and whose union is S.  Given a relation, 
we can form its partitions. 
 Consider the relation  
  

  
x,y( ) person x  has spent time in contury y { } . 

This relation can be partition into two subrelations: 
  

  
x,y( ) person x  has spent time in an Asian contury y { } , 

  
  

x,y( ) person x  has spent time in a non-Asian contury y { } . 
 
  Graph and Ranges  
 
 Graph of a relation.  A collection of ordered pairs defines a relation R.  
Often we define a relation R by a property.   We then call the actual collection of 
ordered pairs the graph of the relation R.   
 Thus, R stands for the relation, the property that defines the relation, and 
the graph of the relation. 
 
 Examples.  Let us define a relation R by the property “people and their 
cities of birth”.  We express this definition in the set-building notation: 
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R = x,y( ) person x  was born in city y { } . 

The graph of the relation R is a collection of ordered pairs: 

 
Lisa, Shanghai( ), Daniel, Boston( ), Eric, Detroit( ), Michael, Santa Barbara( ){ } . 

 The relation 
  

  
x,y( ) webpage x  links to webpage y{ }  

consists of a huge number of ordered pairs.  We are unable to list them on paper, 
but a search engine stores these ordered pairs on computers. 
 
 Ranges of a relation.  Given a relation R, we can define two sets: 
  

  
P = p p,q( )∈R { } , 

  
  
Q = q p,q( )∈R { } . 

We call P and Q the first and second ranges of the relation R.  We say that the 
relation R is over the two sets P and Q, and that the two sets P and Q are under 
the relation R. 
 
 Examples.  The relation 
  

 
red, blue( ),  conservative, libral( ),  elephant, donkey( ){ }  

has its two ranges: 
   red,  conservative, elephant{ } , 

   blue,  libral, donkey{ } . 
The first range is a list of items commonly associated with the Republican Party 
of the United States.  The second range is a list of items commonly associated 
with the Democratic Party of the United States. 
 The relation 

 
Lisa, Shanghai( ), Daniel, Boston( ), Eric, Detroit( ), Michael, Santa Barbara( ){ }  

has its two ranges: 
   Lisa, Daniel, Eric, Michael{ } , 

   Shanghai, Boston, Detroit, Santa Barbara{ } . 
The first range lists the four people, and the second range lists four cities. 
 The relation  
  

  
a,1( ), a,2( ), b,3( ){ }  

has its ranges: 
  

  
a,b{ } , 

  
 

1,2,3{ } . 
Note that item a appears in two ordered pairs in the relation, but should only 
appear once in the range. 
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 Graph and ranges.  The graph of the relation R is a subset of the 
Cartesian product of its ranges: 
   R⊂ P ×Q . 
If R is a nonempty set, P and Q are nonempty sets. 
 
  Image 
 
 Image.  Let R be a relation, P and Q be the ranges of R, and A be a subset 
of P.  The image of A under R is the collection of the elements in Q, each of which 
stands in the relation R with at least one element in A.  
 Denote the image of A under R by 

   
A,!

R
, and express the above 

definition in the set-building notation: 
  

   
A,!

R
= q p,q( )∈R, p∈A{ } . 

The image of a subset A of P under the relation R is a subset of Q: 
  

   
A,!

R
⊂ Q . 

 Similarly, the image of a subset B of Q under R, denoted as 
   
!, B

R
, is the 

collection of the elements in P, each which stands in the relation R with at least 
one element in B.  We can express this definition in the set-building notation: 
  

   
!, B

R
= p p,q( )∈R,q ∈B{ } .  

The image of a subset B of Q under the relation R is a subset of P: 
  

   
!, B

R
⊂ P . 

 
 Examples.  Consider the relation  
  

  
R = p,q( ) person p has spent time in contury q { } . 

The relation has its ranges: the set of all people (P), and the set of all countries 
(Q). 
 The phrase “people who have spent time in Asian countries” mentions two 
sets.  The set of Asian countries, denoted as B, is a subset of Q.  The set of people 
who have spent time in Asia is the image of B under the relation R.  We denote 
this set by 

   
!, B

R
. 

 
 Identities of images.  Let R be a relation, and P and Q be the ranges of 
R.  Let A,   A1

 and   A2
 be subsets of P.  When there is no danger of confusion, we 

drop the subscript R and denote the image of A under R by 
   

A,! . 
 You can confirm the following identities of images of subsets in P under 
relation R: 
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A,! ⊂ Q,

P,! = Q,

∅,! =∅,

A1 ⊂ A2 ⇒ A1 ,! ⊂ A2 ,! ,

A1 ∪ A2 ,! = A1 ,! ∪ A2 ,! ,

A1 ∩ A2 ,! ⊂ A1 ,! ∩ A2 ,! .

 

Similar identities work for the images of subsets of Q under the relation R. 
 
  Marketing Books*  
  
 Books and buyers.  A bookseller knows who has bought which book.  
These data define a relation:  
  

  
R = p,q( ) person p has bought book q{ } . 

This relation is the principal information to help the bookseller market books.  
For this purpose, the bookseller regards multiple copies of the same book as one 
book. 
 
 Graph and ranges.  Consider a simple case of R being a set of eight 
ordered pairs: 
 

  
R = p

1
,q

2( ), p
1
,q

3( ), p
2
,q

5( ), p
3
,q

4( ), p
3
,q

6( ), p
3
,q

1( ), p
4
,q

5( ), p
5
,q

6( ){ } . 

The eight ordered pairs constitute the graph of the relation R. 
 The first range of the relation R is the set of five people:  
  

  
P = p

1
, p

2
, p

3
, p

4
, p

5{ } . 
The second range of the relation R is a set of six books: 
  

  
Q = q

1
,q

2
,q

3
,q

4
,q

5
,q

6{ } . 

Both   p2
 and 

  
p

4
 have bought 

  
q

5
, but we only list 

  
q

5
 once in Q. 

 
 Images. Inspecting the relation R, we find that two people 
  

  
p

1
, p

3{ }  
have bought five books: 
   

  
q

1
,q

2
,q

3
,q

4
,q

6{ } .   
We write 
  

   
p1 , p3{ },! = q1 ,q2 ,q3 ,q4 ,q6{ } . 

 Inspecting the relation R, we also find that 
  

   
!, q1 ,q2 ,q3 ,q4 ,q6{ } = p1 , p3 , p5{ } . 
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Observe that 
   A,! = B  does not imply 

   !, B = A , because both 
  
p

3
 and 

  
p

5
 have 

bought   q6
. 

 
 Marketing books.  Let us look at a marketing strategy.  For a subset of 
books B of Q, the bookseller searches the relation R and finds every person who 
has bought at least one book in B.  Denote this subset of people by RB.  If a 
person p in RB has not bought a book q in B, the bookseller will recommend book 
q to person p.  The recommendation may appear on the website of the bookseller 
as “customers who bought this book also bought these other books”. 
 
  Relation, Function, and Bijection 
  
 A relation is a collection of ordered pairs, each of which has two items.  An 
item in one pair may just appear in this pair, or may also appear in other pairs.  
The unique or repeated appearance of items classifies relations into three 
varieties.   
 In this section, R denotes a relation, and P and Q denote the ranges of R. 
 
 Many-many relation.  A relation R is a many-many relation if at least 
one element p in P appears in more than one ordered pair in R, and at least one 
element q in Q appears in more than one ordered pair in R. 
 The relation 
  

  
x,y( ) person x  has spent time in contury y { }  

is a many-many relation.  A person may have spent time in many countries, and 
a country has hosted many people.   
 Here are more examples of many-many relations: 
  

  
x,y( ) webpage x  links to webpage y{ } , 

  
  

x,y( ) person x  has read article y { } , 

  
  

x,y( ) person x  likes person y { } , 

  
  

x,y( ) person x  likes dish y { } . 
Most useful relations are many-many relations, but most textbooks hardly 
mention them.  
 
 Many-one relation (function).  A relation R is a many-one relation if 
every element p in P appears in a unique ordered pair in R, but at least one 
element q in Q appears in more than one ordered pair in R. 
 Hunan beings must have instinctive obsession with uniqueness.  Many-
one relations have received so much attention that we give them special names.  
We call them maps or functions.  We will talk a lot more about them later.   
 The relation 
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x,y( ) person x  was born in contury y { }  
is a many-one relation.  Every person was born in a unique country, but every 
country is a birthplace of many people.   
 Here are more many-one relations: 
  

  
x,y( ) person x  was born in year y { } , 

  
  

x,y( ) person x  has weight y now { } , 

  
  

x,y( ) country x  has population y now { } . 
 We may change the roles of P and Q and define one-many relation. 
 
 One-one relation (bijection).  A relation R is a one-one relation if 
every element p in P appears in a unique ordered pair in R, and every element q 
in Q appears in a unique ordered pair in R. 
 One-one relations have also received so much attention that we give them 
special names.  We call them bijections, or one-one correspondences.  We will 
talk a lot more about them later.   
 Consider the relation 
  

  
x,y( ) person x  sits in seat y { } . 

We further stipulate that every person sits in one seat, and every seat has a 
person in it. 
 
 Avoid needless bias.  We regard a function as special type of relation, 
and a bijection a special type of function.   
 In a general relation R, the two ranges P and Q play unbiased roles. Some 
writers would say, “a relation from a set P to a set Q”.  We avoid such biased 
language.   We say “a relation over two sets P and Q”.   
 Later we will introduce a relation over any number of sets.  The unbiased 
language will work well, but the “from-to” language will break down. 
 In a function, the two sets P and Q do bias the roles of the two sets.  This 
bias will then permeate our language of functions.  For example, we say a 
function from set P to set Q. 
 In a bijection, once again the two sets P and Q play unbiased roles.  We 
say a bijection between sets P and Q. 
  
  Relation over Two Different Sets 
 
 Often, every ordered pair in a relation R draws its first item from a set X, 
and draws its second item from another set Y.  This observation motivates a 
somewhat different definition of relation.  
 
 Relation over two different sets. A relation R is a subset of the 
Cartesian product of two sets X and Y: 
   R⊂ X ×Y . 
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We say that R is a relation over the two sets X and Y, and that X and Y are the two 
sets under the relation R.  The sets X and Y are called the domains of the relation 
R, and the set of ordered pairs R is called the graph of the relation.  We say that 
elements x and y stand in the relation R if  
   x ∈X ,  y∈Y , and 

  
x,y( )∈R . 

 To specify a relation, we need to specify three ingredients:  a set X, a set Y, 
and a subset R of  X ×Y .   
 To remind us of the three ingredients, we may also define a relation as a 
triple 

  
X ,Y ,R( ) , where X is a set, Y is another set, and R is a subset of the 

Cartesian product  X ×Y .  
 
 Examples.  Let X be a set of students, and Y be a set of courses.  The 
selection of courses by the students is a relation over the two sets: 
  

  
x,y( ) student x  takes course y{ } . 

 Let X be the set of west-east coordinates, and Y be the set of south-north 
coordinates.  A path is a relation over the two sets: 
  

  
x,y( ) points on the path{ } . 

Coordinates of a set of buildings also form a relation over X and Y: 
  

  
x,y( ) coordinates of a building{ } . 

 Each point on the surface of the Earth corresponds to an ordered pair of 
longitude and altitude.  The territory of a nation is a set of points.  That is, the 
territory of the nation is a relation over two sets:  the set of longitudes and the set 
of altitudes. 
 Let S be a set of train stations, and T be a set of time.  The schedule of a 
train is a relation over S and T: 
   

  
s,t( ) the train reaches stop s at time t{ } . 

 
 How many relations can we create over two sets?  A set X has m 
elements, and a set Y has n elements. The two sets form a collection of mn 
ordered pairs.  Each subset of the collection of ordered defines a relation.  Thus, 
we can create a total of   2mn  relations.  All relations over two sets X and Y 
constitute the power set of the Cartesian product  X ×Y . 
 
 Range vs. domain.  Let R be a relation over two sets X and Y.  Let P be a 
range of the relation: 
  

  
P = x x,y( )∈R { } . 

In general, not every element in X stands in the relation R.  Consequently, the 
range P is a subset of X: 
   P ⊂ X . 
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We call P the range of the relation R in the domain X.  We can similarly define 
the range of the relation R in the domain Y. 
 When several people go to a restaurant, the event forms a relation: 
  

  
R = x,y( ) person x  has dish y{ } . 

The relation R is over two sets:  the set X of the people in the group, and the set Y 
of the dishes on the menu.  Typically, the range of the relation in the domain X is 
the same as X:  every person in the group eats.  Also typically, the range of the 
relation R in the domain Y is a subset of Y:  not every dish on the menu is ordered 
by a person in the group.   
 
 Totality.  Let R be a relation over two sets X and Y.  The relation R is 
called total with respect to X if every element in X stands in the relation, namely, 
if the range of the relation with respect to X equals X: 
   P = X .  
The relation R is called partial with respect to X if  P ≠ X .  Similar definitions 
apply with respect to Y.   
 The relation R is called a total relation over X and Y if  P = X  and  Q =Y .  
That is, every element in X and every element in Y stand in the relation R over X 
and Y.  A total relation is also called a surjection. 
 Every person was born in a country, and every country is a birthplace for 
some people.  Thus, the relation 
  

  
x,y( ) person x  was born in contury y { }  

is a total relation over the set of all people and the set of all countries. 
 Some people never buy any book, and some books are never sold.  Thus, 
the relation 
  

  
x,y( ) person x  has bought book y{ }  

is a partial relation over the set of all people and the set of all books. 
 When several people go to a restaurant, every person orders a dish from 
the menu, but not every dish on the menu is ordered by a person in the group.   
Thus, the relation 
  

  
x,y( ) person x  has dish y{ }  

is total with respect to the set of people in the group, but is partial with respect to 
the set of dishes on the menu.    
 
  Ways to Specify a Relation 
  
 Now let us look at one relation in detail.  Let X be a set of researchers, and 
Y be a set of instruments.  We wish to know which researcher knows to use which 
instrument.   
  
 Specify a relation by a property.  We make our wish clear by defining 
a relation R over the two sets X and Y: 
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R = x,y( ) researcher x  knows how to use instrument y{ } . 

This definition specifies the set R by a property.  The property, however, is so 
obscure that it does not tell us which researcher knows to use which instrument.  
Nor does it tell us who the researchers are, or what the instruments are. 
 
 Specify a relation by listing the elements of the three sets.  We 
specify the three ingredients of the relation.  Let X be a set of five researchers: 
  

  
X = x

1
,x

2
,x

3
,x

4
,x

5{ } . 
Let Y be a set of twelve instruments: 
  

  
Y = y

1
,y

2
,y

3
,y

4
,y

5
,y

6
,y

7
,y

8
,y

9
,y

10
,y

11
,y

12{ } . 
After talking to the researchers, we find who knows how to use what: 
 

  
R = x

1
,y

2( ), x
1
,y

3( ), x
2
,y

5( ), x
3
,y

4( ), x
3
,y

6( ), x
3
,y

11( ), x
4
,y

10( ), x
5
,y

6( ){ } . 

For example, the ordered pair 
  

x
2
,y

5( )  means that researcher   x2
 knows how to 

use instrument 
  
y

5
.  The relation R has a total of eight ordered pairs—that is, R is 

an eight-element set.  Of course, we can list the eight ordered pairs in any order. 
 A list of a large number of ordered pairs is hard on the eye, but is an 
excellent way to store the relation on a computer. 
 
 Specify a relation by a graph.  In this method, we specify the three 
ingredients of the relation as follows.  The Cartesian product  X ×Y  is a  5×12  
table, in which we mark the ordered pairs that belong to the relation R.  This 
table is easy on the eye, but is only effective for sets of relatively small numbers of 
elements

 
 
 Neither the order of the researchers nor the order of the instruments 
matters to this relation.  However, in graphing the relation, we have to place the 
elements in each set in some order.  We can place the set of researchers in any of 

            

            

            

            

            

x1 

x2 

x3 

x4 

x5 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y0 y11 y2 
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the  5!  permutations, and place the set of instruments in any of the  12!  
permutations.  We have placed researchers in columns, and instruments in rows.  
We can also place them the other way.  Consequently, each relation over a five-
element set and a twelve-element set can have a total of  2× 5!×12!  graphs.  We 
should guard ourselves against any visualization that may bias us.  
 
 Specify a relation by lines linking ordered pairs.  In this method, 
we specify the three ingredients of the relation as follows.  Place elements in the 
set X in one bubble, and place elements in the set Y in another bubble.  Draw 
lines to link the ordered pairs that belong to the relation R. 
 

    
       
 
  Relation over a Set and Itself   
 
 Relation on a set.  As a special type of relation, any subset of  S × S  
defines a relation R over the set S and itself.  We say that R is a relation on the set 
S.  
  
 Examples.  We can define many relations between people.  As Chinese 
say, so far as people are concerned, it is all about relations.  Let S be the set of 
people in the world.  Blood relation is a relation on S: 
  

  
a,b( ) person a and person b are related by blood { } . 

Friendship on Facebook is a relation on S: 
  

  
a,b( ) person a is friend of person b { } . 

Co-authorship is another relation on S: 

 
 

y1 y2 

y3 
y4 y5 

y6 

y7 
y8 

y9 y10 

y11 

y12 

x1 

x2 

x3 

x4 

x5 
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a,b( ) person a and person b have co-authored at least one paper { } . 
Alumni is yet another relation on S: 
 

  
a,b( ) persons a and b were graduated from the same university { } . 

 Hyperlinks form a relation on the set of all websites: 
  

  
x,y( ) webpage x  links to webpage y{ }  

 
 A comparison.  The relation 
  

  
x,y( ) person x  was born in country y{ }  

is over two different sets.  The sentence “Person x was born in country y” means 
the same as “Country y was the birthplace of person x”. 
  The relation 
  

  
x,y( ) person x  likes person y{ }  

is over a set and itself.  The sentence “x likes y” is different from “y likes x”. 
        
  Equivalence 
 
 Equivalence relation on a set.  An equivalence relation on a set S is a 
relation E with the following properties. 
 (E1) Reflexivity:  For any element a in S, 

  
a,a( )∈E . 

 (E2) Symmetry:  For any two elements a and b in S, if 
  

a,b( )∈E , then 

  
b,a( )∈E . 

 (E3) Transitivity:  For any three elements a, b, and c in S, if 
  

a,b( )∈E  and 

  
b,c( )∈E , then 

  
a,c( )∈E . 

 The reflexivity stipulates that every element in S stands in the relation E.  
Consequently, any equivalence relation E on a set S is a total relation.  We say 
that a is equivalent to b with respect to E if  
   a ∈S ,  b∈S , and 

  
a,b( )∈E . 

If the intended equivalence relation is clear from the context, we write  
    a ~ b . 
  
 Examples.  Let S be the set of all people.  Here are three equivalence 
relations on S: 
  

  
R

1
= a,b( )∈S2  a and b were born in the same contury{ } , 

  
  
R

2
= a,b( )∈S2 a and b have the same birthday{ } , 

  
  
R

3
= a,b( )∈S2 a and b have the same blood type{ } . 
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The three equivalence relations are distinct relations on the same set S.  They 
relate people differently.   
 The relation 
  

  
R

4
= a,b( )∈S2 a loves b{ }  

is not an equivalence relation.  This relation is often painfully non-reflexive and 
non-symmetric, and is seldom transitive. 
 The relation 
  

  
R

5
= a,b( )∈S2 a and b are friends on Facebook{ }  

is not an equivalence relation.  The relation is symmetric, but not transitive.  Is 
the relation reflexive? 
 The blood relation on S is not an equivalence relation.  This relation is 
symmetric, but not transitive.  For example, a son is blood-related to both his dad 
and mom, but the dad and mom are typically not blood-related.  Is the relation 
reflexive? 
 Of all triangles, the triangles of the same shape (i.e., similar triangles) 
form an equivalence relation.  
 
 Equivalent class.  In an equivalent relation on the set of all people, 
being equivalent people does not mean being the same person.  Given an element 
x in a set S, all elements in S equivalent to x with respect to an equivalence 
relation E form a subset of S 
  

  
a a ~ x{ } . 

We call this subset an equivalent class with respect to the equivalence relation E.  
We denote this equivalent class by 

 
x⎡⎣ ⎤⎦E

.  We may drop the subscript E if the 
intended equivalence relation is clear from the context.  The word “class” should 
remind us that an equivalent class is a set.   
 An equivalence relation on the set of all people is “people born in the 
same country”.  In this equivalence relation, “People born in China” form an 
equivalent class.  We can pick any particular person born in China as a 
representative, for example, Confucius, and denote the equivalent class by 

 
Confucius⎡⎣ ⎤⎦ .  Of course, we can also denote the same equivalent class by 

 
Mao⎡⎣ ⎤⎦ . 

 An equivalence relation on the set of all forms of life is “being in the same 
species”.  Each species is an equivalent class.  Thus, we can also designate the 
equivalent class “human beings” by 

 
Confucius⎡⎣ ⎤⎦ .  

 
 Equivalence and partition.  Each equivalence relation on a set S 
generates a partition of S.  Conversely, each partition of S defines an equivalence 
relation on S.  Thus, equivalence relations on S one-one correspond to partitions 
of S.  Each part in a partition of S is an equivalent class with respect to an 
equivalence relation on S. 
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 For example, “people born in the same country” is an equivalence relation 
on a set of people S.  We start with a person a in the set S, find all people in S 
born in the same country as a, and denote this subset of people by 

 
a⎡⎣ ⎤⎦ .  Then we 

find a person b among the remaining people in S, find all people in S born in the 
same country as b, and denote this subset of people by 

 
b⎡⎣ ⎤⎦ .  We can run this 

procedure until we find everyone in S.  Thus, the equivalence relation “people 
born in the same country” partitions the set of people S in a family of equivalent 
classes, 

 
a⎡⎣ ⎤⎦ , 

 
b⎡⎣ ⎤⎦ ,…  Any two equivalent classes are disjoint, and the union of the 

equivalent classes is S.  Given a set and an equivalence relation, this partition is 
unique. 
 As another example, “people having the same birthday” is also 
equivalence relation on the set of people S.  This equivalence relation 
corresponds to a partition of S. 
 How many equivalence relations can we form on a set?  The total 
number of partitions of an n-element set is the Bell number  Bn

, which is also the 
total number of equivalence relations on the n-element set.      
 
  Equality 
 
 Equality relation.  A very special type of equivalence relation is the 
relation “being equal”, or “being the same”, or “being identical”.  If things a and b 
are identical, we write  
   a = b . 
If things a and b are not identical, we say that they are distinct and write  
   a ≠ b . 
 Recall that every equivalence relation on a set S corresponds to one and 
only one partition of S.  The equality relation on S corresponds to a very special 
partition of S:  each part in the partition contains a single element in S. 
 
 Equality vs. equivalence.  “All men are created equal,” said Thomas 
Jefferson in the Declaration of Independence.  The gender bias aside, he clearly 
did not mean that all men are identical.  We interpret this insight as “All people 
belong to an equivalent class”. 
 Jefferson also answered the question, “equivalent with respect to what?”  
He wrote, “We hold these truths to be self-evident, that all men are created equal, 
that they are endowed by their Creator with certain unalienable Rights, that 
among these are Life, Liberty and the pursuit of Happiness.” 
 When we speak of an equivalent class, we have in the back of our minds a 
larger set, of which the equivalent class is a subset.  What might be the larger set, 
of which “all people” is a subset?  An obvious larger set is “all living things”.  But 
this thought has brought us away from the original context of the Declaration of 
Independence. 
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  Order 
 
 Order on a set.  An order on a set S is a relation R with the following 
properties.  
 (O1) Totality:  For any two distinct elements a and b in S, one and only 
one of the two statements, 

  
a,b( )∈R  and 

  
b,a( )∈R , is true.  

 (O2) Transitivity:  For any three elements a, b, and c in S, if 
  

a,b( )∈R  and 

  
b,c( )∈R , then 

  
a,c( )∈R .  

 We can define many orders on a set.  If the intended order is clear from 
the context, we write  
   a < b . 
The statement is read “a is less than b”, or “a precedes b”   
 The notation  a ≤ b  means “a is either equal to, or less than, b”.  The 
notation  b > a  means  a < b . 
 A set on which an order is defined is called an ordered set.  A set on which 
no order is defined is called an unordered set. 
 
 Examples.  All words in English form an ordered set according to the 
alphabetical order.   
 The set of integers is an ordered set, so is the set of rational numbers, and 
so is the set of real numbers.  The set of complex numbers is an unordered set. 
 Many things in nature form ordered sets.  Moments in time form an 
ordered set.  Similarly, length, mass, energy, and temperature each forms an 
ordered set. Colors form an ordered set by frequency.  We do not, however, have 
a “natural order” on the set of all smells. 
 
 Order and permutation.  We can represent elements in a set S by 
distinct beads, and put them on a string in a sequence.  Each sequence defines an 
order on S.  Each sequence is called a permutation. 
 
 How many orders can we define on an n-element set? In 
specifying a set, the order of its elements does not matter.  However, when 
displaying the elements of the set in a row, we place the elements in an ordered 
sequence.  
 We can choose the first element in a sequence among the n elements.  We 
can choose the second element in the sequence among the   n−1  remaining 
elements.  In this way we choose the third, the fourth, .., and the nth elements in 
the sequence.  Thus, we can define a total of   n!  sequences (i.e., orders) on the n-
element set.  
 
 To order or not to order. Given any set of n things, we can line them 
in   n!  permutations.  Each permutation defines an order on the set.  However, 
most sets do not have any “natural” or “preferred” order. 
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 For example, the set of all nations in the world does not have any “natural 
order”.  We can, of course, force an order on this set.  For example, English 
speakers often list nations by the alphabetical order of their English names.  This 
order makes no sense to non-English speakers. 
 To force an order on a set is to impose a structure that is not inherent to 
the set.  If the imposition confuses our narrative, it is just a bad use of language.  
Alphabetical order is convenient, but incidental.  We should never let this 
incidental order bias us, and should simply regard the set of nations as an 
unordered set. 
 
 Avoid useless order.  I grew up on a campus of a university in China.  
The campus had many apartment buildings, but they were here and there, with 
no natural order.  The university nonetheless labeled all the apartment buildings 
by a single sequence of numbers.  The labels were placed on the walls of the 
buildings.  The numbers seemed to turn the buildings into an ordered set. This 
order might be useful on an administrative spreadsheet, but confused visitors.  It 
was hard to find a building by its number.  I lived in Building 10, which was next 
to Building 4.  
 
 Order does not obey arithmetic rules.  We often label elements in an 
ordered set using numbers.  Using numbers to label elements does not authorize 
us to apply arithmetic rules.   
 For example, we usually label houses in a street by numbers.  It is 
meaningless to add the addresses of two houses.  House number 2 and house 
number 7 do not add up to become house number 9.  The difference between the 
first house and the second house is not the same as the difference between the 
fifth house and the sixth house. 
 
 Order-preserving coarsening of a partition.  Elements in an 
ordered set G can be represented by a string of beads. We can cut the string into 
segments.  The beads on each segment form a subset of G, and preserve the order 
on G.  All the segments together form a partition of G. 
 When we use an order-preserving partition of G to rank a set S, the rank 
consists of fewer equivalent classes, and is called a coarser rank.   
 For example, a teacher marks the papers of students by numbers from 0 
to 100.  She then divides the interval from 0 to 100 into five subintervals, and 
labels them as A, B, C, D, and F.  The five subintervals form a partition of the 
interval from 0 to 100. 
  
 Find an ordered subset in an unordered set.  The set of all people S 
does not have any “natural order”.  Even the relation “being a male decedent” 
does not provide an order on the set of all people, because the relation does not 
satisfy the property of totality.   We will regard S as an unordered set.  
 Many subsets of S, however, are ordered sets under the relation “being 
male decedent”.  To construct such an ordered subset, we can start with a male, 
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and look for his father, grandfather, great-grandfather…  This chain of males 
forms an ordered set.  Each male in the world belongs to at least one such a chain. 
 
 Order on a family of sets.  A family of sets is also a set, on which we 
can define orders.  Consider a list of sets with the following property.  Each set is 
a subset of the set after it, except for the last set in the list.  This property defines 
an order on the list of sets.  For example, various number systems form an 
ordered set: 
  

  
N , Z ,Q,R,C{ } . 

 
  Pinyin* 
 
 Romanization of Chinese.  The written Chinese words have long been 
the same in all parts of China.  The same written Chinese word, however, sounds 
differently in various dialects.  People speaking different dialects often cannot 
speak to each other.  To unify the language in China, Children in schools are 
taught the Standard Chinese, also known as Mandarin.   
 In 1958, the Chinese government published the Pinyin system, a phonetic 
representation of the Standard Chinese in the Latin alphabet.  For example, the 
word “China” means “中国”, which is spelled in Pinyin as “Zhong Guo”.  The word 
“Pinyin” itself is the phonetic representation of two Chinese characters “拼音”, 
which means “spelled sound”. 
 Pinyin is used to teach Chinese.  Pinyin is also used to spell Chinese 
names in the Latin alphabet.  For example, the capital of China, “北京”, is spelled 
as “Beijing”.  Pinyin also serves as a method to enter Chinese characters to 
computers. 
 
 Pinyin and alphabetical order.  English-speakers usually list a set of 
people in the alphabetical order of their names.  The alphabetical order implies 
no order with respect to any other relation on the set, and is merely a way to list 
the set of people.  As we discussed before, in most situations it is wise to regard a 
set of people as an unordered set.  The use of names turns an unordered set 
(people) to an ordered set (English words).  The practice is so prevalent that we 
usually forget how ingenious and helpful it is. The name of a person is (nearly) 
permanent, but can be used to list any set of people.  
 This practice, of course, makes no sense in China.  The Chinese-speakers 
may list a set of people in the order of the numbers of strokes in the Chinese 
characters of their names.  Counting the numbers of strikes in Chinese characters 
is tedious.  In most situations, we may as well regard the Chinese characters as an 
unordered set.  
 The Pinyin system turns an unordered set (Chinese characters) to an 
ordered set (words written in the Latin alphabet).  Similar systems of 
romanization now enable us to list people in the alphabetical order of their names, 
regardless of their countries of origin. 
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  Finitary Relation 
 
 A binary relation is a set of ordered pairs.  We now generalize this 
definition to a set of n-tuples. 
 
 Finitary relation.  A set of n-tuples is called an n-ary relation.  The 
integer n is called the arity of the relation.   
 Thus, a set of individual elements is called a unary relation, a set of 
ordered pairs is called a binary relation, and a set of triples is called a ternary 
relation. 
 If a triple 

  
x,y,z( )  belongs to a ternary relation R, we write  

  
  

x,y,z( )∈R . 
We say that the items x, y, and z stand in the ternary relation R. 
 
 Graph, ranges, and images.  We can generalize the definitions of 
graph, ranges, and images.   
 The collection of n-tuples in an n-ary relation R is called the graph of the 
relation.   
 The relation R has n ranges, defined by 
  

  
P1 = p1 p1 ,..., pn( )∈R { } . 

  …… 
  

  
Pn = pn p1 ,..., pn( )∈R { } . 

 Let  Ai ⊂ Pi  and 
 
Aj ⊂ Pj .  The image of  Ai  and 

 
Aj  under R is defined by 

the following expression: 

   

!,...,!, Ai ,!,...,!, Aj ,!,...!
R
=

p1 ,..., pi−1 , pi+i ,..., pj−1 , pj+1 ,..., pn( ) p1 ,..., pn( )∈R, pi ∈Ai , pj  ∈A j{ }  

 
 Relation over any number of sets.  A relation R over sets   S1 ,...,Sn  is a 
subset of the Cartesian product of these sets: 
    R⊂ S1 × ...× Sn . 

We say that the sets   S1 ,...,Sn  are under the relation R.  The sets   S1 ,...,Sn  are called 
the domains of the relation, and the set of tuples R is called the graph of the 
relation.  We say that elements   s1 ,...,sn  stand in the relation R if  

    s1 ∈S1 , …,  sn ∈Sn , and 
  

s1 ,...,sn( )∈R . 
In this definition, R stands for both the relation, the property that specifies the 
relation, and the graph of the relation. 
 In a relation, some domains can be the same set. 
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 Examples. Immigration defines a ternary relation: 
  

  
p,x,y( ) persons p immigrates from country  x  to country y { } . 

This relation is over the set of all people P, the set of all countries X, and the set of 
all countries X again.   
 Let P be a set of people.  Here are two ternary relations on P: 
  

  
a,b,c( ) persons a and b are parents of person c  { } , 

  
  

a,b,c( ) person a knows that person b loves person c  { } . 
 
 
 


