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Abstract 

Understanding the protein mechanics is a priori requisite for gaining insight into protein’s biological 

functions, since most protein performs its function through the structural deformation renowned as 

conformational change. Such conformational change has been computationally delineated by atomistic 

simulations, albeit the mechanics of large protein structure is computationally inaccessible with atomistic 

simulation such as molecular dynamics simulation. In a recent decade, normal mode analysis with coarse-

grained modeling of protein structures has been a computational alternative to atomistic simulations for 

understanding large protein mechanics. In this review, we delineate the current state-of-art in coarse-

grained modeling of proteins for normal mode analysis. Specifically, the pioneered coarse-grained models 

such as Go model and elastic network model as well as recently developed coarse-grained elastic network 

model are summarized and discussed for understanding large protein mechanics. 
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INTRODUCTION 

Protein mechanics plays a vital role in the biological function of proteins, since protein performs its 

biological function through its structural deformation driven by mechanical loading. For instance, motor 

protein is one of renowned proteins that perform the mechanical function, that is, the transduction of 

chemical energy into mechanical energy [1]. Specifically, the mechanical function of ATPase motor 

protein is carried out via its structural change upon ATP binding [2-6]. The chaperonin GroEL-GroES 

complex functions the assistance of protein folding through rotational motion of its domain upon ATP 

binding [7, 8]. The giant muscle molecule known as titin performs the mechanical function through 

structural change from folded structure to unfolded (denatured) structure or vice versa upon mechanical 

loading or unloading [9-13]. 

 Protein mechanics related to protein’s biological function has been computationally studied by 

atomistic simulations [14] since McCammon et al. [15] studied the dynamic behavior of small protein 

based on molecular dynamics simulation. The thermal fluctuation behavior of small proteins has been 

well understood by sampling of trajectories obtained from molecular dynamics simulation [16]. Moreover, 

the mechanical unfolding of a protein such as titin has been well analyzed by molecular dynamics 

simulation with consideration of mechanical loading applied to the termini of a protein [17-19]. The basic 

principle of molecular dynamics simulation is to numerically solve the equation of motion, i.e. 
i i i

m =u fɺɺ , 

where mi is the mass of the i-th atom, ui is the displacement field for i-th atom, and fi is the force acting 

on the i-th atom [14, 20]. The computational difficulty in molecular dynamics simulation resides in 

computation of the force fi that is a gradient of an anharmonic potential field prescribed to all atoms. 

Further, the time step for integrating the equation of motion is typically in the order of femto (10-15) 

seconds, whereas protein performs the function at much larger time scale from at least nano (10-9) 

seconds to a few seconds. It has been reported that until now the accessible time scale for molecular 

dynamics is at most in the order of nano seconds [21]. This indicates that molecular dynamics simulation 

may be computationally inhibited for large protein mechanics, where large spatial and temporal scale is 

required. 

 In recent decades, normal mode analysis (NMA) has been a computational alternative to 

atomistic simulation such as molecular dynamics for understanding large protein mechanics [14, 22-24]. 

The principle of NMA is similar to that typically employed for structural mechanics. Specifically, once 

the stiffness matrix (Hessian matrix) for a structure is constructed, the modal analysis provides the 

vibration information of such a structure. The stiffness matrix for a protein structure is usually established 

based on the computation of second gradients of anharmonic potential field prescribed to all atoms. In 

general, calculation of stiffness matrix is implemented at equilibrium position, which is obtained by 

minimization of anharmonic potential. This implies that, for large proteins, the computation of stiffness 

matrix along the minimization process is a computationally expensive process. 

 Recently, atomistic simulation such as molecular dynamics [15] and NMA [22] with all atoms 
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has been replaced with a coarse-grained model, where degrees of freedom are enormously reduced. Since 

the dominant motion of a protein structure is represented by that of a carbon backbone chain [14, 16], the 

coarse-grained models have been suggested such that protein structure is delineated by α-carbon atoms 

for protein backbone chain. Moreover, the computational inefficiency usually arises from the complicated 

anharmonic potential field. Consequently, the simplification of such potential field for a protein structure 

described by α-carbon atoms is the key issue in the coarse-grained modeling of proteins. Go and 

coworkers [22] introduced the more simplified potential field for α-carbon atoms such that α-carbon 

atoms are prescribed by potential field consisting of covalent bonds for consecutive α-carbon atoms and 

non-bonded interaction (i.e. van der Waal’s interaction) for native contacts. The thermal fluctuation 

behavior of protein structures has been well described by Go model. In a recent decade, Go model has 

been taken more attention for gaining insight into protein unfolding mechanics. Cieplak and coworkers 

[25-28] have showed that molecular simulation with Go potential has allowed them to obtain the force-

displacement curve for protein unfolding mechanism, quantitatively comparable to experimental data by 

single-molecule pulling experiments based on atomic force microscopy (AFM) [9]. This may shed light 

on Go model such that Go potential may be versatile potential field for understanding protein mechanics 

with computational efficiency. 

 Inspired by Go model, Tirion suggested the more simple harmonic potential for protein 

structures [29]. In her model, protein structure is regarded as a harmonic spring network in such a way 

that α-carbon atoms within the neighborhood is connected by harmonic springs with identical force 

constant. Tirion’s model has revolutionized the protein modeling for understanding protein dynamics 

relevant to biological function of proteins [30-37]. Such model has reduced computational expense 

enormously for estimating low-frequency normal modes related to biological function. Moreover, it is 

very remarkable that low-frequency normal modes from Tirion’s model are highly correlated with 

displacement vector representing the conformational change of proteins [38]. Tirion’s model has inspired 

many researchers for studying protein dynamics and protein mechanics. For example, Wolynes and 

coworkers [39] studied the energy landscape for protein conformational change based on Tirion’s model. 

Kim et al [40] introduced the linear interpolation method based on Tirion’s model for describing the 

conformational change. Brooks and coworkers [41, 42] have studied the conformation change based on 

iterative method applied to low-frequency normal modes from Tirion’s model with a distance constraint 

for computing the displacement vector related to incremental conformational change. Micheletti and 

coworkers [43] employed Tirion’s model for depicting the thermal denaturation (thermal unfolding) of 

protein’s folded structure. Zheng et al [44] have studied the power-stroke mechanism of motor proteins 

based on Tirion’s model. The recent studies by Brooks et al [37, 45] and Kim et al [46] have showed that 

low-frequency normal modes of Tirion’s model is sufficient to provide the functional mode of viral capsid 

protein. Recently, Thirumalai and coworkers [47] have shown that low-frequency normal modes are able 

to describe the allosteric transition of proteins. Bahar and coworkers [48] have provided that allosteric 
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change of protein structure is well delineated by low-frequency normal modes of Tirion’s model. 

Moreover, they have recently suggested that Tirion’s model with Markov method may enable one to 

understand the allosteric signal transduction corresponding to conformational change [49, 50]. 

 Although Tirion’s model has greatly succeeded in studying protein dynamics and mechanics 

with high computational efficiency, the model reduction scheme (coarse-graining) has been taken into 

account for large protein structures. The model reduction of Tirion’s model is rational since few low-

frequency normal modes are necessary for describing the protein dynamics such as conformational 

change relevant to biological function. Such model reduction has been first attributed to Bahar and 

coworkers [51] who introduced the coarse-grained structure represented by nodal points whose number is 

less than total number of α-carbon atoms. In their model, the nodal points within the neighborhood were 

connected by harmonic spring with identical spring constant. In a recent year, Eom and coworkers [52] 

have provided the more systematic model reduction method applicable to protein structures. Specifically, 

they used the model condensation method in a similar spirit to skeletionization method suggested by 

Rohklin and coworkers [53, 54]. Bahar and coworkers [55] have introduced the Markov method for 

transformation of original molecular structure into coarse-grained structure. Ma and coworkers [56] have 

employed the substructure synthesis method, which was broadly used for engineering structural dynamics, 

for obtaining the low-frequency normal modes relevant to biological function. 

 

MOLECULAR SIMULATION: NORMAL MODE ANALYSIS (NMA) 

All-atom simulation such as molecular dynamics was first provided by Karplus and coworkers [15]. The 

potential field V prescribed to protein structure was given by [14] 

 ( ) ( ) ( )
2 20 0

12 6
, ,

1 cos
2 2

i j

i i i i i

i i i i j i j ijij ij

q qK C A B
V b b D n

rr r
θ θ ϕ δ

χ

 
= − + − + + − + − +      

 
∑ ∑ ∑ ∑ ∑  (1) 

Here, bi, θi, and φi are the i-th covalent bond length, bending angle, and dihedral angle (torsional angle), 

respectively, rij is the distance between i-th atom and j-th atom, qi is the charge for i-th atom, and a 

symbol 0 indicates the equilibrim state. The first term in potential energy represents the stretching energy 

for covalent bonds, the second term indicates the bending energy, the third term shows the torsional 

energy, and last two terms provides the non-bonded interactions such as van der Waal’s interaction and 

electrostatic interaction. With the potential energy V given by Eq. 1, molecular dynamics simulation 

provides the trajectories of position vectors denoted as xi for all atoms. The quantity renowned as cross-

correlation matrix Lij shows the thermal fluctuation behavior comparable to experimental quantity such as 

Debye-Waller factor [16, 57]. 

 ( ) ( )0 0
ij i i j j

= − ⋅ −L x x x x        (2) 

where xi is the position vector for i-th atom, a symbol 0 represents the equilibrium state, and a braket 

symbol indicates the ensemble average (time average). The diagonal component of cross-correlation 
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matrix, Lii, is the mean-square fluctuation proportional to Debye-Waller factor (B-factor), i.e. Bi = 

(8π2/3)Lii. 

 Normal mode analysis (NMA) is referred to as quasi-harmonic analysis [58], since the modal 

analysis is implemented with harmonic approximation to potential energy V for small displacement. 

 ( )( )0 0
0

,

1

2
ij i i j j

i j

V V K x x x x≈ + − −∑       (3) 

Here, xi is the generalized coordinates for atoms, and Kij is the Hessian matrix (stiffness matrix) for a 

protein structure given by Kij = ∂
2
V/∂xi∂xj. Quasi-harmonic analysis (or NMA) is to solve the eigen-value 

problem such as Kijvj = −ω
2
mivi, where ω is the natural frequency, vi is the normal mode corresponding to 

natural frequency ω, and mi is the atomic mass for i-th atom. The cross-correlation matrix representing 

the thermal fluctuation motion can be computed from equilibrium statistical mechanics theory [57, 59]. 

 ( )
3

, ,2
7

N
B

ij i n j n

n i n

k T
v v

m ω=

= ⊗∑L        (4) 

where kB is the Boltzmann’s constant, T is the absolute temperature, and the subscript n for natural 

frequency and normal mode represents the mode number. It should be noted that summation goes from 7 

to 3N, where N is the total number of atoms, since there are six rigid body modes corresponding to zero 

eigen-modes. Even though there are several different potential fields such as CHARMM and AMBER 

applicable to protein structures, it was shown that the thermal fluctuation motion and low-frequency 

normal modes are consistent regardless of details of potential field [58]. 

 

GO MODEL 

As stated above, the low-frequency normal modes relevant to protein dynamics is insensitive to details of 

potential field [58]. One may ask which interactions dominate the protein dynamics among various 

potential fields as mentioned in Eq. 1. Go and coworkers [22] conjectured that short-range interactions 

may govern the protein dynamics. Moreover, the motion of protein structure is well described by that of 

backbone chain represented by α-carbon atoms. Go potential is simply represented in the form of [25, 26] 

 ( ) ( )2 40 01 2
, 1 , 1 , 1 , 1 6 12

,

1 1
4

2 4
i i i i i i i i

i i j ij ij

k k
V r r r r

r r
ε+ + + +

  
≈ − + − + −       
∑ ∑      (5) 

Here, ri,j is the distance between i-th and j-th α-carbon atoms, and superscript 0 indicates the equilibrium 

state. The first summation represents the nonlinear elastic energy for covalent bonds, while the last 

summation shows the non-bonded interaction for native contact. Native contact is defined in such a way 

that two α-carbon atoms (i-th and j-th α-carbon atoms) are in the native contact if rij is less than the 

certain distance referred to as cut-off distance, dc, typically given as dc ≈ 10 Å. 

 

TIRION’S MODEL: ELASTIC NETWORK MODEL (ENM) 

The success of Go model has resulted in the emergence of more simplified model suggested by Tirion 
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[29]. Specifically, Tirion assumed the harmonic approximation to potential field prescribed to α-carbon 

atoms. Inspired by Go model, she proposed the harmonic potential field only for native contacts and 

covalent bonds with identical force constant. 

 ( ) ( )20 0

, 2
ij ij c ij

i j

V r r H r r
γ

≈ − ⋅ −∑       (6) 

where γ is a force constant, rij is the distance between i-th and j-th α-carbon atoms, superscript 0 indicates 

the equilibrium state, rc is the cut-off distance defining a native contact, and H(x) is the Heaviside unit-

step function defined as H(x) = 0 if x < 0; otherwise H(x) = 1. 

 With Tirion’s potential, Bahar and coworkers studied the Gaussian dynamics of proteins, which 

resulted in the emergence of Gaussian network model (GNM) [30, 32]. GNM assumes the isotropic 

fluctuation, that is, directionality of fluctuation is not taken into account. Even though the motion of 

proteins is generally anisotropic, the fluctuation behavior such as B-factor is well depicted by GNM. The 

stiffness matrix for GNM, also referred to as Kirchoff matrix, is given by 

 ( ) ( )
2

01
N

ij ij c ij ij ik

k ii j

V
H r r

r r
γ δ δ

≠

∂
Γ = = − − ⋅ − − Γ

∂ ∂ ∑      (7) 

Here, N is the total number of α-carbon atoms, and δij is the Kronecker delta defined as δij = 1 if i = j; 

otherwise δij = 0. Since isotropic motion is assumed in GNM, GNM is able to only provide the low-

frequency normal modes related to mean-square fluctuations. Further, fluctuation information for every 

residue may provide the insight into the hot spots (residues) which undergo large deformation during the 

conformational change. 

 In general, Tirion’s model is referred to as elastic network model (ENM) [29, 33] since protein 

structure is represented by harmonic spring network, which takes into account the anisotropy in thermal 

fluctuation. For simplicity, let us consider only two α-carbon atoms i and j, which are connected by an 

entropic spring (Gaussian chain) [33, 60-64]. 

 ( ) ( )20

2
ij ij ijV r r r

γ
= −        (8) 

where rij = [(xi – xj)
2 + (yi – yj)

2 + (zi – zj)
2]1/2 with a position vector ri for an α-carbon atom i, given by ri = 

xiex + yiey + ziez. The stiffness matrix K for a potential given by Eq. 3 can be easily computed such as 

 
ij ij

ij ij

− 
=  − 

K K
K

K K
        (9) 

Here, Kij is the 3×3 block matrix given by 

 
( ) ( )

2

i j i j

ij

i j

γ
− ⊗ −

=
−

r r r r
K

r r
       (10) 

This indicates that the stiffness matrix for an entropic spring is equivalent to the stiffness matrix for an 

elastic spring (linear elastic truss) with a spring constant γ. Based on 3×3 block matrix Kij, the stiffness 
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matrix corresponding to Tirion’s potential given by Eq. 6 can be easily computed by assembly of such 

block matrices. The protein structure described by ENM is suggested in Fig. 1. 

 

COARSE-GRAINED ELASTIC NETWORK MODEL 

Coarse-graining of protein structures with few degrees of freedom has been attempted, since protein 

structure is composed of several rigid domains whose motional behavior is like a rigid-body motion such 

as rotational motion. In recent years, Jernigan and coworkers [65, 66] suggested that protein structure is 

represented by complex of rigid bodies corresponding to protein domains. That is, they introduced the 

Hamiltonian for rigid-body motion of a domain as well as interactions between domains. It was 

remarkably shown that the dynamic behavior such as conformational change of large protein complex 

(e.g. GroEL-GroES, viral capsid) has been well illustrated by their coarse-grained model [46, 66]. Bahar 

and coworkers [51] have taken into account the coarse-graining of ENM based on their physical intuition. 

Their coarse-grained ENM was established in the same manner to ENM except they rescaled the force 

constant as well as cut-off distance. It is remarkable that their simple coarse-grained model successfully 

predicts the thermal fluctuations comparable to original structure as well as experimental data. 

Furthermore, multi-scale model for proteins has been suggested in such a way that the biologically 

significant substructures such as binding site are described by refined model such as ENM whereas the 

rest regions of a protein is described by coarse-grained ENM [67]. 

 The coarse-graining process based on ENM may be systematically implemented by employing 

the model reduction method typically used in applied mathematics. For instance, Rohklin and coworkers 

[53, 54] suggested the low-rank approximation to linear algebraic equation, resulting in the reduction of 

degrees of freedom. They showed that their low-rank approximation, referred to as skeletionization, can 

be directly applicable to electrostatics [68], hydrodynamics [53], and any other applied mathematics 

problem represented by linear equation [54]. Inspired by skeletonization scheme, we have employed the 

model condensation method to reconstruct the coarse-grained structure, i.e. low-resolution structure, from 

the original structure, i.e. refined structure (See Fig. 2) [52, 64]. We define the master residues as the 

residues which are taken in the coarse-grained structure, while the slave residues are referred to as the 

residues which are to be eliminated during model condensation. The dynamic motion of a protein 

structure is governed by harmonic potential V in the form of 

 [ ]1

2
M MS M

M S

SM S S

V
   

=    
   

K K u
u u

K K u
      (11) 

where the subscripts M and S indicate the master residues and slave residues, respectively. KM represents 

the harmonic interactions between master residues, KS provides the harmonic interactions between slave 

residues, and KMS shows the harmonic interactions between master and slave residues. With assumption 

that slave residues are in equilibrium, the effective stiffness matrix Keff for coarse-grained ENM described 

by master residues is computed as follows. 
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 [ ] 31
3
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−    
 = = −     

  

K K I
K ψ K I K K

K K 0
    (12) 

Here, ψ is the linear operator that transfroms the original structure described by stiffness matrix K to the 

coarse-grained structure depicted by effective stiffness matrix Keff, and I3M is the 3NM × 3NM identity 

matrix, where NM is the total number of master residues. 

 

CONFORMATIONAL FLUCTUATION DYNAMICS 

In recent decades, the molecular structures of various proteins have been characterized by experiments 

based on X-ray crystallography and/or nuclear magnetic resonance (NMR) [20]. Until recently, many 

experimentalists are attempting to characterize the large protein structures based on X-ray crystallography 

and NMR, and such protein structures realized by experimentalists are deposited in the protein data bank 

(PDB; http://www.pdb.org). Characterization of protein structure with such experiments is typically given 

in terms of Debye-Waller factor (B-factor) representing the mean-square fluctuation of residues driven by 

thermal energy kBT. Consequently, the dynamic behavior of proteins based on theoretical models such as 

molecular model and/or coarse-grained model is typically compared with B-factor obtained by 

experiments. That is, the conformational fluctuation behavior of proteins plays a role in validating the 

theoretical models for protein structures. 

 As shown in Fig. 3, the conformational fluctuation predicted by Tirion’s model (ENM) and/or 

GNM is quantitatively comparable to that obtained by experiments. It is quite remarkable that simple 

harmonic oscillator network model delineated by two parameters such as force constant and cut-off 

distance are able to provide the conformational fluctuation of proteins. This remarkable result indicates 

that native topology (topology of native contacts) plays a dominant role in the conformational fluctuation. 

Moreover, the comparison of thermal fluctuations predicted by ENM with that by experiments provides 

the force constant for an entropic spring connecting the native contacts. For instance, F1-ATPase motor 

protein (pdb: 1e79) can be represented by GNM with force constant of 0.347 kcal/mol and cut-off 

distance of 12Å. It should be noted that one has to be cautious in selecting the cut-off distance because 

the short cut-off distance may generate the unphysical behavior of a structure such as more than six rigid 

body modes [33]. Further, if one chooses the very large cut-off distance, then the structure is too rigid to 

fluctuate in the similar pattern to that of real protein. 

 We take into account the coarse-grained elastic network model and its conformational 

fluctuation behavior. It is shown that, in Fig. 3, coarse-grained ENM predicts the thermal fluctuation 

behavior depicted by B-factor qualitatively comparable to that estimated by experiments and/or original 

structural model. For a protein composed of N α-carbon atoms, the prediction of B-factor based on ENM 

requires O(N3) computation, while on the basis of coarse-grained ENM composed of (N/n) α-carbon 

atoms the calculation of B-factor requires O(N3/n2) computation. Coarse-grained ENM reduces the 

computational cost for predicting thermal fluctuation of proteins by factor of n2, compared with ENM, 
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whereas the coarse-grained ENM predicts the thermal fluctuation of proteins quantitatively and 

qualitatively comparable to that predicted by ENM. The success of coarse-grained ENM in depicting the 

conformational fluctuation of proteins may be attributed to the fact that protein structure is usually 

represented by combinations of rigid domains that can be described by few degrees of freedom. This 

feature of protein structure has been taken into account for establishing the coarse-grained models of 

proteins. For instance, Jernigan and coworkers [66] provide the rigid cluster model such that protein 

structure is represented by clusters of rigid bodies with soft springs connecting rigid domains. Further, 

Tama and coworkers [69] suggested block normal mode analysis, where block matrices were used to 

describe the rigid blocks of proteins, for delineating the conformational fluctuation of proteins. 

 Moreover, as the protein structure is more coarse-grained, the magnitude of conformational 

fluctuation becomes larger, even though the patterns of conformational fluctuation predicted by coarse-

grained structure are qualitatively consistent with original structure. This is rational since our coarse-

graining scheme reduces the harmonic springs corresponding to slave residues, resulting in the increase of 

overall compliance of protein structure. This is consistent with a recent work by Bahar and coworkers 

[51], where they rescaled the force constant in such a way that the force constant for coarse-grained 

structure is larger than that for original structure. In order for a coarse-grained ENM to predict the 

conformational fluctuation quantatively comparable to experimental data or original structural model, the 

force constant should be rescaled in such a way that the overall stiffness of protein structure described by 

coarse-grained ENM is comparable to that of protein structure depicted by ENM. Fig. 4 shows the 

thermal fluctuation predicted by coarse-grained ENM with rescaled force constant. It is shown that the 

conformational fluctuation predicted by coarse-grained ENM is very consistent with experimental data. 

 

LOWEST-FREQUENCY NORMAL MODE 

Coarse-grained models such as Go model and ENM are computationally acceptable for computational 

biology communities, since such models are able to capture the low-frequency normal modes relevant to 

the biological function of proteins. Such coarse-grained models reduce the degrees of freedom 

enormously as well as simplify the potential field, and they can provide the meaningful low-frequency 

normal modes comparable to that computed from atomistic model. This indicates that a de novo coarse-

grained model for protein structures can be verified based on the comparison of low-frequency normal 

modes computed from such coarse-grained model with that obtained by conventional models such as 

atomistic model and/or well-accepted coarse-grained model such as Go model and Tirion’s model. 

 We have validated our coarse-grained ENM by investigating the low-frequency normal modes 

predicted by coarse-grained ENM. For instance, we consider the lowest-frequency normal modes 

predicted by both ENM and coarse-grained ENM. As shown in Fig.5, the lowest-frequency normal mode 

for hemoglobin is well predicted by coarse-grained ENM such that its lowest-frequency normal mode is 

qualitatively comparable to that obtained from ENM. Specifically, anti-correlated motion between 
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substructure A (residues: 1 ~ 287) and substructure B (residues: 288 ~ 428) can be found in both ENM 

and coarse-grained ENM. This indicates that coarse-grained ENM may provide the lowest-frequency 

normal mode, related to the functional motion of protein structure, qualitatively comparable to that 

computed from original structural model such as Go model and ENM. Further, the rescaling of force 

constant for coarse-grained ENM may not affect the pattern of lowest-frequency normal mode, since the 

protein topology is only described by cut-off distance. It can be realized that our coarse-graining allows 

us to predict the functional lowest-frequency normal mode of proteins with reducing the computational 

cost by factor of n3. 

 

COLLECTIVE AND CORRELATED MOTION OF PROTEINS 

The conformational motion of proteins has been well described as collective motion and/or correlated 

motion. As shown previously in Fig. 5, the low-frequency normal modes exhibit the collective motion of 

a protein domain, and such modes depict the correlated motion of protein domains. Before we 

demonstrate the collective and/or correlated motion predicted by ENM and/or coarse-grained ENM, we 

review the parameters representing the collective motion and/or correlated motion. The collectivity 

parameter denoted as κi for a given mode index i is defined as [70] 

 
2 2

, ,
1

1
exp log

N

i i j i j

j

v v
N

ω

ω

κ
=

 
= − 

 
∑       (13) 

where Nω is the total number of normal modes, vi,j represents the j-th component of normal mode vi 

corresponding to mode index i. The collectivity κi is in the range between 1/Nω and 1, where the value of 

collectivity close to 1/Nω represents the localized motion while the value of collectivity close to 1 

indicates the collective motion. The correlated motion between residues i and j is well delineated by 

correlation matrix Cij defined as [71] 
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C

x x x x L L

  (14) 

Here, the correlation matrix Cij in terms of cross-correlation matrix Lij, shown in Eq. 14, is based on 

ENM whose degrees of freedom are 3N. The value of Cij close to –1 shows the anti-correlated motion 

between residues i and j, whereas the value of Cij close to 1 indicates the correlated motion between these 

two residues. When the correlation Cij is close to zero, the motion of a residue i is uncorrelated with 

and/or orthogonal to that of a residue j. 

 For clear understanding of correlated motion described by Cij, let us consider the simple 

harmonic oscillator embedded in a heat bath with thermal energy kBT. The potential energy for a 

harmonic oscillator is represented in the form of V = (γ/2)(ui – uj)
2, where γ is a force constant (spring 

constant) and ui is a one-dimensional displacement for a node i (see Fig. 6). The Hessian matrix (stiffness 
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matrix) for this system can be given by 

 
γ γ
γ γ

− 
=  − 

K         (15) 

which provides the natural frequencies ω0 = 0 and ω1 = (2γ)1/2 and their corresponding normal modes v0 = 

(1, 1) and v1 = (1, –1). As stated earlier, the zero modes should be excluded for estimating the thermal 

fluctuation of a system. The non-zero normal mode v1 for a harmonic oscillator enables us to easily know 

that the thermal energy drives the anti-correlated motion between two nodal points i and j. This is 

consitent with the quantity of correlation Cij, i.e. Cij = –1, from the definition of correlation Cij such as Cij 

= Lij/(LiiLjj)
1/2, where cross-correlation Lij is given by 

 1 12
1

1 1

1 12
B B

k T k T

γω

− 
= ⊗ =  − 

L v v       (16) 

Thus, correlation Cij is a physical parameter describing the correlated motion between these two nodal 

points. 

 As shown in Fig. 7, we consider the collectivity parameters κi calculated from both ENM and 

coarse-grained ENM. It is quite remarkable that coarse-grained ENM is able to reproduce the collectivity 

parameters corresponding to low-frequency normal mode quantitatively comparable to that estimated 

from ENM. This indicates that collective motion of proteins can be well depicted by coarse-grained 

structure represented by few degrees of freedom. This may be attributed to the fact that protein consists of 

several rigid domains that can be described by few degrees of freedom, and that the collective motion 

arises from the low-frequency functional modes. However, the coarse-grained ENM cannot predict the 

collectivity for high-frequency normal modes. Specifically, as shown in Fig. 7, the high-frequency normal 

modes are related to localized motion which cannot be predicted from coarse-grained ENM. This 

indicates that localized modes (high-frequency modes) of protein can be only estimated from refined 

molecular model. Fig. 8 shows the correlation matrix Cij evaluated from ENM and coarse-grained ENM. 

It is remarkably found that the collective motion of each domain is well described by both ENM and 

coarse-grained ENM. Further, coarse-grained ENM provides the correlation between domains, 

qualitatively comparable to the correlation predicted by ENM. However, coarse-grained ENM 

overestimates the quantity of correlation between domains. This may be ascribed to our coarse-graining 

scheme, that is, reduction of harmonic springs corresponding to slave residues, leading to overestimation 

of overall flexibility and its corresponding correlated motion between domains. 

 

CONFORMATIONAL TRANSITION 

Conformational change of a protein is quite related to the biological function of a protein. Atomistic 

simulation such as targeted MD simulation has been employed for understanding conformational change 

of very small proteins. Remarkably, NMA has been an alternative to MD simulation, since the low-

frequency normal modes at equilibrium state are able to well describe the conformational change of 
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proteins. This NMA is referred to as principal component analysis (PCA) that diagonalizes the Hessian 

matrix (stiffness matrix) [72]. 

 Since it was shown that low-frequency normal modes are independent of details of potential 

field [58] but depend on the topology of protein structures [73], ENM was broadly employed for 

understanding the conformational change of proteins. Tama and coworkers [37, 38] showed that low-

frequency normal modes obtained from ENM are highly correlated with a vector representing the 

conformational change between two equilibrium states. Bahar and coworkers [74] showed that the 

conformational change from tense form to relaxed form for hemoglobin is driven by entropic effect 

described by low-frequency normal modes from ENM. Brooks and coworkers [41, 67] predicted the 

conformational change depicted by low-frequency normal modes with a perturbation of Tirion’s potential 

that incorporates the distance constraint. Kim et al [40] suggested the linear interpolation between two 

conformations with constraint that the intermediate conformation distant from the interpolated coordinate 

is determined by minimization of harmonic potential. Wolynes and coworkers [39] provided the nonlinear 

elastic energy landscape for conformational change of proteins based on low-frequency normal modes 

from ENM. Further, Karplus and coworkers [75] employed the same methodology suggested by Wolynes 

and coworkers for describing the conformational change of a motor protein. Further, Kidera and 

coworkers [76] used the linear response theory with Tirion’s model for depicting the conformational 

change of proteins. 

 For delineating the correlation between low-frequency normal modes and conformational 

change, the parameters referred to as overlap Ik and/or cumulative involvement Sk are defined such as 

 
( )

( )
open close k

k

open close

I
− ⋅

=
−

r r v

r r
       (17.a) 

and 2

1

k

k p

p

S I
=

= ∑         (17.b) 

Here, ropen and rclose represent the position vectors corresponding to open form and close form, 

respectively, and vk is the k-th normal mode. Ik indicates the correlation between k-th normal mode and 

conformational change, and Sk is a quantity representing the contribution from low-frequency normal 

modes (from first mode to k-th mode) to the conformational change. Fig. 9 shows the overlap and 

cumulative involvement predicted by ENM and coarse-grained ENM. It is remarkable that both models 

predict that the conformational change is highly correlated with a few low-frequency normal modes. This 

is consistent with a recent finding that low-frequency normal modes are sufficient to represent the 

conformational change of a protein. 

 

CONCLUSION 

In this article, we review the current state-of-art in coarse-graining of protein molecules for understanding 
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their dynamics relevant to biological functions. The coarse-graining procedure is usually acceptable as 

long as the protein topology related to its dynamics is sufficiently delineated by such coarse-grained 

models. We briefly overviewed the broadly accepted coarse-grained models such as Go model and 

Tirion’s model (ENM), which enables one to gain insight into protein dynamics such as conformational 

fluctuation and conformational change related to the biological function. Moreover, a recently developed 

coarse-grained ENM models are taken into account and it is shown that such coarse-grained ENM may 

allow one to achieve the fast computation on low-frequency normal modes related to biological function. 

It is provided that the possibility of coarse-graining for a protein structure is attributed to the fact that 

protein structure is usually composed of several rigid domains that can be described by few degrees of 

freedom. As previously shown, both ENM and coarse-grained ENM predicts the low-frequency normal 

modes and the thermal fluctuation quantitatively similar to that obtained by experiments. Further, both 

ENM and coarse-grained model such as rigid cluster model predict the conformational transitions 

between two conformations. However, it has to be validated whether coarse-grained ENM is acceptable 

or not for prediction of conformational change. To our knowledge, this issue has not been well considered 

except a recent work by Brooks and coworkers [67] who employed mixed ENM for understanding 

conformational change. 

 As stated above, coarse-grained models have been successful for studying the conformational 

dynamics of proteins. However, since some proteins such as titin perform the mechanical function, the 

protein unfolding behavior has to be well understood for insight into the mechanical function. Atomistic 

simulation is still restricted to small proteins, leading to consideration of coarse-grained models. A recent 

study by Cieplak and coworkers [28] suggested the molecular model based on Go potential under the 

mechanical loading. It is very remarkable that their model based on Go potential allows them to predict 

the force-displacement relation under the mechanical loading, comparable to the results of AFM 

experiments. Moreover, McCammon and coworkers [77] employed Tirion’s potential with mechanical 

loading applied to the termini of a protein. It was remarkably shown that even Tirion’s model is 

acceptable for gaining insight into mechanical unfolding of proteins. Recently, Rief and coworker [78] 

revisited Tirion’s model with bond-breaking model for protein unfolding mechanics. It is remarkably 

found that their elastic bond network model [78] allowed Rief and coworker to predict the probability 

distribution of rupture force, quantitatively comparable to AFM experimental data [79]. 

 In summary, the coarse-grained models such as Go model and Tirion model have been reviewed 

for protein dynamics relevant to biological function. Moreover, such models can be extended for 

understanding mechanical unfolding of protein structure. In conclusion, coarse-grained models such as 

Tirion’s model may be versatile for understanding the large protein dynamics and/or large protein 

unfolding mechanics. 
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Figure Captions 

 

Fig. 1. Model protein, i.e. citrate synthase (pdb: 4cts) described by (a) molecular structure and (b) elastic 

network model 

 

Fig. 2. Molecular structure of a model protein (citrate synthase) delineated by (a) elastic network model 

and (b) coarse-grained elastic network model 

 

Fig. 3. B-factor of a motor protein (pdb: 1e79) predicted by elastic network model and coarse-grained 

elastic network model in comparison with experimental data 

 

Fig. 4. Comparison between experimental data and B-factor predicted by coarse-grained elastic network 

model with rescaled force constant 

 

Fig. 5. Lowest-frequency normal mode for a hemoglobin computed from elastic network model and 

coarse-grained elastic network model 

 

Fig. 6. Schematic of a one-dimensional harmonic oscillator that undergoes the thermal fluctuation 

 

Fig. 7. Collectivity parameter κi for a hemoglobin (pdb: 1a3n) estimated from elastic network model and 

coarse-grained elastic network model 

 

Fig. 8. Correlation matrix Cij for a motor protein (pdb: 1e79) evaluated by (a) elastic network model and 

(b) coarse-grained elastic network model 

 

Fig. 9. Overlap Ik and cumulative involvement Sk for citrate synthase computed from elastic network 

model and coarse-grained elastic network model. Blue color represents the calculation based on elastic 

network model, whereas red color indicates the computation based on coarse-grained elastic network 

model. A bar graph shows the square of overlap, and dotted line presents the cumulative involvement. 
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