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Abstract Macroscopic instabilities of fiber reinforced composites undergoing large defor-
mations are studied. Analytical predictions for the onset of instability are determined by
application of a new variational estimate for the behavior of hyperelastic composites. The
resulting, closed-form expressions, are compared with corresponding predictions of finite
element simulations. The simulations are performed with 3-D models of periodic compos-
ites with hexagonal unit cell subjected to compression along the fibers as well as to non-
aligned compression. Throughout, the analytical predictions for the failures of neo-Hookean
and Gent composites are in agreement with the numerical simulations. It is found that the
critical stretch ratio for Gent composites is close to the one determined for neo-Hookean
composites with similar volume fractions and contrasts between the phases properties. Dur-
ing non-aligned compression the fibers rotate and hence, for some loading directions, the
compression along the fibers never reaches the level at which loss of stability may occur.

Keywords Finite deformation · Instability · Bifurcation · Homogenization · Variational
estimate · Fiber composite
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1 Introduction

Composite materials are widely used in various engineering areas. Therefore characteriza-
tion of their properties is of importance for both engineering applications and theoretical
development of methods that can reduce the need for high-cost experiments. An important
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and hard to predict characteristic is the one associated with loss of stability, also referred to
as “local buckling”. This phenomenon is mostly considered as a failure mode that should be
predicted and avoided. However, in some cases, such as in “snap-through” mechanisms this
phenomena can be used for our benefit (e.g., O’Halloran et al. [34]).

A fundamental study of this topic was performed by Biot [5], who developed a theory for
pre-stressed rubber-like solids in finite deformation. Rosen [38] estimated the compressive
strength of fiber composites based on beam theory. A general discussion concerning the
bifurcation phenomena was provided by Hill and Hutchinson [19]. Among the methods that
take into account imperfections in fiber composites we mention the works of Budiansky
[6], Fleck [14] and Merodio and Pence [27]. The problem of a localized failure at the free
surface of orthotropic materials was examined by deBotton and Schulgasser [9].

In composite materials bifurcations may occur at a scale which is significantly smaller
than the size of the specimen. Triantafyllidis and Maker [40] determined the onset of insta-
bilities in periodic layered media at such microscopic levels, as well as at macroscopic level.
They noted that macroscopic instabilities that occur at a scale significantly larger than the
scale of the microstructure can be detected with the help of the homogenized tensor of elas-
tic moduli. Instabilities at smaller scales demanded usage of more complicated techniques
such as Bloch wave analysis (e.g., Kittel [22]). Subsequently, Geymonat et al. [16] general-
ized this work and showed that Floqet theorem or Bloch wave technique can be applied for
analyzing the characteristic unit cell and predicting the onset of failures at all scales.

Nestorovic and Triantafyllidis [30] determined loss of stability in 2-D layered composites
subjected to combined shear and compression. Periodic fiber composites subjected to in-
plane transverse deformation were numerically examined by Triantafyllidis et al. [41] for
the case of neo-Hookean phases, and by Bertoldi and Boyce [4] for both neo-Hookean and
Gent phases. Michel et al. [28] compared numerical results for the transverse behavior and
loss of stability of periodic porous fiber composites with corresponding predictions of the
variational estimate of Lopez-Pamies and Ponte Castañeda [24]. The 2-D finite element
(FE) analyses performed in the above mentioned works did not cover instabilities due to
compression along the fibers. This problem was considered analytically by Agoras et al.
[2], who examined the responses of the composites under general loading conditions by
application of the variational estimate of Agoras et al. [1], and the TIH model for fiber
composites with neo-Hookean phases that was introduced in [12].

Loss of stability due to compression along the fibers is an important mode of failure
(e.g., Merodio and Ogden [26], Qiu and Pence [37]). Therefore, in this work we make use
of both analytical and numerical approaches to analyze the onset of this failure mode. The
numerical analysis requires examination of 3-D models subjected to finite-strain loading
conditions. Accordingly, in contrast to the FE models used in previous works, we develop
a 3-D model and extend appropriate techniques for determining the onset of instabilities.
Complementary to the numerical study, we determine analytical predictions for the onset
of stability loss by application of the variational method of deBotton and Shmuel [11]. We
will examine the effective response and stability loss of the neo-Hookean composites of
deBotton et al. [12], and corresponding fiber composites with Gent phases. Additionally, a
new upper estimate for composites with Gent phases is introduced. We emphasize that the
analytical procedure results in closed-form estimates for the onset of failure.

Before we proceed we remark that in the preceding paragraphs a few variational esti-
mates for characterizing the effective behaviors of hyperelastic composites were mentioned.
In connection with those we recall that Ponte Castañeda [35] introduced a variational method
for determining the effective properties of composites with mechanically nonlinear phases in
the limit of infinitesimal elasticity. The usage of linear comparison composites whose over-
all behaviors are known and from which corresponding estimates for the behaviors of the
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nonlinear composites can be extracted was the primary merit of this work. This concept was
further extended to the class of geometrically nonlinear composites where linear comparison
composites were used to obtain estimates for hyperelastic composites (e.g., Ponte Castañeda
and Tiberio [36], Lopez-Pamies and Ponte Castañeda [25], Agoras et al. [1, 2] and references
therein). More recently, deBotton and Shmuel [11] introduced a different variational method
for the class of hyperelastic composites. In the spirit of the pioneering work of Ponte Cas-
tañeda [35] this method also makes use of comparison composites, however, the usage of
nonlinear comparison composites instead of linear comparison composites is the merit of
this new approach. For consistence, in accordance with the comparison media used in the
different homogenization methods, we refer to the method followed by Agoras et al. [2] as
the linear comparison (LC) variational estimate, and to the one developed by deBotton and
Shmuel [11] as the nonlinear comparison (NLC) variational estimate. We conclude this re-
mark noting that in some cases the predictions of the two methods may be quite close, but in
general they are distinct (e.g., deBotton and Shmuel [11]). In the context of the present work,
we will subsequently discuss the advantage of using hyperelastic comparison composites for
estimating the critical stretch ratios at the onset of stability loss.

The work is structured as follows. A brief summary of the theory of finite elasticity
including a discussion about the strong ellipticity condition is outlined in the theoretical
background section. In Sect. 3 we recall the main results of the NLC estimate of deBotton
and Shmuel [11] in the context of fiber composites, and determine the corresponding ex-
pression for the effective tensor of instantaneous moduli stemming from this estimate. The
analytical expressions are specialized next to plane-strain loading conditions with the fibers
lying in the plane of deformation. The hexagonal unit cell and the procedure developed for
the numerical analysis are described in Sect. 4. Analytical and numerical estimates for the
macroscopic stable domains of fiber composites with neo-Hookean and Gent phases under
plane-strain conditions are presented in Sect. 5. A short summary concludes the work.

2 Theoretical Background

The Cartesian position vector of a material point in a reference configuration of a body B0

is X, and its position vector in the deformed configuration B is x. The deformation of the
body is characterized by the mapping

x = χ(X). (1)

The deformation gradient is

F = ∂χ(X)

∂X
. (2)

We assume that the deformation is invertible and hence F is non-singular, accordingly

J ≡ det F �= 0. (3)

Physically, J is the volume ratio between the volumes of an element in the deformed and
the reference configurations, and hence J = dv

dV
> 0. For a Green elastic or hyperelastic

material, the constitutive relation is given in terms of a scalar-valued strain energy-density
function �(F) such that

P = ∂�(F)

∂F
, (4)
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where P is the 1st Piola-Kirchhoff (nominal) stress tensor. The corresponding true or Cauchy
stress tensor is related to the 1st Piola-Kirchhoff stress tensor via the relation

σ = J−1PFT . (5)

In the absence of body forces the equilibrium equation is

∇ · σ = 0. (6)

The strain energy-density function � of an isotropic material can be expressed in terms
of the three invariants of the Cauchy-Green strain tensor C ≡ FT F. It is common to express
these invariants in the form

I1 = TrC, I2 = 1

2
(I 2

1 − Tr(C2)), I3 = det C. (7)

A widely used isotropic and incompressible model that enables to capture the “lock-up”
effect of the molecular chain extension limit is the Gent [15] model (e.g., Horgan and Sac-
comandi [20])

�G = −1

2
μJm ln

(
1 − I1 − 3

Jm

)
. (8)

Here μ is the initial shear modulus and Jm is a dimensionless locking parameter correspond-
ing to the lock-up phenomenon such that in the limit (I1 − 3) → Jm, there is a dramatic rise
of the stresses and the material locks up. In the limit Jm → ∞ this model is reduced to the
neo-Hookean model, namely

�H = μ

2
(I1 − 3). (9)

The strain energy-density function of a transversely isotropic (TI) material, whose pre-
ferred direction in the reference configuration is along the unit vector L̂, depends on two
additional invariants

I4 = L̂ · CL̂ and I5 = L̂ · C2L̂. (10)

Following Ericksen and Rivlin [13], an alternative set of invariants was proposed in deBotton
et al. [12], namely

λ2
n = I4, (11)

λ2
p =

√
I3

I4
, (12)

γ 2
n = I5

I4
− I4, (13)

γ 2
p = I1 − I5

I4
− 2

√
I3

I4
. (14)

The fifth invariant ψγ , whose exact expression is given in [12], is the only invariant that
depends on I2. The reverse relations can be readily obtained. The motivation for this set of
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Fig. 1 A scheme of a
transversely isotropic composite
and the associated physically
motivated invariants

invariants stems from the fact that they can be associated with specific modes of deforma-
tion. Thus, λn is the stretch measure along the preferred direction L̂, λp is the measure of the
in-plane transverse dilatation, γn is the measure of the amount of out-of-plane shear, and γp

is the amount of shear in the transverse plane. The fifth invariant ψγ describes the coupling
between the shearing modes. A schematic drawing of the physical interpretation of these
invariants is given in Fig. 1.

Following Ogden [32] and Merodio and Ogden [26], we define the tensor of elastic mod-
uli

A = ∂P
∂F

. (15)

Accordingly, the 1st Piola-Kirchhoff stress increment is

δP = AδF, (16)

where δF is an infinitesimal variation in the deformation gradient from the current configura-
tion. If the deformation is homogeneous then Aαiβj is independent of X and the incremental
equilibrium equation can be written in the form

Aαiβj

∂2δχj

∂Xα∂Xβ

= 0, (17)

where δχ is the incremental displacement associated with δF. For incompressible materials
the equilibrium equation is

Aαiβj

∂2δχj

∂Xα∂Xβ

+ ∂δp

∂xi

= 0, (18)

where δp is a pressure increment. Incompressibility implies zero divergence of the displace-
ment field, that is

∇ · δχ = 0. (19)

We seek a solution for (18) in the form

δχ = m̂eikx·n̂, δp = qeikx·n̂ (20)

where k is a wave number and m̂ and n̂ are two unit vectors.
The incompressibility constraint (19) leads to the requirement

n̂ · m̂ = 0. (21)
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By application of the chain rule, the incremental equilibrium equation (18) can be written in
the form

A0piqj

∂2δχj

∂xp∂xq

+ ∂δp

∂xi

= 0, (22)

where

A0piqj = J−1FpαFqβ Aαiβj . (23)

Substitution of (20) into (22) results in the equation

Qm̂ + iqn̂ = 0, (24)

where

Qij ≡ A0piqj n̂pn̂q , (25)

is the acoustic tensor.
Finally, we note that the ellipticity condition implies that Qij m̂im̂j �= 0 for all vectors n̂

and m̂ such that n̂ ⊗ m̂ �= 0. However, since negative values of Qij m̂im̂j are not physical,
the strong ellipticity conditions can be written as

Qij m̂im̂j > 0. (26)

The unit vector m̂ is the normal to a surface, in the deformed configuration, which is re-
ferred to as a weak surface (e.g., Merodio and Ogden [26]). Once the critical deformation
corresponding to the onset of ellipticity loss is achieved, the deformation in the weak surface
occurs along the direction of the vector n̂.

3 Fiber Reinforced Composites

The strain energy-density function of a n-phase composite is

�(F̄,X) =
n∑

r=1

ϕ(r)(X)�(r)(F), (27)

where

ϕ(r)(X) =
{

1 if X ∈ B(r)

0 ,

0 otherwise,
(28)

and the volume fraction of the r-phase is

c(r) =
∫

B0

ϕ(r)(X) dV . (29)

Following the works of Hill [18] and Ogden [31], we apply homogeneous boundary
conditions x = F0X on the boundary of the composite ∂B0, where F0 is a constant matrix
with det F0 > 0. It can be shown that F̄ = F0 where

F̄ = 1

V

∫
B0

F(X) dV, (30)
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is the average deformation gradient. The average 1st Piola-Kirchhoff stress tensor is

P̄ = 1

V

∫
B0

P(X) dV . (31)

By application of the principle of minimum energy, the effective strain energy-density func-
tion is

�̃(F̄) = inf
F∈K(F̄)

{
1

V

∫
B0

�(F, X) dV

}
, (32)

where K(F) ≡ {F | F = ∂χ(X)

∂X , X ∈ B0; χ(X) = F̄X, X ∈ ∂B0} is the set of kinematically
admissible deformation gradients. The corresponding macroscopic constitutive relation is

P̄ = ∂�̃(F̄)

∂F̄
. (33)

Generally, application of the variational principle (32) to heterogeneous materials can
lead to bifurcations corresponding to dramatic changes in the nature of the solution to the
optimization problem. As discussed by Triantafyllidis and Maker [40] and Geymonat et al.
[16], these instabilities may occur at different wavelengths ranging from the size of a typi-
cal heterogeneity to that of the entire composite specimen. The calculation of microscopic
instabilities at wavelengths that are smaller than the typical size of the specimen is quite
complicated, and for periodic microstructures requires analyses of the Bloch wave type.
Analysis of macroscopic bifurcations at wave lengths that are comparable with the size of
the specimen are accomplished by treating the composite as a homogeneous medium. In
this limit usage of the primary solution for (32) is made in conjunction with the procedure
outlined in the previous section for determining loss of strong ellipticity. Geymonat et al.
[16] further showed that the domain characterizing the onset of macroscopic instabilities
is an upper bound for the one characterizing the onset of instabilities at a smaller wave-
length. In some cases, however, the macroscopic instabilities are the ones that occur first
(e.g., Nestorovic and Triantafyllidis [30]).

In this work the nonlinear-comparison (NLC) variational method is used to estimate the
effective properties of composites as defined in (32). The method is based on the derivation
of a lower bound for the effective strain energy-density function with the aid of an appro-
priate estimate for the effective strain energy-density function of a non-linear comparison
composite (deBotton and Shmuel [11]). The NLC variational estimate for �̃(F̄) states that

�̂(F̄) = �̂0(F̄) +
n∑

r=1

c(r)inf
F

{
�(r)(F) − �

(r)

0 (F)
}

, (34)

where �̂0 is an estimate for the effective SEDF of a comparison hyperelastic composite
whose phases behaviors are governed by the SEDFs �

(r)

0 , and their distributions are charac-
terized by the functions ϕ(r) given in (28). The term appearing in the second part of (34) is
denoted the corrector term, and we note that it depends only on the properties of the phases
of the two composites.

Fiber composites are heterogeneous materials that are commonly made out of stiffer
fibers that are embedded in a softer phase. Here we assume that the fibers are all aligned in
a particular direction L̂. If we further assume that their distribution in the transverse plane
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is random, the overall behavior of the composite is transversely isotropic. We examine two-
phase transversely isotopic fiber composites whose phases strain energy-density functions
are �(f ) and �(m) for the fiber and the matrix phases, respectively. Both �(f ) and �(m) are
incompressible, isotropic and depend only on I1. With the aid of the TIH model of deBot-
ton et al. [12] for a neo-Hookean fiber composite as the comparison composite, the NLC
estimate for the effective strain energy density function is described by the optimization
problem

�̂(T I)
(
λ̄2

p, λ̄2
n, γ̄

2
p , γ̄ 2

n

) = inf
ω

(
c(m)�(m)

(
Ĩ

(m)

1

(
F̄, L̂, ω

)) + c(f )�(f )
(
Ĩ

(f )

1

(
F̄, L̂, ω

)))
, (35)

where

Ĩ
(r)

1 (F̄, L̂, ω) = λ̄2
n + 2λ̄2

p + α(r)
(
γ̄ 2

n + γ̄ 2
p

)
, (36)

with

α(f ) = (
1 − c(m)ω

)2
, (37)

and

α(m) = (
1 + c(f )ω

)2 + c(f )ω2. (38)

The details of the derivation of expression (35) from the NLC variational statement in (34)
are given in deBotton and Shmuel [11].

We denote by ω̃ the value of ω that yields the solution for the Euler-Lagrange equation
associated with (35). Clearly, ω̃ is a function of the average deformation gradient, that is

ω̃ = ω̃(F̄). (39)

In some cases ω̃ can be determined analytically, otherwise it must be calculated numeri-
cally. Since the partial derivative of �̂(T I) with respect to ω identically vanishes at ω̃, the
expression for the macroscopic stress can be evaluated analytically without the need for
differentiating ω̃ with respect to F̄. Specifically, the macroscopic nominal stress is

P̂ =
∑

r=m,f

c(r) ∂�̂(T I)

∂Ĩ
(r)

1

∂Ĩ
(r)

1

∂F̄
+ pF̄−T , (40)

where

∂Ĩ
(r)

1

∂F
(F̄) = 2

(
α̃(r)F̄ + (1 − α̃(r))

(
1 − λ2

p

λ2
n

)
F̄L̂ ⊗ L̂

)
, (41)

and α̃(r) = α(r)(ω̃).
The corresponding estimate for the tensor of the effective instantaneous elastic moduli

can be written as

Â =
∑

r=m,f

(
∂2�̂(T I)

∂Ĩ
(r)

1 ∂Ĩ
(r)

1

S(r)(ω̃, F̄)S(r)(ω̃, F̄) + ∂�̂(T I)

∂Ĩ
(r)

1

G(r)(ω̃, F̄)

)
, (42)

where

S(r)(ω̃, F̄) = ∂Ĩ
(r)

1

∂F̄
(F̄) + ∂Ĩ

(r)

1

∂ω
(ω̃)

∂ω̃

∂F̄
, (43)
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and

G(r)(ω̃, F̄) = ∂2Ĩ
(r)

1

∂F∂F
(F̄) + 2

∂Ĩ
(r)

1

∂ω
(ω̃)

∂2ω̃

∂F∂F
+ Z(r) ∂ω̃

∂F
+

(
Z(r) ∂ω̃

∂F

)T

. (44)

The first derivatives of Ĩ
(r)

1 (F̄) with respect to F̄ are given in (41), and the first derivatives
with respect to ω are

∂Ĩ
(m)

1

∂ω
(ω̃) = 4c(f )

(
1 + ω̃ + c(f )ω̃

) (
γ̄ 2

n + γ̄ 2
p

)
, (45)

and

∂Ĩ
(f )

1

∂ω
(ω̃) = −4c(m)

(
1 − c(m)ω̃

) (
γ̄ 2

n + γ̄ 2
p

)
. (46)

The second derivative of Ĩ
(r)

1 (F̄) with respect to F̄ in (44) is

∂2Ĩ
(r)

1

∂F̄ij ∂F̄kl

(F̄) = 2

(
α̃(r)δikδjl +

(
1 − α̃(r)

)((
1 − λ̄2

p

λ̄2
n

)
δik + 3λ̄2

p

λ̄4
n

F̄ipF̄ksL̂sL̂p

)
L̂lL̂j

)
.

(47)

The terms Z(r) in (44) are

Z(m) = 4c(f )
(
1 + ω̃ + c(f )ω̃

)(
F̄ −

(
1 − λ̄2

p

λ̄2
n

)
F̄L̂ ⊗ L̂

)
(48)

and

Z(f ) = −4c(m)
(
1 − c(m)ω̃

)(
F̄ −

(
1 − λ̄2

p

λ̄2
n

)
F̄L̂ ⊗ L̂

)
. (49)

Note that the terms that do not include derivatives of ω̃(F̄) with respect to F̄ can be evaluated
a priori with substitution of ω̃ after the solution of the optimization problem is obtained
either analytically or numerically. Additionally,

∂ω̃

∂F̄
= ∂ω̃

∂λ2
n

∂λ̄2
n

∂F̄
+ ∂ω̃

∂λ2
p

∂λ̄2
p

∂F̄
+ ∂ω̃

∂γ 2
n

∂γ̄ 2
n

∂F̄
+ ∂ω̃

∂γ 2
p

∂γ̄ 2
p

∂F̄
, (50)

and

∂2ω̃

∂F̄∂F̄
= ∂2ω̃

∂λ2
n∂F̄

∂λ̄2
n

∂F̄
+ ∂ω̃

∂λ2
n

∂2λ̄2
n

∂F̄∂F̄
+ ∂2ω̃

∂λ2
p∂F̄

∂λ̄2
p

∂F̄
+ ∂ω̃

∂λ2
p

∂2λ̄2
p

∂F̄∂F̄

+ ∂2ω̃

∂γ 2
n ∂F̄

∂γ̄ 2
n

∂F̄
+ ∂ω̃

∂γ 2
n

∂2γ̄ 2
n

∂F̄∂F̄
+ ∂2ω̃

∂γ 2
p ∂F̄

∂γ̄ 2
p

∂F̄
+ ∂ω̃

∂γ 2
p

∂2γ̄ 2
p

∂F̄∂F̄
, (51)

where the explicit expressions for the derivatives of the invariants λ̄2
n, λ̄2

p , γ̄ 2
n , and γ̄ 2

p are
given in Appendix. We note that, in general, the derivatives of ω̃ with respect to λ̄2

n, λ̄2
p , γ̄ 2

n ,
and γ̄ 2

p must be determined numerically unless an analytical solution for the optimization
problem (35) can be derived. Finally, once the elastic moduli tensor (42) is determined, the
strong ellipticity condition (26) can be checked.
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When both phases of the composite are neo-Hookean, the optimization problem (35)
yields

ω̃(H) = μ(f ) − μ(m)

c(m)μ(f ) + (1 + c(f ))μ(m)
, (52)

and the effective strain energy density function takes the form introduced by deBotton et al.
[12],

�̂T IH = μ̄
(
λ̄2

n + 2λ̄2
p − 3

) + μ̃pγ̄ 2
p + μ̃nγ̄

2
n , (53)

where

μ̃p = μ̃n = μ̃ = μ(m) (1 + c(f ))μ(f ) + (1 − c(f ))μ(m)

(1 − c(f ))μ(f ) + (1 + c(f ))μ(m)
, (54)

is the expression for both the in-plane shear μ̃p (deBotton [7]), and the out-of-plane shear
μ̃n (deBotton and Hariton [8]), and

μ̄ = c(f )μ(f ) + c(m)μ(m), (55)

is the isochoric shear modulus (e.g., deBotton et al.. [12], He et al. [17]). More re-
cently Lopez-Pamies and Idiart [23] extended the work of deBotton [7] and demonstrated
that (53) is an exact expression for the effective strain energy-density function of neo-
Hookean sequentially-coated laminates. The tensor of elastic moduli associated with the
strain energy-density function (53) together with (54) is

Aijkl = μ̃δikδjl + (μ̄ − μ̃)

(
3λ̄2

p

λ̄4
n

F̄ipF̄ksL̂sL̂p +
(

1 − λ̄2
p

λ̄2
n

)
δik

)
L̂lL̂j . (56)

Applying the strong ellipticity condition (26) a simple expression for the critical compres-
sive stretch ratio in the fiber direction is obtained, namely

λ̄n =
(

1 − μ̃

μ̄

)1/3

. (57)

We note that Agoras et al. [2] derived expressions (56) and (57) from the SEDF �̂T IH of de-
Botton et al. [12]. These investigators also derived the corresponding expressions that result
from the LC variational method for composites with neo-Hookean phases. Under compres-
sion along the fibers both methods lead to expression (57), however for more general loading
conditions the expression resulting from the LC method is more complicated than (56) and
requires a solution of a quartic polynomial in parallel with (26). Agoras et al. [2] computed
the onset of ellipticity loss under general loading conditions and found that in some cases
the predictions of the LC variational estimate are in agreement with the predictions resulting
from the SEDF �̂T IH that corresponds to a realizable composite.

As was mentioned in the introduction, Agoras et al. [2] also determined estimates for the
onset of instabilities in fiber composites with Gent phases by application of the LC varia-
tional estimate. For this class of composites the resulting expressions are more involved and
require a solution of two nonlinear equations in conjunction with the strong ellipticity con-
dition (26). Contrarily, even with Gent phases the optimization problem stemming from the
NLC variational estimate of deBotton and Shmuel [11] can be solved analytically to end up
with an explicit estimate for the effective SEDF. In particular, the resulting Euler-Lagrange
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equations admit the form of a cubic polynomial in ω, from which explicit analytical expres-
sions for ω̃ and Aijkl are obtained. For later reference we note that

ω̃(G) = ω̃(G)
(
F̄, c(f ), k, μ(m), t, J (m)

m

)
, (58)

where

k = μ(f )/μ(m), (59)

is the ratio between the initial shear moduli of the fiber and the matrix, and

t = J (f )
m /J (m)

m , (60)

is the ratio between the locking parameters.
We emphasize that the analytical procedure described so far can be used to estimate the

macroscopic stable domains of hyperelastic fiber composites under general loading con-
ditions. However, in the sequel we restrict our attention to plane-strain loading condition
where the constrained direction of the deformation is normal to the direction of the fibers
(e.g., Qiu and Pence [37]). This allows to examine the onset of instabilities due to com-
pression along the fibers and to compare the analytical predictions with corresponding finite
element simulations.

For convenience, we distinguish between the principal coordinate system of the right
Cauchy-Green deformation tensor and the material coordinate system. Without loss of gen-
erality we define the material coordinate system such that in the reference state the direction
of the fiber L̂ is aligned with the X3-axis (see Fig. 1). Specifically, we set F11 = 1. Note, that
with this choice the X1-axis is common for both the principal and the material systems. Ac-
cordingly, in the principal coordinate system the plane-strain average deformation gradient
is

F̄′ =
⎛
⎝1 0 0

0 λ̄−1 0
0 0 λ̄

⎞
⎠ . (61)

This is related to the average deformation gradient in the material coordinate system via the
relation

F̄ = RT F̄′R, (62)

where

R =
⎛
⎝1 0 0

0 cos sin

0 − sin cos

⎞
⎠ , (63)

is a rotation tensor. Here  is the referential angle between the direction of the principal
stretch and the fiber direction.

In accordance with the plane-strain assumption, we also restrict the solution of (20)
with a choice of infinitesimal planar deformation along the vectors n̂ = (0, cosφ, sinφ)

and m̂ = (0, sinφ, − cosφ). While this choice of deformation is consistent with the plane-
strain assumption, on physical grounds a choice of non-planar infinitesimal deformation is
admissible. For instance, the solution ensued from this choice coincides with the solution
obtained by Agoras et al. [2] with the choice n̂ = (0, 1, 0) and m̂ = (sinφ, 0, − cosφ).
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Fig. 2 The hexagonal unit cell
modeled in the finite element
code COMSOL

4 Finite Element Simulation

We construct 3-D finite element models of fiber composites to estimate their macroscopic
behaviors and stability regimes. We also construct 2-D laminated models as basis for com-
parison since these models are frequently being used for estimation of the onset of failures
in fiber composites. We note that the analytical treatment considered in the previous sec-
tion corresponded to fiber composites with transversely isotropic symmetry. Khisaeva and
Ostoja-Starzewski [21] and Moraleda et al. [29] considered periodic FE models with a few
tenth of fibers in the unit cell in order to approximate the macroscopically isotropic response
of TI composites in the transverse plane. In this work we consider the less computation-
ally extensive model of periodic composites with hexagonal unit cell. These materials are
orthotropic materials, however, in the limit of infinitesimal deformations they behave like
transversely isotropic materials. This property makes them fair candidates for comparison
with our analytical results (e.g., Aravas et al. [3], Michel et al. [28], Shmuel and deBotton
[39]). This is particularly relevant in the context of instabilities due to compression along the
fibers since the critical stretch ratios are usually larger than 0.95. We further note that in the
loading modes that we consider in this work (compression and out-of-plane shear along the
fibers) the precise distribution of the fibers in the transverse plane is not a crucial parameter.

A representative 3-D unit cell of a periodic composite with hexagonal arrangement of the
fibers is shown in Fig. 2. The fibers are aligned along the X3 axis and the ratio between the
long to the short faces in the transverse plane is

√
3. The unit cell occupies the domain

−
√

3a

2
≤ X1 ≤

√
3a

2
, −a

2
≤ X2 ≤ a

2
, −h

2
≤ X3 ≤ h

2
, (64)

in the reference configuration. The response of the composite is obtained by applying peri-
odic displacement boundary conditions and determining the average stress field in the unit
cell from the resulting traction on the boundaries. The boundary conditions are extracted
from the average deformation gradient tensor in (62) and imposed on the six faces of the
unit cell as follows:

(1) The top (X3 = h
2 ) and bottom (X3 = − h

2 ) faces are related via

⎧⎪⎨
⎪⎩

uB
1 = uT

1 + F̄13h,

uB
2 = uT

2 + F̄23h,

uB
3 = uT

3 + (F̄33 − 1)h.

(65)
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(2) The front (X2 = a
2 ) and rear (X2 = − a

2 ) faces are related via

⎧⎪⎨
⎪⎩

uF
1 = uRe

1 + F̄12a,

uF
2 = uRe

2 + (F̄22 − 1)a,

uF
3 = uRe

3 + F̄32a.

(66)

(3) The right (X1 = a
√

3
2 ) and left (X1 = − a

√
3

2 ) faces are related via

⎧⎪⎨
⎪⎩

uL
1 = uR

1 + (F̄11 − 1)a
√

3,

uL
2 = uR

2 + F̄21a
√

3,

uL
3 = uR

3 + F̄31a
√

3.

(67)

The analysis of loss of ellipticity requires determination of the instantaneous tensor of
elastic moduli. To this end we perform a set of additional incremental deformations from the
deformed configuration. These incremental deformations lead to a macroscopic response of
the model and result in an incremental variation of the average nominal stress. By making
use of relation (16) in the principal coordinate system we obtain the expression

δP̄′ = Ā′
δF̄′, (68)

from which the instantaneous macroscopic elastic moduli are estimated. When the defor-
mation gradient is restricted to the planar form of (62), there is no deformation in the X1

direction and the following three plane tests can be performed, namely

F̄
′(1) =

⎛
⎝1 0 0

0 λ̄−1 δγ̄

0 0 λ̄

⎞
⎠ , F̄

′(2) =
⎛
⎝1 0 0

0 λ̄−1 0
0 δγ̄ λ̄

⎞
⎠ , (69)

and the biaxial test

F̄
′(3) =

⎛
⎝1 0 0

0 (λ̄ + δλ̄)−1 0
0 0 λ̄ + δλ̄

⎞
⎠ , (70)

where δγ̄ and δλ̄ are small increments. The deformation gradient and the nominal stress
tensor increments in the principal coordinate system are

δF̄′(i) = F̄′(i) − F̄′ and δP̄′(i) = P̄′(i) − P̄′, (71)

respectively.
We note that it is impossible to fully characterize the elastic properties of transversely

isotropic materials on the basis of plane tests alone (e.g., Ogden [33]). This means that we
cannot determine some of the terms of the tensor of macroscopic elastic moduli. Nonethe-
less, the condition for the loss of ellipticity can be extracted from appropriate combinations
of the terms of the elastic tensor obtained from the planar tests. Specifically, the strong ellip-
ticity condition (26), rewritten in the principal coordinate system of the left Cauchy-Green
strain tensor, together with the incompressibility constraint (21) is

(
(Ā′

0 3333 − Ā′
0 3322) + (Ā′

0 2222 − Ā′
0 3322) − 2Ā′

0 2332

)
n2

3n
2
2 + Ā′

0 3232n
4
3

+ Ā′
0 2323n

4
2 + 2

(
(Ā′

0 2232 − Ā′
0 3332)n

3
3n2 + (Ā′

0 3323 − Ā′
0 2223)n

3
2n3

)
> 0. (72)
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Though the individual terms Ā′
0 3333, Ā′

0 3322 and Ā′
0 2222 cannot be determined, the combina-

tions (Ā′
0 3333 − Ā′

0 3322) and (Ā′
0 2222 − Ā′

0 3322) can be extracted from the biaxial plane test
(70) by making use of (68), (23) and the incremental incompressibility condition

δF : F−T = 0. (73)

Thus,

δF̄ ′
22 = −δF̄ ′

33

F̄ ′
22

F̄ ′
33

= −δF̄ ′
33

F̄
′2
33

. (74)

Applying the biaxial test deformation F̄
′(3), and using relation (23) together with (74), we

end up with

Ā′
0 3333 − Ā′

0 3322 = F̄ ′
33F̄

′
33 Ā′

3333 − F̄ ′
33F̄

′
22 Ā′

3322

= F̄ ′
33F̄

′
33

(
Ā′

3333 − Ā′
3322

F̄ ′
22

F̄ ′
33

)
= F̄ ′

33F̄
′
33

δP̄
′(3)

33

δF̄
′(3)

33

, (75)

and

Ā′
0 2222 − Ā′

0 3322 = F̄ ′
22F̄

′
22 Ā′

2222 − F̄ ′
33F̄

′
22 Ā′

3322

= F̄ ′
22F̄

′
22

(
Ā′

2222 − Ā′
3322

F̄ ′
33

F̄ ′
22

)
= F̄ ′

22F̄
′
22

δP̄
′(3)

22

δF̄
′(3)

22

. (76)

The rest of the terms, namely, Ā′
0 3323, Ā′

0 2223, Ā′
0 2232, Ā′

0 3332, Ā′
0 3232 and Ā′

0 2323 are obtained
directly from the shear tests (69) by using (68) and (23).

The simulations were carried out by application of the commercial FE code COMSOL.
The deformation is defined in the principal coordinate system in terms of F̄′, and we make
use of (62) to impose the boundary conditions (65)–(67) on the unit cell in the material
coordinate system where the FE simulation is executed. Next, the resulting output, in terms
of the mean nominal stress tensor, is transformed back to the principal coordinate system
via the relation

P̄′ = RP̄RT . (77)

An identical procedure was used to simulate the 2-D models for the laminated composites.
Compressible SEDFs were defined directly in COMSOL code. The neo-Hookean strain

energy-density functions of the phases are

�
(r)
H = μ(r)

2
(J1 − 3) + κ(r) (J − 1)2 , (78)

where J1 = J−2/3I1 and κ is a bulk modulus. The Gent strain energy-density functions are

�
(r)
G = −μ(r)

2
J (r)

m ln

(
1 − I1 − 3

J
(r)
m

)
− μ(r) lnJ (r) +

(
κ(r) − 2μ(r)/3

2
− μ(r)

J
(r)
m

)(
J (r) − 1

)2
.

(79)
Incompressibility was approximated by choosing bulk modulus κ(r) in each phase that is
two orders of magnitude larger than the corresponding shear modulus μ(r). A component
of the average nominal stress on a given face of the unit cell is calculated by summing



Instabilities of Hyperelastic Fiber Composites: Micromechanical

Fig. 3 The dependence of the
critical stretch ratio on the fiber
volume fraction. The solid curves
correspond to fiber composites
and the dashed curves to
laminated composites. The
results of the numerical
simulations are marked by
triangles for k = 100 and squares
for k = 10

the corresponding components of the internal forces acting on the nodes of that face and
dividing the resultant force by the area of the face in the undeformed configuration.

5 Applications

We make use of the results of the previous sections to determine numerical and analytical
estimates for the loss of stability of fiber composites with neo-Hookean and Gent phases.
First, we examine the case when both phases are neo-Hookean. When the composite is com-
pressed along the fibers (i.e.,  = 0 in (63)) the analytical expression for the critical stretch
ratio is given in (57). The corresponding predictions obtained for composites with two dif-
ferent contrasts between the shear moduli of the phases are shown in Fig. 3 as functions of
the fiber volume fraction. The solid curves correspond to k = 100 and 10.

The corresponding expression for laminated composites that was obtained by Triantafyl-
lidis and Maker [40] is

λ̄c =
(

1 − μ̂

μ̄

)1/4

, (80)

where

μ̂ =
(

c(m)

μ(m)
+ c(f )

μ(f )

)−1

, (81)

and in this case μ(f ) and μ(m) are shear moduli of the stiffer and the softer layers, re-
spectively. For comparison, the predictions of this solution are presented in Fig. 3 by the
dashed curves for k = 100 and 10. The corresponding results of the numerical simulations
are marked by triangles for k = 100 and squares for k = 10. In all cases the numerical re-
sults are in excellent agreement with the analytical ones for both the laminated and the fiber
composites.

We note that under these loading conditions φ = π/2 (i.e., m̂ = L̂), meaning that at the
onset of the instability the weak surface is perpendicular to the fibers and the deformation
occurs along this surface. As was mentioned in Agoras et al. [2], in agreement with ex-
perimental findings this instability is associated with vanishing shear response in the plane
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Fig. 4 The dependence of the
critical stretch ratio on the
loading direction. The solid,
dashed and short-dash curves
correspond to composites with
fiber to matrix shear moduli ratio
k = 50, 30 and 10, respectively.
The simulation results are
marked by squares, triangles and
circles for k = 50, 30 and 10,
respectively. The thin continuous
curve shows the maximal loading
angle m at which instability
may occur. For all curves
c(f ) = 0.5

transverse to the fibers. This observation is also in agreement with the earlier findings of Qiu
and Pence [37] and Merodio and Ogden [26].

In comparison with composites with intermediate volume fraction of fibers, the onset of
ellipticity loss occurs much later in composites with low and high fiber volume fractions.
As expected, the composites become more sensitive to compression as the ratio between the
shear moduli increases. A comparison between the results for the laminated and the fiber
composites reveals that the stable domain for the fiber composites is larger than the one for
the laminated composite, though the trends of the curves are similar. In contrast with the
results for the laminated composites, the results for the fiber composite are not symmetric
with respect to c(f ) = 0.5. Thus, at low fiber volume fraction, the composite is more sensitive
to compression than at high fiber volume fraction.

A few representative results for the critical stretch ratio under non-aligned compression
are shown in Fig. 4. The corresponding expression for λ̄c was determined by Agoras et al.
[2] for the TIH model introduced in [12] in terms of the quartic polynomial equation

λ̄4
c cos2  − λ̄2

c

(
1 − μ̃

μ̄

)2/3

+ sin2  = 0. (82)

The solid, dashed and short-dashed curves correspond to fiber to matrix shear moduli ratio
k = 50, 30 and 10, respectively. In all cases the volume fraction of the fiber is c(f ) = 0.5.
The results of the corresponding numerical simulations are marked by squares, triangles
and circles for k = 50, 30 and 10, respectively. The curves are symmetric with respect to the
loading direction  = 0, that is λ̄c() = λ̄c(−), and are also π -periodic, that is, λ̄c() =
λ̄c( + πj), j = 1,2,3, . . . . Additionally we note that λ̄c() = 1/λ̄c( + π/2).

Comparing the analytical solution to the numerical simulations, we observe a better
agreement for higher shear moduli ratios k. However, for all cases the characteristic be-
havior is similar and the analytical solution is the more conservative estimation for the onset
of failure. The reason for the difference is related to the fact that the analytical solution is
obtained for incompressible composites while in the FE simulations the phases are slightly
compressible. We emphasize that a decrease in the compressibility of the phases, in terms
of an increase in the bulk to shear moduli ratio, resulted in an earlier onset of ellipticity loss
and hence to a better agreement between the two estimates. This influence of incompress-
ibility on the onset of failure is in agreement with the observation of Triantafyllidis et al.
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Fig. 5 The dependence of the
maximal loading direction angle
on the ratio between the shear
moduli. The solid, dashed and
short-dash curves correspond to
volume fractions of the fiber
c(f ) = 0.1, 0.25 and 0.5,
respectively

[41]. Additionally, we recall that the microstructure used in the numerical simulation, while
providing a fair estimate for composites with randomly distributed fibers, is not an actual TI
material.

In consistent with expectations, the value of λ̄c approaches unity asymptotically as
k → ∞. Note that as the angle between the loading and the fiber directions increases there
exist an angle (m) beyond which no macroscopic instability occurs. The critical stretch
ratio corresponding to this angle is

λ̄m = 1√
2 cosm

(
1 − μ̃

μ̄

)1/3

, (83)

and it is represented in Fig. 4 by the thin continuous curve. Obviously, m depends on the
fiber volume fraction and shear moduli ratio, and from (82) it is easy to see that

m = 1

2
arcsin

(
1 − μ̃

μ̄

)2/3

. (84)

The dependence of the maximal angle m on the ratio between the shear moduli is shown
in Fig. 5 for fiber volume fractions c(f ) = 0.5, 0.25 and 0.1 by solid, dashed, and short-
dashed curves, respectively. The domain above the curve is the one for which no instability
was detected, while in the region beneath the curve critical stretch ratios corresponding to
ellipticity loss were found. Obviously, when the shear moduli contrast k becomes large the
load direction m tends to π/4, corresponding to a switch of the load along the fibers from
compression to tension. Combining (83) and (84) we end up with the expression

m = arctan λ̄2
m. (85)

The physical reasoning for this value becomes clear when we follow the rotation of the fibers
under non-aligned load (e.g., deBotton and Shmuel [10]). Thus, in the deformed configura-
tion the angle between the fiber and the loading directions is

θ = arctan
(
λ̄−2 tan

)
. (86)

Equations (85) and (86) lead to θm = π/4. At this angle the loading on the fibers switches
from compression to tension. Consequently, beyond this point no instability is detected.
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Fig. 6 The critical stretch ratio
as a function of the contrast
between the phases shear moduli
for different loading directions.
The continuous, dash and
short-dashed curves correspond
to  = 0, π/16 and π/8,
respectively. The results of the
numerical simulation are marked
by squares, triangles and circles
for  = 0, π/16 and π/8,
respectively

Thus, we find that the maximal loading angle m corresponds to the state at which in the
current configuration θ(λ̄c) = π/4.

The dependence of the critical stretch on the contrast between the fiber to the matrix shear
moduli is presented in Fig. 6 for different loading directions. The solid, dashed and short-
dashed curves correspond to the analytical solution for  = 0, π/16 and π/8, respectively.
The numerical simulation results are presented by squares, triangles and circles for  = 0,
π/16 and π/8, respectively.

The numerical simulation results are in good agreement with the analytical solution for
low values of the loading angles. However, for relatively high values of this angle the defor-
mation needed for the onset of ellipticity loss increases and hence the effect of the phases
compressibility becomes significant. This, in turn, results in an increase in the difference be-
tween the analytical and the numerical predictions. This is on top of the difference stemming
from the different microstructures associated with the two estimations.

Next, we examine the responses of composites whose phases behaviors are described by
the Gent model (8). As was mentioned before, the variational estimate applied to this model
results in a close-form solution of (39) in terms of a cubic polynomial. With this solution, the
tensor of elastic moduli Â given by (42) is evaluated at each step of the loading path which
is described by the loading parameters λ̄ and . When the left-hand side of (26) becomes
non-positive, instability may occur.

Remarkably, we find that for a wide range of materials and loading parameters (λ̄, , k,
μ(m), c(f ), t , J (m)

m ) the value of ω̃(G), the solution of the optimization problem (35), is very
close to ω̃(H) which is the corresponding solution for the neo-Hookean composite given
in (52). Upon substitution of this expression in (35) we end up with the following upper
estimate (UE) for �̂(T I), namely,

�̂(UE) = −1

2

∑
r=m,f

c(r)μ(r)J (r)
m ln

(
1 − Ĩ

(r)

1 (ω̃(H)) − 3

J
(r)
m

)
. (87)

Moreover, we find that for a large range of materials and loading parameters the derivatives
of ω̃(G) with respect to F̄ are negligible and hence not only the stresses can be analytically
derived from (87), but also the tensor of elastic moduli can be easily derived. Thus, we have
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Fig. 7 The dependence of ω̃(G)

and (ω̃(G))′ on the stretch ratio λ̄

for the Gent composite with
 = 0, c(f ) = 0.5, k = 100 and
t = 1. The continuous curves
correspond to ω̃(G)(λ̄) for
Jm = 0.1, 1, 10, 100 from right
to left, while the dashed curves to

(ω̃(G))′(λ̄). The thin short-dash
line corresponds to ω̃(H) for the
neo-Hookean composite. The
curve crossings are marked by
squares. The triangle indicates
the critical stretch ratio for these
composites

that

Â
(UE) =

∑
r=m,f

(
∂2�̂(UE)

∂Ĩ
(r)

1 ∂Ĩ
(r)

1

∂Ĩ
(r)

1

∂F̄
(F̄)

∂Ĩ
(r)

1

∂F̄
(F̄) + ∂�̂(UE)

∂Ĩ
(r)

1

∂2Ĩ
(r)

1

∂F̄∂F̄
(F̄)

)
. (88)

Application of the strong ellipticity condition (26) and (23) with (88) results in closed-
form estimates for the onset of macroscopic instabilities in Gent composites. In particular,
when the fiber and the matrix lock-up stretches are identical (i.e., t = 1), for the case of
compression along the fibers the critical stretch ratio can be estimated from the solution of
the polynomial equation

((
λ̄3

c − 1
)(

c(f )μ(f )α(m) + c(m)μ(m)α(f )
) + μ̄α(f )α(m)

)(
1 − 2λ̄c + λ̄2

c

)
+ (

μ̄
(
λ̄3

c − 1
) + μ̃

)(
λ̄4

c + 2λ̄c − λ̄2
c(Jm + 3)

) = 0. (89)

We note that as Jm → ∞ this equation is reduced to the corresponding expression for the
neo-Hookean composite as given in (57).

To estimate the applicability range of (88), the domain in the seven dimensional space
(λ̄, , k, μ(m), c(f ), t, J (m)

m ) where the derivatives of ω̃(G) with respect to F̄ are small and
ω̃(G) can be approximated by ω̃(H) needs to be identified. In a way of an example, we exam-
ine the dependence of ω̃(G) and ∂ω̃(G)

∂λ̄
on λ̄. This is demonstrated in Fig. 7 for composites with

fiber volume fraction c(f ) = 0.5, shear moduli ratio k = 100, μ(m) = 106 Pa, t = 1 and load-
ing direction  = 0. The continuous curves correspond to ω̃(λ̄) for Jm = 0.1, 1, 10, 100
and the dashed curves to the corresponding derivatives. The thin short-dash line corresponds
to ω̃(H) (which is independent of λ̄). We observe two regions of the functions ω̃(G) and ∂ω̃(G)

∂λ̄
,

a “fast” region and a “slow” one. The value of λ̄s that separates these two regions is given
by the solution of the equation

ω̃(G)(λ̄s) − ∂ω̃(G)

∂λ̄
(λ̄s) = 0. (90)

In Fig. 7, the curve crossings that represent the solution of (90) are marked by squares.
We observe that as long as λ̄ > λ̄s , that is in the “slow” region of the two functions, ω̃(G)
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Fig. 8 The dependence of the
critical stretch ratio λ̄c on the
locking parameter Jm. The solid
line corresponds to shear moduli
ratio k = 100, and the dashed
curve to k = 50. The dotted curve
represents the lock-up stretch
ratio. The numerical simulation
results are marked by squares
and circles for k = 100 and 50,
respectively

is almost identical to ω̃(H). In the scale of this plot the critical stretch ratios for the four
composites examined are very close and hence are marked by a single triangle mark. Since
λ̄c > λ̄s , in these composites the ellipticity loss occurs before the λ̄s is achieved. Even in
the case when λ̄c < λ̄s the upper estimate is still usable, but the difference in the predicted
solution becomes large.

The results obtained by application of the upper estimate (89) for the critical stretch ratio
are shown in Fig. 8 for the case of aligned compression ( = 0). The solid curve corresponds
to shear moduli ratio k = 100, and the dashed curve to k = 50. We emphasize that for
the results shown in Fig. 8, the curves determined via the full solution of the variational
estimate (that is with ω̃(G) and its derivatives) lay on top of those determined via the upper
estimate (89). The dotted curve describes the solution of the lock-up equation due to loading
in the form of (61)

λ̄lock = 1

2

(√
Jm + 4 − √

Jm

)
. (91)

The thin dashed lines are the corresponding estimates for the neo-Hookean composites.
The results of the numerical simulations are also shown in Fig. 8. The square and circle
marks correspond to simulations with k = 100 and 50, respectively. The numerical results
are in good agreement with the analytical ones even in the region where the locking effect
becomes significant. In a manner similar to one mentioned in connection with the neo-
Hookean composites, the differences between the analytical and the numerical results are
due to the effect of compressibility in the simulations and the different microstructures.

We note that in the region where the locking effect becomes significant, both phases
markedly stiffens and hence the contrast between their stiffnesses decreases. Consequently,
for small enough locking parameter of the Gent phases no instabilities are detected. Specifi-
cally, as can be deduced for the two families of Gent composites shown in Fig. 8, composites
with k = 100 and Jm < 0.018 are stable, as well as composites with k = 50 and Jm < 0.067.
We denote the minimal value of the locking parameter beneath which the composite is stable
J (c)

m . This value depends on the phases properties but particularly on k. The critical stretch
ratios corresponding to J (c)

m are represented in Fig. 8 by a thin continuous curve.
In case when the matrix is characterized by a locking parameter smaller than that of the

fiber phase (e.g., t < 1), the matrix stiffens faster than the fiber and the contrast between the
phases decreases with the deformation. In this case the composite becomes more stable in a
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Fig. 9 The dependence of the
critical stretch ratio λ̄c on the
locking parameter Jm for
k = 100. The solid, dashed and
short-dashed curves correspond
to  = 0, π/16 and π/8,
respectively. The results of the
numerical simulations are
marked by squares, triangles and
circles for  = 0, π/16 and π/8,
respectively. The corresponding
solutions for the neo-Hookean
composites are marked by
dashed thin lines. The locking
curve is the dotted one. The thin
continuous curve represents the
maximal loading angle for which
instabilities were detected

manner similar to the case t = 1. The situation changes when the fiber phase stiffens faster
than the matrix phase (e.g., t > 1). In this case, the contrast between the phases responses
increases with the deformation, and the composite becomes more sensitive to compression.
This finding is consistent with corresponding findings of Agoras et al. [2] that were deter-
mined via the LC variational method.

Finally, the influence of the loading direction is demonstrated for composites with c(f ) =
0.5 and k = 100 in Fig. 9. Shown is the dependence of the critical stretch ratio λ̄c on the
locking parameter Jm. The solid curve corresponds to aligned compression ( = 0), the
dashed and short-dashed curves represent non-aligned compression with  = π/16 and
π/8 respectively. The results of the numerical simulations are marked by squares, triangles
and circles for  = 0, π/16 and π/8, respectively. The corresponding solutions for the
neo-Hookean composites are marked by thin dashed curves. The dotted curve describes the
lock-up stretch ratios according to (91).

The difference between the numerical simulations and the analytical predictions is due to
the compressibility and microstructure differences. In a manner similar to the one observed
for the neo-Hookean composites, an increase of the loading angle requires a decrease of the
stretch ratio to achieve the onset of a failure. Additionally, for a given locking parameter Jm

there exists a loading angle (c) beyond which the composite becomes stable. The curve
corresponding to this loading angle, which terminates at J (c)

m when  = 0, is presented in
Fig. 9 by the thin continuous curve.

We conclude this section noting that in both cases of aligned loading (Fig. 8) and non-
aligned loading (Fig. 9), the onset of failures in the Gent composites can be conservatively
estimated by the corresponding predictions for the neo-Hookean composites even for rela-
tively small values of Jm. The proximity between the estimates for the critical stretches is
in agreement with corresponding results computed by Bertoldi and Boyce [4] and Agoras
et al. [2]. Bertoldi and Boyce [4] noted that for Jm > 1 the numerical estimates for both
microscopic and macroscopic critical stretch ratios at the onset of ellipticity loss in porous
composites with Gent and neo-Hookean matrices are almost identical when their microstruc-
tures are identical. Based on estimates computed for specific composites with neo-Hookean
and Gent phases, Agoras et al. [2] infer that macroscopic instabilities may develop in non-
linear incompressible fiber composites whenever λ̄n reaches the critical value predicted by
(57) that was derived from the TIH model of deBotton et al. [12]. Specifically, it was pro-
posed that the estimates for the effective isochoric and out-of-plane shear moduli of the
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non-linear composite in the reference configuration will be substituted for μ̄ and μ̃ in (57),
respectively.

A fundamental reasoning for the proximity of the various estimates computed for com-
posites with identical microstructures and different behaviors of the phases was given in
deBotton and Shmuel [11]. These investigators noted that the structure of the variational
estimate (34) hints at the fact that bifurcations exhibited by the composite should be related
to corresponding bifurcations of the associated comparison composite. This is because the
corrector term depends only on the properties of the phases, and hence bifurcations cannot
be associated with this term. Accordingly, whenever a secondary solution that is associated
with a lower energy state branches out from the primary solution, corresponding secondary
solution will branch out from the primary solution for the comparison composite as well.
While the precise configurations at which the bifurcations occur in the composite and the
comparison composite do not have to be identical, if the corrector terms are small the two
states should be quite close. We further note that the proximity of the critical stretch ratios
at the onset of instability in the two composites is not limited to the vicinity of the reference
configuration (as concluded by Agoras et al. [2]). In fact, with an appropriate optimization
over the properties of the comparison composite, estimates for instabilities that occur at
large stretch ratios can be deduced from instability analysis of the comparison composite.
Moreover, while estimate (35) that was used throughout this work was obtained by making
use of a comparison composite with neo-Hookean phases, the general variational estimate
(34) allows to make use of comparison composites with other types of phases. Usage of
available estimates for composites with two-terms Yeoh [42] model (e.g., Shmuel and de-
Botton [39]) or anisotropic phases (e.g., deBotton and Shmuel [10], Lopez-Pamies and Idiart
[23]) will improve the resulting estimates for critical stretch ratios away from the reference
configuration.

We finally note that the proximity of the critical loading states is anticipated for the
critical stretch ratios since in (34) the macroscopic deformation gradient F̄ appears in the
expressions for the energy-density functions of both the composite �̂ and the comparison
composite �̂0. The same cannot be inferred for the corresponding critical stresses at the
onset of ellipticity loss in the two composites since the slopes of �̂ and �̂0 may differ quite
a bit. This observation explains why Agoras et al. [2] found that while the estimates they
computed for the critical stretch ratios of the neo-Hookean and the Gent composites are in
good agreement, the same cannot be said for the corresponding estimates computed for the
critical stresses.

6 Conclusions

This study examined both analytically and numerically the instability phenomenon in hy-
perelastic fiber composites. The study focused on predictions of the onset of failure due to
loss of ellipticity of the governing equations describing the homogenized behavior of the
composites. The analytical model involved a TI composite in which aligned stiffer fibers in
a softer matrix are randomly distributed in the transverse plane. The nonlinear-comparison
variational method of deBotton and Shmuel [11] was utilized to estimate the composites ef-
fective response. In particular, we examined composites with neo-Hookean and Gent phases.
Additionally, a new upper estimate for Gent composites was introduced. In parallel, we de-
veloped a 3-D FE model and extended techniques for numerically determining the onset of
ellipticity loss.

The analytical models resulted in closed-form estimates for the critical stretch ratio cor-
responding to the onset of failure. The critical stretch ratio depends mainly on the volume
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fraction of the fiber and the contrast between the moduli of the fiber and the matrix. The
higher the contrast, the less compressive strain is needed for the appearance of instabilities.
The influence of the fiber volume fraction is weak for the common range of fiber volume
fraction 0.2 < c(f ) < 0.5 but becomes significant in the limits of low and high volume frac-
tions.

In accordance with the analytical findings, the numerical simulations yielded different
results for laminate and fiber composites. It was shown that the layered composites are more
sensitive to compression than the fiber composites. Additionally, in contrast to the layered
materials, the fiber composites are more stable in the range of high fiber volume fractions
than at low one. For non-aligned compression we find that above a certain loading angle no
instability occurs. We demonstrate that this loading angle corresponds to the state when the
angle between the fiber and the load in the deformed configuration is π/4. At this angle the
loading on the fibers switches from compression to tension.

In the limit of small locking parameter the Gent composites become stable. This is due to
the stiffening of both the fiber and the matrix phases resulting in a decrease of the contrast
between the instantaneous moduli. Consequently, the critical stretch ratio decreases towards
the stretch ratio at which the material locks up and practically no instability occurs. At larger
values of the locking parameter we find that the onset of failure of the Gent composites can
be quite satisfactory predicted by the corresponding estimate for neo-Hookean composites.
This finding, which is in agreement with corresponding results of Bertoldi and Boyce [4] and
Agoras et al. [2], is explained in the light of the nonlinear comparison variational estimate
of deBotton and Shmuel [11].
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Appendix: Kinematic Tensors of the Physically Motivated TI Invariants

The explicit expressions for the kinematic tensors of the physically motivated invariants are

∂λ2
n

∂F
= 2FL̂ ⊗ L̂, (92)

∂λ2
p

∂F
= λ2

pF−T − λ2
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λ2
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FL̂ ⊗ L̂, (93)
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