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The development of instabilities in soft heterogeneous
dielectric elastomers is investigated. Motivated by
experiments and possible applications, we use in our
analysis the physically relevant referential electric
field instead of electric displacement. In terms of this
variable, a closed form solution is derived for the class
of layered neo-Hookean dielectrics. A criterion for
the onset of electromechanical multiscale instabilities
for the layered composites with anisotropic phases is
formulated. A general condition for the onset of the
macroscopic instability in soft multiphase dielectrics
is introduced. In the example of the layered dielectrics,
the essential influence of the microstructure on the
onset of instabilities is revealed. We found that:
(i) macroscopic instabilities dominate at moderate
volume fractions of the stiffer phase, (ii) interface
instabilities appear at small volume fractions of the
stiffer phase and (iii) instabilities of a finite scale,
comparable to the microstructure size, occur at large
volume fractions of the stiffer phase. The latest new
type of instabilities does not appear in the purely
mechanical case and dominates in the region of large
volume fractions of the stiff phase.

1. Introduction
Dielectric elastomers (DEs) respond to external electric
stimuli by changing their size and shape. These soft
dielectrics can be used to convert electrical energy
into mechanical work. As promising actuators, DEs
offer the benefits of light weight, fast response and
simple principles of work. The field of DEs has been

2013 The Author(s) Published by the Royal Society. All rights reserved.
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intensively studied experimentally and theoretically in the last decade, and, consequently,
nowadays these actuators are feasible [1–12]. In spite of the significant progress, these materials
are limited by the extremely large electric fields that they require for meaningful actuation.
The reason for this is the poor electromechanical coupling in typical polymers which have a
limited ratio of dielectric to elastic modulus. An approach to challenge the issue is to consider
heterogeneous DEs by combining an elastomer with a high dielectric or even conductive material
[13–17]. This approach has been shown to be promising in experiments [8,18]. Moreover,
theoretical estimations [19–21] show that the experimental results are only a beginning, and
proper optimization of the microstructure can lead to orders of magnitude improvement in
electromechanical coupling.

For example, a heterogeneous DE characterized by (i) soft mode of deformation and
(ii) amplification of the local electric field by active inclusions was recently proposed by
Rudykh et al. [21]. In these heterogeneous DEs, the material deforms in the soft mode of
deformation owing to an appropriately applied external electric field. The perspectives of these
heterogeneous DEs depend on the advances in the multi-material three-dimensional printing
and other techniques, which already allow manufacturing of layered materials with varying
dielectric properties and layer thicknesses comparable to visible light wavelength and even
subwavelength size [22].

An intriguing possibility that has emerged in recent years is the exploitation of instabilities
associated with finite deformation for enhancing the actuation. Specifically, Mockensturm &
Goulbourne [23] and Rudykh et al. [24] showed that the aneurism instabilities in balloons can
lead to dramatically enhanced electromechanical coupling. Moreover, the instability-induced
microstructure transformations in layered media [25] can be used for designing materials with
switchable properties, e.g. wave propagation can be manipulated [26]. A combination of this idea
with electromechanical instabilities opens a new avenue for designing switchable phononic and
photonic crystals controllable by electric field. These ideas motivate this work.

While purely mechanical instabilities have been studied intensively for decades [25,27–32],
relatively less is known about coupled instabilities. Much of the existing work on coupled
instabilities is motivated by failure. Examples include the study of pull-in instabilities
[33,34], electrical breakdown [8,35] and failure mechanisms at high electric fields [36] in
homogeneous media as well as electrical breakdown of DE with random distribution of the
inclusions [37,38].

Dorfmann & Ogden [39] wrote the incremental equations of electro-elasto-statics about a
finite deformation, and used it to study the stability of homogeneous half-space. Rudykh &
deBotton [40] and Rudykh & Bertoldi [41] have studied macroscopic instabilities of general
anisotropic media. Recently, Bertoldi & Gei [42] investigated instabilities in soft-layered
dielectrics with isotropic phases in which the electric field is perpendicular to the layers
and an uniaxial prestretch is applied along the layers. They showed the presence of
various instabilities including microscopic (short wavelength) instability, macroscopic instability
(loss of ellipticity of the effective media) and the loss of positive definiteness of the
tangent operator.

In this work, we revisit the problem of coupled electromechanical instabilities in layered media
and study material instabilities. We formulate the problem in terms of electrostatic potential as the
primary field variable, as opposed to the electric displacement which is used in previous works
[40–42]. While the use of electric displacement leads to a simpler mathematical problem, it is not
natural from an experimental viewpoint. In experimental practice, it is significantly simpler to
prescribe the electrostatic potential on a surface than to prescribe the exact charge distribution.
Further, the study of electrical breakdown is direct because breakdown criteria are prescribed
in terms of the electric field. Furthermore, as we shall see, it is simpler to predict the onset of
instabilities in this setting. All of this makes it simpler to identify critical microstructures. The
second point of departure from previous work is that we formulate the equations for anisotropic
media. This is important as the effective microstructures resulting in large coupling [20,21] also
give rise to anisotropy at the macroscopic level. Finally, we consider a more general setting where
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Figure 1. The unstable domains of layered soft dielectric subjected to an electric excitation and prestretchλ. Different types of
instabilities and their domains are presented as functions of the volume fraction of the stiff phase c(f ) (a) and the direction of
anisotropyΘ (b). (Online version in colour.)

the electric field and mechanical loading are applied at an arbitrary angle to the layers. Again,
this is motivated by considerations of enhanced actuation [20,21].

Figure 1 summarizes the main result of the study. We find three modes of instability depending
on the geometry and applied loads: a macroscopic instability characterized by long wavelengths
(or loss of ellipticity of the homogenized response), a microscopic instability characterized by short
wavelengths, and an interface instability also characterized by short wavelengths that occur in
materials with dilute concentration of the stiffer phase. In the last instability, the perturbations are
limited to a narrow layer of the soft material, and thus share features with instabilities associated
with a thin stiff layer supported on an infinite compliant material.

Figure 1a is a ‘phase diagram’ of the stable and unstable regions in the space of applied
stretch along the layers and volume fraction. The electric field is held fixed at a moderate value
normal to the layers. The interface instability occurs (as expected) at dilute concentrations of
the stiff phase under compressive stretch, and is suppressed by a large electric field. Thus, this
instability is the remnant of the instability that occurs in the purely mechanical setting [29].
The macroscopic instability occurs at moderate volume fractions of the stiff phase and under
compressive or limited tensile stretch, and the unstable region increases with electric field.
This instability is again largely mechanical: the imposed compressive or limited tensile stretch
introduces a compressive stress as the material seeks to elongate owing to the applied electric
field. The microscopic instability occurs at large volume fractions of the stiff high dielectric phase
and is a result of electro-mechanical interaction. The high contrast in dielectric moduli implies
that the electric field is inversely proportional to the volume fraction of the compliant phase.
Thus, as the volume fraction of the stiff phase increases, the electric field and the electrostatically
induced stress increase in the compliant phase. This stress is relieved by the instability that allows
for the alternating compliant layers to locally expand while only bending the stiff layers. These
are consistent with the findings of Bertoldi & Gei [42].

Figure 1b shows how these results change as we change the angle between the layers and the
applied stretch. The electric field is still perpendicular to the applied stretch (and consequently
inclined to the layers). Specifically, we focus on the macroscopic instability, and thus focus on
a volume fraction of 0.2 for the stiff material. For small and intermediate electric fields (0–1.8),
macroscopic instabilities occur at small angles (at small stretch) as well as for large angles (at
high stretch), and there are no macroscopic instabilities at intermediate angles. This is because
at intermediate angles the layers can rotate to avoid instability. We recall that layer rotation is
also a mechanism for large actuation [20,21]. This region of stability closes at sufficiently high
electric fields.
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2. Theoretical background

(a) Formulation
The Cartesian position vector of a material point in a reference configuration of a body is X and its
position vector in the deformed configuration is x. The deformation of the body is characterized
by the mapping x = χ(X). The deformation gradient is F = ∂χ (X)/∂X. The ratio between the
volumes in the deformed and undeformed states is J ≡ det F.

We assume that the deformation is quasi-static, no magnetic field is present, and no charge is
present in the dielectric. Consequently, Maxwell equations reduce to

div D = 0 and curl E = 0, (2.1)

where D is the electric displacement and E is the electric field. We distinguish between the
differential operators div(•), curl(•) and grad(•) in the current configuration and the operators
Div(•), Curl(•) and Grad(•) in the reference configuration. Equations (2.1) can be rewritten in
terms of the referential electric field E0 = FTE and the referential electric displacement D0 = JF−1D
[39,43] as

Div D0 = 0 and Curl E0 = 0. (2.2)

In this work, we follow the notation proposed recently by Dorfmann & Ogden [39,43] and
consider elastic dielectrics whose constitutive relation is given in terms of a scalar-valued energy-
density function Ψ (F, E0) such that

P = ∂Ψ (F, E0)
∂F

and D0 = −∂Ψ (F, E0)

∂E0 , (2.3)

where P is the total nominal stress tensor. The corresponding true or Cauchy total stress tensor is
related to the nominal stress tensor via the relation σ = J−1PFT. For an incompressible material,
the nominal stress tensor is

P = ∂Ψ (F, E0)
∂F

− pF−T, (2.4)

where p is an arbitrary pressure-like scalar. In the absence of body forces, the equilibrium
equations are

Div P = 0. (2.5)

The incremental governing equations [39] are

Div Ṗ = 0, Div Ḋ0 = 0 and Curl Ė0 = 0. (2.6)

where Ṗ, Ḋ0 and Ė0 are infinitesimal changes in the nominal stress, electric displacement
and electrical field, respectively. The linearized constitutive equations are provided via the
electroelastic moduli tensors

A0
iαkβ = ∂2Ψ

∂Fiα∂Fkβ
, G0

iαβ
= ∂2Ψ

∂Fiα∂E0
β

and E0
αβ = ∂2Ψ

∂E0
α∂E0

β

, (2.7)

namely,

Ṗij =A0
ijklḞkl + G0

ijkĖ0
k and − Ḋ0

i = G0
jkiḞjk + E0

ij Ė
0
j . (2.8)

For an incompressible material, the linearized constitutive relations are

Ṗij =A0
ijklḞkl + G0

ijkĖ0
k − ṗF−T

ij + pF−1
jk ḞklF

−1
li , −Ḋ0

i = G0
jkiḞjk + E0

ij Ė
0
j , (2.9)

where ṗ is an incremental change in pressure.
Consider the current configuration as a new reference configuration. We recall that Ḟ =

(grad v)F, where vi = ẋi is an incremental displacement. The incremental ‘push-forward’ of Ṗ, Ė0
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and Ḋ0 to the current configuration are

Ṫ = J−1ṖFT, Ḋ = J−1FḊ0 and Ė = F−TĖ0. (2.10)

In terms of these increments, the linearized constitutive equations are

Ṫij =Aijklvk,l + GijkĖk − ṗδij + pvj,i, −Ḋi = Gjkivj,k + EijĖj, (2.11)

where

Aijkl = J−1FjαFlβA0
iαkβ , Gijk = J−1FjαFkβG0

iαβ
and Eij = J−1FiαFjβE0

αβ . (2.12)

The electroelastic moduli possess the symmetries

Aijkl =Aklij, Gijk = Gjik and Eij = Eji. (2.13)

Incremental governing equations (2.6) become

div Ṫ = 0, div Ḋ = 0 and curl Ė = 0. (2.14)

Upon substitution of linearized relations (2.11) in (2.14)1 and (2.14)2, the following equations are
obtained

Aijklvk,lj + GijkĖk,j − ṗ,i = 0 and Gjkivj,ki + EijĖj,i = 0. (2.15)

The instability is associated with the existence of a non-trivial solution to these equations (2.15).

(b) Macroscopic instabilities
We begin by what are termed macroscopic instabilities in the literature. In a homogeneous
material, they correspond to the instability of a homogeneous state. In a heterogeneous periodic
material, they correspond to instabilities of infinite extent compared to the unit cell. In this
situation, we replace the periodic material with a homogeneous material with homogenized
properties. So, we assume in this section that the incremental moduli Aijkl,Gijk and Eij are uniform.

We seek a solution to (2.15) of the form

vi = ṽif (â · x), ṗ = q̃f ′(â · x) and Ėi = ẽif
′(â · x), (2.16)

where f is a continuous and sufficiently differentiable function, â = a1ē1 + a2ē2 + a3ē3 is a unit
vector; ṽi, ẽi and q̃ are incremental macroscopic quantities independent of x. The incompressibility
constraint together with the last of (2.14) provide additional equations for ṽi and ẽi. In particular,
for a plane problem

ṽ1 = −ξ ṽ2 and ẽ1 = ξ−1ẽ2, (2.17)

where ξ ≡ a2/a1. Upon substitution of expressions (2.16) together with (2.17) into (2.15),
elimination of the pressure increment leads to a polynomial equation in ξ , namely

Γ6ξ
6 + Γ5ξ

5 + Γ4ξ
4 + Γ3ξ

3 + Γ2ξ
2 + Γ1ξ + Γ0 = 0, (2.18)
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where the coefficients Γi are given by the electroelastic moduli as follows:

Γ0 = G2
121 − A2121E11, Γ1 = 2(−A2121E12 + (A1121 − A2122)E11

+ G121(G221 + G122 − G111)),

Γ2 = −A2121E22 + 4(A1121 − A2122)E12 − (A1111 − 2A1122 − 2A1221 + A2222)E11

− 2G121(G112 + G121 − G222) + (G122 + G221 − G111)2,

Γ3 = −2((A1112 − A1222)E11 + (A1111 − 2A1122 − 2A1221 + A2222)E12

+ (A2122 − A1121)E22 + (G121G122 − (G111 − G122 − G221)(G112 + G121 − G222))),

Γ4 = −(A1111 − 2A1122 − 2A1221 + A2222)E22 − 4(A1112 − A1222)E12

− A1212E11 + (G112 + G121 − G222)2 + 2G122(G111 − G122 − G221),

Γ5 = 2((A1222 − A1112)E22 − A1212E12 + G122(G112 + G121 − G222)) and

Γ6 = G2
122 − A1212E22.

A macroscopic instability is associated with a real solution to (2.18). We once again note
that condition (2.18) can be used for the macroscopic instability analysis of multiphase
hyperelastic dielectrics. Once the macroscopic electroelastic moduli are determined either via
a homogenization technique or numerically (for the purely mechanical case [32]), the stable
domains can be deduced from (2.18) for any microstructure and any planar mechanical and
electrical loadings.

Heterogeneous periodic materials may also suffer from microscopic instabilities. These become
too difficult to explicitly analyse for arbitrary microstructures. Therefore, we examine to the case
of layered materials.

(c) Layered materials
Consider a layered dielectric composite made out of two incompressible phases with volume
fractions c(m) and c(f ) = 1 − c(m). Here and thereafter, the fields and parameters of the stiff and the
soft phases are denoted by superscripts (•)(f ) and (•)(m), respectively. Geometrically, the layers are
characterized by their thicknesses h(m) = hc(m) and h(f ) = hc(f ), where h = h(m) + h(f ) is the thickness
of the repeated unit cell (figure 2). The direction normal to the layers plane is the laminate
direction N̂, and M̂ is a unit vector tangent to the interface, both in the undeformed configuration
(figure 2). Assuming that along the primary branch of the solution all the fields are homogeneous
in each phase, we have that the mean nominal electric field in the composite is

Ē0 = c(m)E0(m) + c(f )E0(f ). (2.19)

The continuity condition on the electric field is

(E0(m) − E0(f )) · M̂ = 0 or E0(m) − E0(f ) = βN̂, (2.20)

where β is a scalar. Accordingly, the referential electric field in each phase can be expressed in
the form

E0(m) = Ē0 + c(f )βN̂ and E0(f ) = Ē0 − c(m)βN̂. (2.21)

As the interface is charge free, the continuity condition on the referential electric displacement
field is

(D0(m) − D0(f )) · N̂ = 0. (2.22)

For incompressible laminates the displacement continuity condition [44] leads to

F(m) = F̄(I + c(f )αM̂ ⊗ N̂) and F(f ) = F̄(I − c(m)αM̂ ⊗ N̂), (2.23)

where α is a constant. The corresponding interface stress continuity condition [19] is

(P(m) − P(f )) · N̂ = 0. (2.24)
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Figure 2. Electroactive layered composite subjected to electric excitation. (Online version in colour.)

Once the constitutive relations for phases are prescribed, the constants α and β can be determined
from continuity conditions (2.22) and (2.24). This completes the solution up to a bifurcation point.

(d) Microscopic instability in layered materials
To determine the onset of instabilities in the composites an analysis similar to that used in [29,42]
is adopted. In each phase, we seek a solution of (2.15) in the form

vi = ṽi(x2) exp(ik1x1), ṗ = q̃(x2) exp(ik1x1) and Ėi = ẽi(x2) exp(ik1x1), (2.25)

where k1 is the wave number along the x1-direction (figure 2). The incompressibility constraint
together with the absence of the electric field vorticity provide two equations for ṽi and ẽi

ṽ′
2 = −ik1ṽ1 and ẽ′

1 = ik1ẽ2, (2.26)

where the notation (•)′ = (•),2 is introduced. The resulting incremental governing equations (2.15)
read

k2
1(A1122 + A1221 − A1111)ṽ1 + ik1(2A1112 − A1222)ṽ′

1 + A1212ṽ
′′
1 − k2

1A1121ṽ2

+ ik1G111ẽ1 + ik1(G112 + G121)ẽ2 + G122ẽ′
2 − ik1q̃ = 0, (2.27)

k2
1(2A2122 − A1121)ṽ1 + ik1(A1221 + A1122 − A2222)ṽ′

1 + A1222ṽ
′′
1 − k2

1A2121ṽ2

+ ik1G121ẽ1 + ik1(G122 + G221)ẽ2 + G222ẽ′
2 − q̃′ = 0 (2.28)

and k2
1(G122 + G221 − G111)ṽ1 + ik1(G112 + G121 − G222)ṽ′

1 + G122ṽ
′′
1 − k2

1G121ṽ2

+ ik1E11ẽ1 + 2ik1E12ẽ2 + E22ẽ′
2 = 0. (2.29)

Equations (2.26)–(2.29) provide a set of six linear homogeneous first-order differential equations
that depend on the vector of six unknowns ũ = (ṽ1, ṽ2, ẽ1, ẽ2, q̃, ṽ′

1)

Rũ = ũ′. (2.30)

The components of the matrix R are given in appendix A. The solution of the system can be
determined in the form

ũ = BZs, (2.31)

where s is an arbitrary constant vector that will be determined later from the continuity and quasi-
periodicity conditions on the unit cell. In (2.31), Z(x2) = diag[exp(zx2)] is the diagonal matrix of
the eigenvalues vector z of the matrix R, and the corresponding eigenvectors of R are the columns
of the matrix B.
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Consider the periodic unit cell of the layered composite shown in figure 2. The quasi-periodic
boundary conditions are

ũ(x2 + h) = ũ(x2) exp(ik2h), (2.32)

where k2 ∈ [0, 2π/h) is the solution periodicity parameter, also referred to as Floquet parameter. In
the interval 0 < x2 < h + h(m), solution (2.31) attains the form

ũ(x2) =
m
B

m
Z(x2)

m−
s , 0 < x2 < h(m),

ũ(x2) =
f
B

f
Z(x2)

f
s, h(m) < x2 < h

and ũ(x2) =
m
B

m
Z(x2)

m+
s , h < x2 < h + h(m),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.33)

where
m
z,

f
z are the eigenvalues of R in which the electroelastic moduli correspond to the

appropriate phase,
m
B and

f
B are the corresponding matrices of eigenvectors. Substitution of (2.33)

into (2.32) yields
m+
s = exp(ik2h)(

m
Z(h))−1m−

s . (2.34)

The jump conditions of the incremental fields at the interfaces are

[[v]] = 0, [[Ṫ]]n = 0, [[Ḋ]] · n = 0 and n × [[Ė]] = 0, (2.35)

where n = F−TN̂ is normal to the interface at the current configuration, and the notation [[•]] ≡
(•)+ − (•)− is used. By making use of (2.25) and (2.26), the jump conditions (2.35) are

[[ṽ1]] = 0, [[ṽ2]] = 0 and [[ẽ1]]n2 − [[ẽ2]]n1 = 0, (2.36)

[[ik1(A1111 − A1122 + p)ṽ1 + A1112ṽ
′
1 + ik1A1121ṽ2 + G111ẽ1 + G112ẽ2 − q̃]]n1

+ [[ik1(A1211 − A1222)ṽ1 + A1212ṽ
′
1 + ik1(A1221 + p)ṽ2 + G121ẽ1 + G122ẽ2]]n2 = 0, (2.37)

[[ik1(A2111 − A2122)ṽ1 + (A2112 + p)ṽ′
1 + ik1A2121ṽ2 + G211ẽ1 + G212ẽ2]]n1

+ [[ik1(A2211 − A2222 − p)ṽ1 + A2212ṽ
′
1 + ik1A2221ṽ2 + G221ẽ1 + G222ẽ2 − q̃]]n2 = 0 (2.38)

and [[ik1(G111 − G221)ṽ1 + G121ṽ
′
1 + ik1G211ṽ2 + E11ẽ1 + E12ẽ2]]n1

+ [[ik1(G112 − G222)ṽ1 + G122ṽ
′
1 + ik1G212ṽ2 + E12ẽ1 + E22ẽ2]]n2 = 0. (2.39)

Equations (2.36)–(2.39) can be written in the form [[Qũ]] = 0. The non-zero entries of the matrix Q
are

Q11 = Q22 = 1, Q33 = −Q34 = n2, Q41 = ik1((A1111 − A1122 + p)n1

+ (A1211 − A1222)n2)

Q42 = ik1(A1121n1 + (A1211 + p)n2), Q43 = G111n1 + G121n2, Q44 = G112n1 + G122n2,

Q45 = −n1, Q46 =A1112n1 + A1212n2, Q51 = ik1((A2111 − A2122)n1

+ (A2211 − A2222 − p)n2),

Q52 = ik1(A2121n1 + A2221n2), Q53 = G211n1 + G221n2, Q54 = G212n1 + G222n2,

Q55 = −n2, Q56 = (A2112 + p)n1 + A2212n2, Q61 = ik1((G111 − G221)n1

+ (G112 − G222)n2),

Q62 = ik1(G211n1 + G212n2), Q63 = E11n1 + E12n2, Q64 = E12n1 + E22n2 and

Q66 = G121n1 + G122n2.

Finally, upon usage of (2.33), we have that

m
Q

m
B

m
Z(h(m))

m−
s =

f
Q

f
B

f
Z(h(m))

f
s and

m
Q

m
B

m
Z(h)

m+
s =

f
Q

f
B

f
Z(h)

f
s. (2.40)
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The combination of (2.34) and (2.40) leads to the condition for the existence of a non-trivial
solution

det[(
m
Q

m
B)−1

f
Q

f
B

f
Z(h(f ))(

f
Q

f
B)−1

m
Q

m
B

m
Z(h(m)) − I exp(ik2h)] = 0. (2.41)

When condition (2.41) is satisfied for a combination of mechanical and electrical loads, a solution
in the form of equation (2.25) that satisfies equations (2.32) and (2.33) exists, where k2 represents
the scale of the periodicity of the solution. A similar condition was derived for the purely
mechanical case [29] and for layered composites with isotropic neo-Hookean phases subjected to a
prestretch along the layers and electrical displacement excitation perpendicular to the surface [42].

In the preceding analysis, no assumption regarding the phases behaviors was made and
composites with anisotropic phases can be analysed by following this derivation. Moreover, the
derived condition can be used for any planar combination of mechanical and electrical loads and
it is not restricted to the aligned prestretch and perpendicular electric excitation assumed in [42].

(e) Macroscopic instability in layered composites
Finally, we specialize the results of §2b on macroscopic instabilities to layered materials. We
recall that Geymonat et al. [45] rigorously showed in the purely mechanical case that the
macroscopic instabilities onset corresponds to the existence of a non-trivial solution in the long-
wave limit k1h → 0. In the context of the coupled problem, Bertoldi & Gei [42] demonstrated that
the macroscopic instability analysis agrees with the onset of long-wave instabilities in layered
composites with isotropic neo-Hookean phases subjected to a prestretch along the layers and
electrical displacement excitation perpendicular to the layers.

As the basic solution to layered materials is piecewise constant, the energy-density function of
the composite can be expressed as the weighted sum of the phase energy-density functions

Ψ̃ (F̄, Ē0) = c(m)Ψ (m)(F̄, Ē0) + c(f )Ψ (f )(F̄, Ē0). (2.42)

The average nominal stress tensor and electric displacement are

P̄ = ∂Ψ̃

∂F̄
− pF̄−T and D̄0 = − ∂Ψ̃

∂Ē0
. (2.43)

The macroscopic electroelastic moduli are

Ã0
ijkl = ∂2Ψ̃

∂F̄∂F̄
, G̃0

ijk = ∂2Ψ̃

∂F̄∂Ē0
and Ẽ0

ij = ∂2Ψ̃

∂Ē0∂Ē0
. (2.44)

Together with (2.12), the electroelastic moduli defined in equation (2.44) provide the coefficients
for the polynomial equation (2.18), and, consequently, the onset of the macroscopic instabilities
can be determined.

3. Examples
The energy-density function of an isotropic material can be expressed in terms of the invariants
of the Cauchy–Green strain tensor C ≡ FTF and the nominal electric field E0 [43]. It is possible to
express these invariants in the following form:

I1 = Tr C, I2 = 1
2 (I2

1 − Tr(CC)), I3 = det C, I4e = E0 · E0,

I5e = E0 · C−1E0 and I6e = E0 · C−2E0.

Accordingly, the energy-density function can be written as Ψ (F, E0) = Ψ (I1, I2, I3, I4e, I5e, I6e). The
expressions for the electroelastic moduli listed in equation (2.44) can be determined by application
of the chain rule (appendix B).

 on December 18, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130618

...................................................

As an example, we examine composites whose phase behaviours are characterized by a
constitutive model of neo-Hookean soft dielectrics, namely

Ψ = μ

2
(I1 − 3) − ε

2
I5e, (3.1)

where μ is the shear modulus and ε is the dielectric constant. For this choice of energy-density
function, α in equation (2.23) is expressed as [44]

α = μ(f ) − μ(m)

c(m)μ(f ) + c(f )μ(m)

F̄N̂ · F̄M̂

F̄M̂ · F̄M̂
. (3.2)

Combining (2.22) with (2.21) and the constitutive law for each phase, namely,

D0 = εJF−1F−TE0, (3.3)

together with (2.23), (3.2) and noting that F(m)−TN̂ = F(f )−TN̂ = F̄−TN̂, we find that

β = ε(f ) − ε(m)

c(m)ε(f ) + c(f )ε(m)

(F̄−TĒ0) · (F̄−TN̂)

(F̄−TN̂) · (F̄−TN̂)
+ αĒ0 · M̂. (3.4)

The difference between the pressure terms in the two phases is

p(m) − p(f ) = (ε(f ) − ε(m))(ε̌2/ε(m)ε(f ))((F̄−TĒ0) · (F̄−TN̂))2 + μ(m) − μ(f )

(F̄−TN̂) · (F̄−TN̂)
, (3.5)

where ε̌ = (c(m)/ε(m) + c(f )/ε(f ))−1. Expression (3.5) reduces to the result obtained by deBotton [44]
in the purely mechanical case. We note that (3.2), (3.4) and (3.5) provide an exact solution for
the fields in each phase as functions of the average macroscopic deformation gradient F̄ and the
nominal electric field Ē0. These expressions for the fields can be used in the analysis to determine
the onset of the microscopic instabilities.

Moreover, the total energy-density function of the composite is an exact expression obtained
upon substitution of (3.2) and (3.4) into (2.42). Consequently, the electroelastic moduli in
equation (2.44) for the composite are explicit expressions stemming from the solution of the
homogenization problem. In turn, the onset of the macroscopic failure can be determined by
finding a real root for characteristic equation (2.18).

We examine the case where, in the undeformed configuration, the applied electric field is
aligned with one of the principal axes of the deformation gradient (figure 2), namely,

Ē0 = E2ē2 and F̄ = λē1 ⊗ ē1 + λ−1ē2 ⊗ ē2 + ē3 ⊗ ē3. (3.6)

However, in general, the layer directions are not aligned with the principal system and in terms of
the lamination angle are N̂ = sin Θ ē1 + cos Θ ē2 and M̂ = cos Θ ē1 − sin Θ ē2. The corresponding
expressions for the governing matrices of the microscopic instability analysis Q and R are rather
complicated in this case. However, for the aligned case Θ = 0, a significant simplification occurs,
in particular the non-zero entries of R are

R12 = 1, R21 = k2
1λ

4

(
1 + E2

2ε

μ

)
, R25 = − ik1E2λ

3ε

μ
, R26 = ik1λ

2

μ
,

R31 = R54 = −R45 = −ik1, R52 = −ik1E2λ, R53 = −k2
1E2λ, R62 = −ik1μλ−2,

R63 = −k2
1λ

2(μ + εE2
2) and R64 = −k2

1εE2λ.

The corresponding non-zero entries of the matrix Q are

Q11 = Q23 = Q64 = −Q46 = 1, Q32 = μλ−2, Q33 = ik1(p − εE2
2λ

2), Q34 = εE2λ

Q41 = ik1(3εE2
2λ

2 − μλ−2 − p), Q45 = 2εE2λ, Q51 = −2ik1εE2λ and Q55 = −ε.
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Figure 3. Critical stretch vs electric field for composites withΘ = 0, c(f ) = 0.05, 0.1, 0.2, 0.5 and k = t = 10 (a), k = t = 50
(b). Continuous and dashed curves are for macroscopic and microscopic instabilities, respectively. (Online version in colour.)

Furthermore, the analytical expression for the onset of macroscopic instabilities takes a compact
form when Θ = 0. Namely, the critical stretch ratio is

λc =
(

1 − μ̌

μ̄

)1/4 (
1 − Ē2

(
1 − ε̌

ε̄

)
ε̌

ε̄

)−1/4
, (3.7)

where Ē = E0
2
√

ε̄/μ̄, ε̄ = c(m)ε(m) + c(f )ε(f ), μ̄ = c(m)μ(m) + c(f )μ(f ) and μ̌ = (c(m)/μ(m) + c(f )/μ(f ))−1.
Note that (3.7) is equivalent to the expression derived for similar setting in frame of the
formulation employing the referential electrical displacement [40–42]. It is easy to see from
(3.7) that the composites become macroscopically unstable if subjected to an electric excitation
higher than

Ēc = ε̄√
(ε̄ − ε̌)ε̌

. (3.8)

An example of the bifurcation diagrams is shown in figure 3 for composites with Θ = 0 as
functions of the critical stretch ratio λ and the referential electric field Ē. The curves separate stable
domains from those in which instabilities may develop. The arrows indicate transitions from
stable to unstable domains. The results are presented for c(f ) = 0.05, 0.1, 0.2 and 0.5, respectively.
The stiffer to softer phase shear moduli ratio is k = μ(f )/μ(m) = 10 and the ratio between the
dielectric constants is t = ε(f )/ε(m) = 10 in figure 3a.

For the macroscopic curves, we observe that an increase in the electric excitation extends
the unstable domain, whereas the prestretch stabilizes the composite. This continues until the
corresponding critical value of electric field (3.8) is achieved, beyond this value the composite
becomes unstable regardless of the prestretch.

In a manner similar to the purely mechanical case, at low electric fields composites with low
volume fractions of the stiffer phase (c(f ) = 0.05, 0.1) are more stable than those with moderate
ones (c(f ) = 0.2, 0.5). However, when the electric field is increased, the curves intersect and
instabilities in composites with lower c(f ) may occur before those in composites with higher c(f ).
Specifically, at Ē = 1.95 macroscopic instability occurs in a composite with c(f ) = 0.1 before it does
in a composite with c(f ) = 0.2.

Interestingly, right before the intersection of the macroscopic curves, a curve corresponding
to microscopic instability branches out from the curve for the macroscopic instability of the
composite with higher c(f ) such that practically the composite with higher volume fraction fails
first, either at the macroscopic or at the microscopic level.

In composites with low volume fraction of the stiffer phase, there is a clear distinction between
the onset of microscopic and macroscopic instabilities at low values of the applied electric field.
In this limit, the microscopic instabilities that are associated with short waves appear long before
the macroscopic ones. With the increase in the electric field, the curves for microscopic and
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Figure 4. Critical electric field vs wave number for composite with c(f ) = 0.5 and k = t = 10. The continuous curves
correspond to those loading parameters for which the first instability occurs at k1h= 0, whereas the dashed curves are for
those parameters where the instability occurs at a finite wavelength. (Online version in colour.)

macroscopic instabilities near to the point where the macroscopic instabilities are the first to occur.
However, the curves split again at high values of the electric excitation owing to the appearance
of microscopic instabilities before the macroscopic ones.

At moderate volume fractions, the onset of the microscopic instability coincides with the
macroscopic one (for example, c(f ) = 0.2). The curve of the microscopic instability branches from
the curve of macroscopic instability only at large values of the electric field.

A similar behaviour is observed for composites with large volume fraction of the stiffer phase.
However, the branching out of the curve for the microscopic instability occurs at lower values of
the applied electric field. These branches of the instability curves reduce the stable domain and cut
off the range of the prestretches at which the composite is stable. For example, for the composite
with c(f ) = 0.5 subjected to Ē = 1.6 the stable region of the stretch ratios is 1.1 < λ < 1.88.

The dependence of the critical electric field on the dimensionless wave number k1h for
composite with volume fraction of the stiffer phase c(f ) = 0.5 is demonstrated in figure 4. The
contrasts between the properties of the phases are k = t = 10. Along each curve, the prestretching
is held constant. Before the branching out point of the curve for the microscopic instability
in figure 3a, the minimal values of the electric field appear at k1h → 0 corresponding to the
macroscopic instabilities. An increase in the stretch ratio λ leads to a branching point at which
minimum of the corresponding curve in figure 4 is attained at two points, one k1h → 0 and the
second at finite value of k1h. This happens because as we increase the prestretch, the critical
electric field Ē at which the macroscopic instability occurs increases while the minimum at finite
k1h decreases. If we further increase the stretch ratio, the critical value of the wave number
changes and the mode of instability shifts from macroscopic to a finite one.

The dependence of the critical stretch ratio on the electric field for composites with contrasts
between the phases properties k = t = 50 is shown in figure 3b. The volume fractions of the stiffer
phase are c(f ) = 0.05, 0.1, 0.2 and 0.5. As in the purely mechanical case [25,29], an increase in the
contrast between the phases moduli results in earlier onsets of instabilities. Different from the
case illustrated in figure 3a (k = t = 10), here the branching points of the curves corresponding to
the microscopic instabilities appear even in composites with low volume fractions of the stiffer
phase (c(f ) = 0.1) and at lower values of electric excitation, while the short-wave instabilities
diminish. Thus, an increase in the contrasts between the phases properties restrains the short-
wave instabilities (appearing at low values of c(f )), and provokes earlier development of the
microscopic instabilities that are characterized by finite wavelengths.

To complete the characterization of the composites stable domains, the projections of
the bifurcation diagrams in coordinates of the electric field Ē and electric displacement
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D̄ = D0
2/
√

μ(m)ε(m) are shown in figure 5a,b. The corresponding average referential electric
displacement and electric field are related via

D̄0 = ε̄F̄−1F̄−TĒ0 + (ε̌ − ε̄)F̄−1F̄−TN̂
(F̄−TĒ0) · (F̄−TN̂)

(F̄−TN̂) · (F̄−TN̂)
, (3.9)

which reduces to the expression D0
2 = ε̌E0

2λ
2 reported in [42] for the aligned case Θ = 0.

To conclude the characterization of the stable domains, we also plot the bifurcation diagrams
as functions of the applied electric field and the critical deviatoric mean stress along the layers.
These are shown in figure 6 for the same contrasts between the phases properties, namely k =
t = 10 in (a) and k = t = 50 in (b). Here this stress component is related to the stretch ratio and
the electric field via σ̄D/μ̄ = ((2 − Ē2ε̌/μ̄)λ2 − 1 − λ−2)/3. As anticipated on physical grounds, we
observe that the critical macroscopic longitudinal stress is negative for relatively low applied
electric fields. However, depending on the morphology, an increase in the electric field influences
differently the critical mean stress. In particular, for composites with higher contrasts between
the properties of the phases the critical stress increases (figure 6b), while for composites with
lower contrasts the critical stress decreases when the volume fraction of the stiffer phase is low
(c(f ) = 0.05 and 0.1 in figure 6a) and increases when c(f ) is high (c(f ) = 0.2 and 0.5 in figure 6a).

 on December 18, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


14

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130618

...................................................

0 0.4 0.8 1.2 1.6 2.0 2.2
–4

–2

0

2

4

5
stiff phase

soft phase

stiff phase
composite

soft phase
stable

s D
M

composite

E
-

k = t = 10

Figure 7. Stresses vs electric field in composites with c(f ) = 0.5. Dotted, continuous and dashed curves correspond to stresses
along equilibrium pathλ = 2, onset of macroscopic and microscopic instabilities, respectively. (Online version in colour.)

0 1.0

1.0
1.6

1.8

1.8 1.6 1.0

2.02.0

0.80.60.40.2
0.5

1.0

1.5

2.0

2.5

3.0

c( f )

l

E
-
= 2.0

Figure8. Critical stretch vs volume fraction for compositeswith k = t = 10. Continuous anddashed curves are formacroscopic
and microscopic instabilities, respectively. Dotted curves separate unified unstable domains. (Online version in colour.)

Consider the evolution of the stresses in the phases of the material along the equilibrium path
of a fixed prestretched configuration λ = 2. Shown in figure 7 are the variations of the longitudinal
deviatoric stresses in the phases as functions of the applied electric field. The red and blue
curves correspond to the stresses in the stiffer and softer phases, respectively, while the mean
stresses are represented by the black curves (online version in colour). The dotted, continuous and
dashed curves correspond to the stresses along the equilibrium path, onset of macroscopic and
microscopic instabilities, respectively. Along the equilibrium path, the stresses in the phases are
positive at the initial prestretch configuration where Ē = 0, and an increase in the applied electric
field leads to a decrease in the stresses in the phases. Because of the different electric fields in the
phases, the stress in the soft phase decreases faster and becomes negative [20]. The difference in
the deviatoric longitudinal stresses increases as the electric field is increased and the equilibrium
curves intersect with the corresponding bifurcation curves.

The morphology significantly impacts the composite stability, restraining or promoting
different instability modes. To highlight this effect, bifurcation diagrams are presented as
functions of the critical stretch ratio and the volume fraction of the stiffer phase in figure 8. The
failure surfaces are shown for composites with contrast ratios k = t = 10 subjected to different
electrical excitations Ē = 1.0, 1.6, 1.8 and 2.0.
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We observe that for each unstable domain corresponding to a particular electric excitation,
three subdomains can be distinguished. The first corresponds to the one where macroscopic
instabilities (k1h → 0) are identified. This macroscopically unstable domain lies beneath the
continuous curves. The domain increases with the increase in the applied electric field. The second
domain corresponds to a small zone at low volume fractions of the stiffer phase, between the
dashed and the continuous curves. Here, instabilities associated with short waves (k1h → 2π )
appear. Different from the first domain, this one decreases with the increase in the electric
excitation. So that the applied electric field restrains the short-wave instabilities and stimulates
the long-waves instabilities. The above subdomains were observed for the purely mechanical
case in [25,29]. The peculiar third domain was not revealed in the purely mechanical case. The
characteristic scale of these instabilities is demonstrated in figure 4 and it appears to be k1h ∼ 2.
This domain is associated with high volume fraction of the stiffer phase and large prestretches.
When the electric excitation increases the domain expands to include composites with moderate
volume fractions at lower levels of the stretch ratio. As the first and third domains expand towards
each other, the electric excitation increases, at some value of Ē they intersect. In the figure, we keep
distinguishing between them with the aid of the dotted curves.

It was rigorously shown for the purely mechanical case that the long-waves instabilities can
be estimated from the loss of strong ellipticity of the corresponding media [45]. Furthermore,
the macroscopic instability is an upper bound for the microscopic instabilities. For the fully
coupled electromechanical problem, we always observe this phenomenon during calculation of
the numerical examples (e.g. figure 4). The numerical results for the aligned composites with
some specific volume fractions are in agreement with the findings of [42]. In addition, we observe
that for the media with moderate volume fractions of the stiffer phase, the macroscopic instability
can be used as a good estimate for the material failure.

We consider next the influence of the lamination angle Θ on the onset of instabilities. Noting
that at lamination angles different from Θ = 0 and π/2, the microscopic instability analysis
becomes rather complicated and for the non-aligned loading cases, we consider only the onset
of macroscopic instabilities.

Bifurcation diagrams are presented in figure 9 as functions of the critical stretch ratio and the
volume fraction of the stiffer phase for composites with different lamination angles Θ = 0, π/16,
π/8. The composites are subjected to electric excitation Ē = 1.0 in figure 9a and Ē = 2.0 in figure 9b.
In a manner reminiscent of the purely mechanical case [29], the macroscopic failure surfaces are
symmetric with respect to c(f ) = 0.5 and the composites are less stable in the range of moderate
volume fraction of the stiffer phase. Composites with volume fractions near c(f ) ∼ 0 and 1 become
stable. This effect is intensified with an increase in the lamination angle, once again in a manner
similar to the one observed in laminated composites under mechanical loads [46]. An increase
in the electric excitation results in earlier onset of the macroscopic instability. The picture alters
drastically when the value of the electric field is approaching Ē given in equation (3.8). In contrast
to the findings in figure 9a, we observe in figure 9b that the composites with volume fractions of
the stiffer phase in the vicinity of c(f ) ∼ 0.144 and 0.856 become extremely unstable.

To highlight the transition of the composites behaviour as the intensity of the electric field
approaches the critical value of the applied electric field, the bifurcation diagrams of composites
with aligned layers (Θ = 0) are presented in figure 10 for Ē = 1.9, 1.925, 1.95, 1.975, 2.0 and
2.025. Thus, in contrast to the purely mechanical case where the least macroscopically stable
morphology corresponds to c(f ) = 0.5, in the electromechanical case the volume fraction at
which the least stable morphology is attained varies. Remarkably, the results of the numerical
simulations hint that the dramatic change of the macroscopic curves can be associated with the
unifying of the first and third unstable domains in figure 8. At this level of electrostatic excitation
the media become unstable in a large range of c(f ) (figure 8). We observe that at the macroscopic
level the effect of the lamination angle varies from stabilizing the composite at low values of
the electric field to the opposite effect at high electric excitations. However, this trend may be
different when microscopic instabilities at shorter wavelengths are accounted for. Therefore,
in the following examples, we consider composites with volume fraction of the stiffer phase
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c(f ) = 0.2 because the macroscopic failure mode dominates at this morphology even at relatively
high electrostatic excitations. Shown in figure 11 are the bifurcation diagrams for composites
with c(f ) = 0.2. The bifurcation diagrams are presented as functions of the critical stretch ratio
λ and the referential electric field Ē. The contrasts between the properties of the phases are
k = t = 10. The lamination angles in the ranges 0 ≤ Θ ≤ π/4 and π/4 < Θ ≤ π/2 are presented in
figure 11a,b, respectively. The continuous curves correspond to the macroscopic failure surfaces
and the dashed curve in figure 11a represents the onset of the microscopic instability for the
aligned case (Θ = 0). The corresponding expression for the critical stretch ratio takes a compact
form when Θ = π/2

λc =
(

1 − μ̌

μ̄
− Ē2

(
1 − ε̌

ε̄

))−1/4
. (3.10)

In contrast to the aligned case (Θ = 0), here an increase in the applied electric field stabilizes the
media. It is easy to see from (3.10) that whenever the applied electric field exceeds the value

Ēc =
√

(μ̄ − μ̌)ε̄√
(ε̄ − ε̌)μ̄

, (3.11)
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the composite becomes macroscopically stable. For the composite with identical shear to dielectric
constants ratio of the phases r(f ) = μ(f )/ε(f ) = r(m) = μ(m)/ε(m) = r, this value of the electric field is
E0(c)

2 = √
r which corresponds to Ēc = 1 (thin vertical dashed line in figure 11b).

In the pure mechanical case, the composites lose the stability only when the layers are
compressed in the lamination direction. If the composite is laminated at an angle higher than
a critical one, compressive loading will not lead to instabilities because the stretch in the layer
direction switches from compression to tension as the layers rotate to an angle of more than π/4
in the deformed configuration [32]. However, in the coupled electromechanical case, when the
electrostatic excitation is high enough even these composites may become unstable. For instance,
the composites with Θ = π/8 and Θ = π/4 represented in figure 11 (pink and purple curves in
online version) respectively. We also note that while in the purely mechanical case, the failure
surfaces possess the property λ(Θ) = 1/λ(Θ + π/2), the failure surfaces of the coupled problem
do not.

In the limiting cases Θ = 0 and Θ = π/2, the role of the electric field varies from stimulating
instabilities in the first case to stabilizing the composite in the latter. The behaviours of composites
with intermediate lamination angles are associated with a transition between the limiting cases
(from Θ = 0 to Θ = π/2) as far as the role of the electric field is concerned. Particularly, at some
intermediate lamination angle, the role of the electric field switches. This is illustrated in figure 12
as a conclusive example for the composite with the previously considered phases properties and
volume fractions. The diagrams show the dependence of the critical stretch ratio on the lamination
angle. The applied electric excitations are Ē = 0.0, 0.5, 1.0, 1.5, 1.8, 1.9 and 2.0, respectively. The
bifurcation diagrams are symmetric with respect to 0 and π/2 and periodic in π . In agreement
with the previous discussion, at low lamination angles the electric field promotes instabilities,
whereas at lamination angles close to π/2 the applied electric field stabilizes the composites.
Owing to this stabilizing effect, in composites with lamination angles close to π/2 instabilities may
occur only under relatively low electric fields (Ē < 1). We observe that at moderate levels of the
electric field (e.g. Ē = 1.5 and Ē = 1.8), there are two disjoint unstable domains. The first contains
the aligned composite (Θ = 0) and the other includes composites with larger lamination angles
at large critical stretch ratios. Composites with lamination angles between these two domains are
macroscopically stable at these levels of excitations (e.g. composites with 0.11π < Θ < 0.3π for
Ē = 1.5). With increase of the electric field, the unstable domains near and at a certain value of
the electric field they unite (e.g. the transition from Ē = 1.8 to Ē = 1.9). Beyond this value of the
electric field, the only stable morphology is the one with Θ = π/2. Not surprisingly, the value of
the lamination angle at which the domains unite corresponds to the morphology at which the
influence of electric field switches.
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Note that for composites with isotropic phases in the cases Θ = nπ , π/2 + nπ , where
n = 0, 1, 2 . . ., the coefficients Γ1, Γ3, Γ5 vanish in polynomial equation (2.18) and the condition
for ellipticity loss can be written in terms of the bicubic polynomial

Γ6ξ
6 + Γ4ξ

4 + Γ2ξ
2 + Γ0 = 0. (3.12)

Analogous results in terms of the nominal electric displacement instead of the referential electric
field were reported for surface instabilities in a half-space isotropic dielectrics [39] and for long-
wave instabilities in layered composites with isotropic phases and lamination angle Θ = 0 [42].

4. Conclusion
A systematic study of multiscale instabilities in soft composite dielectrics was conducted in terms
of physically relevant variables. First, a general criterion for the onset of instabilities associated
with long waves was introduced. Second, a condition for the onset of microscopic instability was
introduced for layered composites with anisotropic phases. Third, a closed form expression for
energy-density function of this medium is deduced. These allowed to conclude that, depending
on the morphology and the electromechanical loadings, laminated composites may fail in one
of the three modes: (i) long-wave instabilities at moderate volume fractions of the stiffer phase;
(ii) interface instabilities at low volume fractions of the stiffer phase and (iii) instabilities at the
microstructure characteristic length scale at high volume fractions of the stiffer phase. An increase
in the electric field suppresses the second mode of instabilities and promotes the first and third
modes. At large enough electric excitation, the two domains that are dominated by these modes
unite. At this stage, the composite becomes extremely unstable. This critical level of electric
excitation can be detected by the more compact analysis of macroscopic instabilities. Whenever
the macroscopic failure surfaces alter drastically as illustrated in figures 9 and 10, the critical
excitation field is attained. Moreover, in the limiting cases of 0 and π/2 lamination angles explicit
expressions for the onset of macroscopic instabilities were determined.

Finally, based on the analysis of the macroscopic instability domain, we find that at small
lamination angles an increase in the electric field destabilizes the composite and vice versa at
large lamination angles. The transition between these opposite effects occurs when the state
of the stretch along the layers direction switches from compression to tension in the deformed
configuration.
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Appendix A. The components of the matrix R
The non-zero entries of R can be written as

R11 = k2
1b(G122(G122 + G221 − G111) − (A1122 + A1221 − A1111)E22),

R12 = k2
1b(A1121E22 − G121G122), R13 = −ik1b(G111E22 + G122E11),

R14 = ik1b(2G122 − (G112 + G121)E22E12), R15 = ik1bE22,

R16 = ik1b(G122(G112 + G121 − G222) − (2A1112 − A1222)E22)

R21 = bk2
1E−1

22 (G2
122 − A1212E22)((A1121 − 2A2122)E22 + G222(G122 + G221 − G111))

− (A1222 − E−1
22 G122G222)R11,

R22 = −k2
1{b(G122(A1222G121 + A1121G222) − A1121A1222E22 − A1212G121G222) + A2121},

R23 = ik1{G121 − (A1222E22G111 + (A1212G222 − A1222G122)E11)b},
R24 = −ik1{(E22A1222(G112 + G121) − 2E12(A1222G122 + A1212G222) − G122(G112 + G121)G222)b

+ G122 + G221}, R25 = ik1b(A1222E22 − G122G222),

R26 = −ik1E−1
22 {((2A1112 − A1222)E22 − G122(G112 + G121 − G222))(A1222E22 − G122G222)b

− (A1122 + A1221 − A2222)E22 − (G112 + G121 − G222)G222},
R31 = k2

1b((A1111 − A1122 − A1221)G122 + A1212(G122 + G221 − G111)),

R32 = k2
1b(A1212G121 − A1121G122), R33 = ik1b(G111G122 − A1212E11),

R34 = ik1b((G112 + G121)G122 − A1212E12), R35 = −ik1bG122,

R36 = −ik1b((A1222 − 2A1112)G122 + A1212(G112 + G121 − G222)) R41 = −R54 = −ik1 R66 = 1,

where b = (A1212E22 − G2
122)−1.

Appendix B. Derivatives of the electroelastic invariants

∂I1

∂Fij
= 2Fij,

∂2I1

∂Fij∂Fkl
= 2δikδjl,

∂I5e

∂Fpq
= −2C−1

qj E0
j F−1

ip E0
i ,

∂I5e

∂E0
i

= 2C−1
ij E0

j

∂2I5e

∂Fpq∂Fkl
= 2

{
C−1

qj E0
j F−1

ik E0
i F−1

lp + (C−1
li E0

i F−1
qk + F−1

ik E0
i C−1

lq )F−1
jp E0

j

}
,

∂2I5e

∂Fpq∂E0
k

= −2(C−1
qj E0

j F−1
kp + C−1

qk E0
j F−1

jp ),
∂2I5e

∂E0
i ∂E0

j

= 2C−1
ij .
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