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  SCALAR  
 
 A collection of things is called a scalar set if these things are additive to 
one another, scalable by numbers, and proportional to one another.  Each thing 
in the collection is called a scalar.  We will define the words additive, scalable 
and proportional with care. 
 
 Scalars in two worlds.  Scalars model many things in the real world.  
In physics, scalars model length, time, mass, charge, energy, and entropy.  In 
economics, scalars model money, labor, and commodities.  In politics, scalars 
model population, votes, and polls.  In social networks, scalars model friends, 
posts, and likes.   
 Scalars are the fundamental building blocks of a virtual world, called 
linear algebra.  Being linear is being scalars.  Scalars build vectors.  Scalars and 
vectors then build everything else in linear algebra: linear maps, linear forms, 
bilinear forms, quadratic forms, inner products, and tensors.  These characters 
play and interplay in the virtual world of linear algebra. 
 Give us scalars.  We build a virtual world that models many aspects of the 
real world. 
 
 Happiness does not scale. Scalars, however, do not model everything 
in the world.  We have some notion of various states of happiness.  But the states 
of happiness are not additive to one another, or scalable by numbers, or 
proportional to one another.  States of happiness do not form a scalar set. 
 Indeed, many things in the real world do not scale.  Love does not scale.  
Nor does intelligence, color, or temperature.  The virtual world of linear algebra, 
which is built from scalars, can only represent part of the real world.  Such is the 
limitation of linear algebra.  To learn a subject is to learn its interior, as well as its 
boundary. 
 
 March toward scalars.  The boundary of a subject moves.  One subject 
morphs to another.  The known morphs to the unknown.   
 For thousands of years, people have devised many ways to map 
temperatures to numbers.  Experience tells us that temperatures form an ordered 
set, but not a scalar set.  Temperatures are not additive to one another, or 
scalable by numbers, or proportional to one another.  In the nineteenth century, a 
breakthrough took place.  People discovered two new scalars, energy U and 
entropy S, and related temperature T to these scalars: 

  
 
T = ∂U

∂S
. 

This relation connected a non-scalar to two scalars.  The new science of 
thermodynamics was born.   
 Much of science in general is a program to relate things in the real world 
to scalars.  Quantities in science are mostly scalars, or things related to scalars.  
We do not know how far we can push this program.  It is conceivable that 
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someone in your generation might discover ways to relate more non-scalars, such 
as happiness, intelligence and love, to scalars.  
 
  Axioms of Scalar Set   
  
 A scalar set over a number field means five items   S,+,0,F ,∗( )  that obey 
twelve axioms. 
  

1. S is a set, each element of which is called a scalar.  To every two elements 
x and y in S, there corresponds a unique element in S, written x +y .  The 
binary map,   + : S × S → S , 

   
x,y( )! x + y , is called the scalar-scalar 

addition.  That is, elements in S are additive, and the set S is closed under 
the addition. 

2. x +y( )+ z = x + y+ z( )  for every x, y and z in S.  That is, the scalar-scalar 
addition is associative.  

3. There exists an element in S, called zero scalar, written 0, such that 
  x +0 = x  for every x in S.  That is, there exists an identity element for the 
scalar-scalar addition.  

4. For every x in S there exists an element in S, called the negative element, 
written  −x , such that   x + −x( ) = 0 .  That is, scalars are subtractive. 

5. x +y = y+ x  for every x and y in S.  That is, the scalar-scalar addition is 
commutative. 

6. F is a number field, each element of which is called a number.  To every 
element α  in F and every element x in S, there corresponds a unique 
element in S, written  α ∗x , or simply αx .  The binary map, 

  ∗: F × S → S ,
   α ,x( )!αx , is called the number-scalar multiplication.  

That is, the elements in S are scalable by elements in F, and the set S is 
closed under the number-scalar multiplication.  

7.   1x = x  for every x in S, where 1 is the identity element in F for the 
number-number multiplication in F . 

8. α βx( ) = αβ( )x  for every x in S and for every α  and β  in F.  The equation 
contains multiplications of two types: the number-scalar multiplication 
and the number-number multiplication. 

9. α +β( )x =αx +βx  for every x in S and for every α  and β  in F.  That is, 
the number-scalar multiplication distributes over the number-number 
addition. 

10. α x +y( ) =αx +αy  for every x and y in S and every α  in F.  That is, the 
number-scalar multiplication distributes over the scalar-scalar addition.  

11. There exists at least one nonzero element in S. 
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12. For a nonzero scalar u in S and any scalar x in S, there exists a number α  
in F, such that  x =αu .  The nonzero scalar u is called a unit of the scalar 
set S, and the number α  is called the magnitude of the scalar x in the unit 
u.  That is, elements in S are proportional to one another.  

 
  Apples   
 
 Let us watch a concrete scalar set specify the five items   S,+,0,F ,∗( )  and 
fulfill the twelve axioms.   
 
 Piles of apples.  Piles and piles of apples form a set, denoted APPLE.  
Each element in the set APPLE is a pile containing a distinct quantity of apples.  
Here are some elements in the set APPLE: 
  1 apple, 2 apples, 100 apples, half of an apple. 
In general, we denote a pile of apples by a symbol, such as x.  Using symbols to 
represent real things is an ancient invention.  For example, we name mountains, 
rivers, and people.   
 We next verify that the set APPLE is a scalar set over the field of real 
numbers.  Each pile of apples is a scalar in the scalar set APPLE. 
  
 Piles of apples are additive to one another.  Two piles of apples, x 
and y, can be put together to give another pile of apples, denoted  x + y .  This 
pile-pile addition lets us add apples to apples, but does not let us add apples to 
oranges.  A pile containing no apple is called the zero pile, denoted 0.  For any 
pile of apples, x, the negative element  −x  means the deficit of a pile of apples of 
the same amount as x.  We can confirm that the pile-pile addition fulfills Axioms 
1-5.   
 
 Piles of apples are scalable by real numbers.  A pile x of apples can 
be multiplied by a real number α  to give another pile α  times the quantity of 
applies, denoted  αx .  This number-pile multiplication lets us multiply apples by 
real numbers, but does not let us multiply apples by apples.  We can confirm that 
the number-pile multiplication fulfills Axioms 6-10. 
 
 Piles of apples are proportional to one another.  For a nonzero 
pile u in APPLE and any pile x in APPLE, there exists a unique real number α  
such that  x =αu .  That is, the set APPLE fulfills Axioms 11 and 12. 
 
  Model and Reality* 
 
 Ignore inconvenient truth.  When we model the set APPLE as a scalar 
set over the field of real numbers, the axioms of scalar set require that an element 
in APPLE multiplying any real number be an element in APPLE.  If the real 
number is too large, we do not have that many apples.  If the real number is too 
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small, we reach subatomic dimension, in which case the “pile” no longer contains 
any apple.  Also, the axioms of scalar set require that negative quantities of apples 
be in APPLE.   
 In representing the reality with a model, we ignore inconvenient truths.  
(All models are wrong, but some are useful.)  But we do check what the model 
predicts against the reality. If the model predicts a negative quantity of apples, it 
means that we are in deficit.  If the model predicts a non-integer quantity of 
apples, we cut apples in pieces, or just round up.  If a piece is too small to 
preserve its appleness, we may approximate the piece as the zero scalar. 
 
 A model achieves the economics of abstraction.  A model is not the 
reality.  Why do we link the reality to a model then?  A map of a city is not the 
city, but the map lets us plan a tour without walking through the city.  The map 
would be useless if it were as large and as detailed as the city.  The model 
abstracts:  it subtracts most details, retains a few, and idealizes them.  
Abstraction is value.  A painting of a shrimp by Qi Baishi is worth a lot more than 
a photo of a shrimp, or the shrimp itself. 
 The model of the piles of apples lets us reason something about apples 
without having apples.  The reasoning is about the quantities of apple; it abstracts 
the ideas of being additive, scalable, and proportional.  This model ignores all 
other aspects of apples—the smell, the taste, the color, etc. 
 This particular model—the scalar set—has been reasoned thoroughly.  The 
model applies to piles of apples, and to piles of oranges.  The model, generalized 
to vector space, applies to piles containing both apples and oranges.  The model 
applies to durations of time.  The model, with one more feature (the metric), 
applies to displacements in space.  The model, with yet one more feature (the 
constancy of the speed of light), applies to spacetime.  The model achieves the 
economics of abstraction, as well as the economics of scale. 
 
 Different amounts of the same thing. The axioms of scalar set 
formalize a primitive notion.  Elements in a scalar set are different amounts of 
the same things.   
 In modeling the world, we have considerable flexibility to choose the level 
of aggregation.  For example, we may regard all kinds of apples as a single scalar 
set, or regard each species of apples as a distinct scalar set, or even regard each 
species of apples of the same size as a single scalar set.  
 
  Remarks on the Axioms of Scalar Set 
 
 Zero scalar.  The zero scalar by itself forms a set.  This single-element 
set fulfills Axioms 1-10, but violates Axioms 11 and 12.  Thus, this single-element 
set is not a scalar set.  We will learn later that the single-element set is the zero-
dimensional vector space.  
 
 One-dimensional vector space.  The twelve axioms of scalar set fall 
into several categories: 
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• Axioms 1-5 say that scalars in S are additive to one another.   
• Axioms 6-10 say that scalars in S are scalable by numbers in F.   
• Axioms 11 and 12 say that scalars in S are proportional to one another. 

As we will learn later, the scalar set is simply a one-dimensional vector space.  
Axioms 1-10 of scalar set are identical to those of vector space.  Axioms 11 and 12 
specify the dimension. 
 
 Two sets.  The axioms of scalar set mention two sets, S and F.  In most 
applications, F stands for either the set of real numbers R, or the set of complex 
numbers C.  On rare occasions, F stands for the field of rational numbers Q.  A 
scalar set over R is called a real scalar set, a scalar set over C is called a complex 
scalar set, and a scalar set over Q is called a rational scalar set. 
 The axioms of scalar set do not say what a scalar set S is, or what scalars 
are.  Such is the nature of abstraction.  The axioms call for actions:  look at the 
world, find things that fulfill the axioms, and call these things scalars. 
 The axioms also call for another type of actions:  use the axioms to deduce 
logical consequences, use scalars to build new concepts, and use the new 
concepts to create a virtual world.  Examples of new concepts include vectors, 
linear maps, bilinear maps, and inner products.  The virtual world built with 
scalars is called linear algebra.  Once a collection of things in the real world is 
identified as a scalar set, linear algebra provides tools to relate this scalar set to 
other scalar sets. 
 
 Three identity elements.  A scalar set S over a number field F requires 
three identity elements: 

• The identity element in F for the number-number multiplication (i.e., the 
number 1). 

• The identity element in F for the number-number addition (i.e., the 
number 0). 

• The identity element in S for the scalar-scalar addition (i.e., the zero 
scalar 0). 

 The element 1 is the identity element in F for the number-number 
multiplication. The same number 1 appears in Axiom 7 as the identity element in 
F for the number-scalar multiplication.  The axioms of scalar set do not introduce 
any identity element in S for the number-scalar multiplication.   
 The element zero in the set F is an object different from the element zero 
in the set S.  The two objects have the same notation, 0.  We tell them apart by 
seeing them in context.   
 Look at an equation 
    0x = 0 . 
Here x is any element in S, 0 on the left side is the zero element in F, and 0 on the 
right side is the zero element in S.  We can deduce this equation from the axioms 
of scalars.  Axiom 9 says that α +β( )x =αx +βx  for every x in S and for every α  
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and β  in F.  Let  α = β = 0 , the axiom says that   0x = 0x +0x .  Axiom 4 lets us 
subtract the same scalar from both sides of the equation, giving   0 = 0x . 
 Now look at another equation 
   α0 = 0 . 
Here α  is any element in F, and 0 on both sides is the zero element in S.  We can 
also deduce this equation from the axioms.  Axiom 10 says that 

 α x + y( ) =αx +αy   for every x and y in S and for every α  in F.  Let   x = y = 0 , the 
axiom says that  α0 =α0+α0 .  Axiom 4 lets us subtract the same scalar from 
both sides of the equation, giving  0 =α0 . 
 The axioms also lead to another statement.  For any α  in F and  x  in S, 
the equation  
    αx = 0   
implies that at least one of the following is true:  
   α = 0 , 
    x = 0 .   
We prove this statement as follows.  The statement is obviously true if  α = 0 .  
Now suppose that  α ≠ 0 , and we need to prove that   αx = 0  implies that   x = 0 .  
The axioms of number field say that there exists a nonzero element  α

−1  in F, such 
that  α

−1α = 1 . Multiply both sides of   αx = 0  by  α
−1 , and we obtain that 

  
α −1α( )x =α −1 0 .  Axiom 7 says   1x = x . In the above we have just proved  α

−1 0 = 0 .  

Consequently, 
  
α −1α( )x =α −1 0  implies that   x = 0 . 

 We can paraphrase the above statement as follows:   αx ≠ 0  for every 
nonzero α  in F and every nonzero x in S. 
 
 Four binary maps.  The axioms of scalar set mention four binary maps.  
Two of them come with the number field F.  Adding two elements in F gives a 
unique element in F: 
   

   F × F add⎯ →⎯ F , α ,β( )!α + β .  
The number field F is a commutative group under the number-number addition.  
Multiplying two elements in F gives a unique element in F: 
  

   F × F multiply⎯ →⎯⎯ F , α ,β( )!αβ . 
The number field F, with element zero removed, is a commutative group under 
the number-number multiplication.  The number-number multiplication 
distributes over the number-number addition. 
 Axioms 1-5 of scalar set do not mention the set F, and are devoted entirely 
to the scalar-scalar addition on the set S.  Adding two elements in S gives a 
unique element in S: 
  

   S × S add⎯ →⎯ S, x,y( )! x + y . 
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Axioms 1-5 define S as a commutative group, with the individual scalars as the 
elements, the scalar-scalar addition as the operation, and the zero scalar as the 
identity element.   
 Axioms 6-8 introduce another binary map.  Multiplying an element in F 
and an element in S gives a unique element in S:  
  

   F × S multiply⎯ →⎯⎯ S, α ,x( )!αx . 
 The number-scalar multiplication distributes over both the number-
number addition (Axiom 9), and distributes over the scalar-scalar addition 
(Axiom 10). 
 Given two sets S and F, we can think of many possible operations to 
combine elements in the two sets.  Most operations, however, do not appear in 
the axioms of scalar set.  In particular, we exclude from the axioms any operation 
that might represent the addition of an element in F and an element in S, or 
represent the multiplication of two elements in S. 
 
 Five items.  We have modeled piles of apples as a scalar set over a 
number field, and identified the five items   S,+,0,F ,∗( )  as follows. 

•   S = APPLE , each element of which is a pile of apples. 
• + means putting two piles of apples together. 
• 0 means a pile containing no apple. 
•  F = R , the field of real numbers. 
• ∗  means scaling a pile of apples by a real number. 

Listing five items   S,+,0,F ,∗( )  all the time is tiresome.  We often say that apples 
form a scalar set, assuming that the reader knows the five items. 
 
  Change of Unit 
 
 Infinitely many units.  Axiom 3 says S has a zero element.  Indeed, a 
set that contains only the zero element fulfills Axioms 1-10.  Axiom 11 says that 
there exists at least one nonzero element u in S.  For any nonzero α  in F, we have 
just proved that  αu  is a nonzero scalar in S.  A number field, such as Q, R and C, 
has infinitely many elements.  Consequently, a scalar set S over such a number 
field has infinitely many nonzero scalars.  Every nonzero scalar can serve as a 
unit of S.  A unit characterizes a type of scalars.  A number characterizes the size 
of an individual scalar in the set. 
 
 Change of unit. Let u and u  be two nonzero scalars in a scalar set S 
over a number field F.  Axiom 12 ensures that the two scalars are proportional to 
each other: 
  u = pu , 
where p is a number in F, and is the magnitude of the scalar u  in the unit u.   
 A scalar x in S scales with either unit: 
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x =αu,
x = !α !u.

 

where the number α  in F and is the magnitude of the scalar s in the unit u, and 
the number  !α  is the magnitude of the scalar s in the unit u .   
 A combination of the above expressions gives that 
    α = p !α . 
This expression relates three numbers in F.  The magnitude of a scalar converts 
in a way opposite to the way in which the unit of the scalar set converts.  We say 
that the scalar set is contravariant. 
 For example, kilogram and pound are two units of mass.  They convert to 
each other by  
  1 kilogram = 2.20462 pounds.   
Thus, a 10-pound turkey is 4.5 kilograms. 
 For the scalar set APPLE, we use a kilogram of apples as a unit, or a 
pound of apples as a unit, or a dozen of apples as a unit.    
  
 Change of unit is busy work.  When we change the unit of mass from 
a pound to a kilogram, we do not change the nature of things.  Any change in unit 
gives a factor of conversion, often an unsightly number.  Consider one more 
example:    
  1 year = 31536000 seconds.   
Change of unit generates busy work for committees and students, but does not 
change the nature of things.  We can use any nonzero element in a scalar set as a 
unit. 
 
  More Examples of Scalar Sets 
 
 Gold. Pieces of gold form a set, denoted GOLD.  We can add two pieces, 
but not multiply two pieces.  Thus, the set GOLD is not a number field.   
 The set GOLD, however, is a real scalar set. Adding two pieces of gold 
corresponds to a piece of gold.  Multiplying a real number α and a piece of gold 
corresponds to a piece of gold α  times the amount. Pieces of gold are 
proportional to one another.  Any nonzero piece of gold serves as a unit of the 
scalar set.  For example, we can use 1 gram of gold as a unit, or 120 gold atoms as 
a unit. 
  
 Commodities.  Apples and gold are examples of commodities.  
Quantities of each commodity are additive to one another, scalable by real 
numbers, and proportional to one another.  Thus, quantities of each commodity 
form a real scalar set.  This fact enables the application of linear algebra to 
economics. 
 
 Money.  Money also forms a real scalar set.  Historically, money meant 
commodities like gold and silver.  In modern time, money often takes the form of 
currencies.  The dollars and the euros form different scalar sets.  Within the 
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scalar set of dollars, the addition of two amounts means putting the two amounts 
together.  Multiplying a real number α  and an amount of dollars corresponds to 
α  times the amount of dollars.  Amounts of dollars are proportional to one 
another. 
 Money in the United States comes in many units:  penny, nickel, dime, 
quarter, and dollar.  These units correspond to distinct physical objects.  Note the 
factors of conversion: 

  

 

1 penny = 0.01$,
1 nickel = 0.05$,
1 dime = 0.1$,
1 quarter = 0.25$.

 

Also in common use are banknotes of 1, 5, 10, 20, 50, and 100 dollars.  Each of 
them can also serve as a unit of money.  
 
 Goldsilver. Consider a set, denoted GOLDSILVER, each element of 
which is a piece containing some gold and some silver.  Here are some pieces of 
goldsilver: 

  
 

2 grams of gold, 3 grams of silver( ),
200 gold atoms, 500 silver atoms( ).  

Thus, the set GOLDSILVER is the Cartesian product of the two scalar sets APPLE 
and ORANGE: 
   GOLDSILVER = GOLD×SILVER . 
 Two pieces of goldsilver can be put together to form another piece of 
goldsilver. Multiplying a piece of goldsilver by a real number α  means finding 
another piece α  times the amounts of gold and silver.  Thus, the pieces of 
goldsilver are additive to one another, and scalable by real numbers.  Indeed, the 
pieces of goldsilver fulfill Axioms 1-11. 
 But the pieces of goldsilver violate Axiom 12. The pieces containing 
different proportions of gold and silver are, of course, not proportional to one 
another. Thus, the pieces of goldsilver do not form a scalar set.  We will see later 
that the pieces of goldsilver form a two-dimensional vector space.  Indeed, the 
Cartesian product of any two scalar sets is a two-dimensional vector space. 
 
 Proportional goldsilver.  Consider the collection of pieces of goldsilver 
of the form 
   α 2 gold atoms, 3 silver atoms( ) , 
where α  is a real number.  Pieces in this collection are additive to one another, 
scalable by numbers, and proportional to one another.  The collection satisfies 
Axioms 1-12, and is a real scalar set. 
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 Ordered pair of real numbers.  The example of GOLDSILVER is 
similar to the collection of ordered pair of real numbers,   R2 .  Here are some 
ordered pairs of real numbers 
   0,0( ), 1,2( ), 1,3( ), 100,200( ) . 
 Ordered pairs of numbers are additive to one another.  For example, 
   2,3( )+ 100,500( ) = 102,503( ) . 
The addition of two pairs requires two additions in parallel: adding the first items 
in the two pairs, and adding the second items in the two pairs.  The addition of 
two pairs produces another pair.  The pair-pair addition fulfills Axioms 1-5. 
 Ordered pairs of numbers are scalable by numbers.  For example, 
   7 2,3( ) = 14,21( ) , 

  
 

2 3,5( ) = 3 2,5 2( ) . 

The multiplication of a number α  and a pair requires two multiplications in 
parallel:  multiplying α with the first item of the pair, and multiplying α with the 
second item of the pair.  The multiplication a number and a pair produces 
another pair, and fulfills Axioms 6-10. 
 The set of ordered pairs   R2  also fulfills Axiom 11, but violates Axiom 12.  
Thus,   R2  is not a scalar set.  We will learn later that   R2  is a two-dimensional 
vector space. 
 But proportional ordered pairs of real numbers form a scalar set.  
Consider the set 
  

  
S = s s =α 1,2( ),α ∈R{ } . 

This set, along with the pair-pair addition and the number-pair multiplication 
defined above, fulfills Axioms 1-12.  The set S is a real scalar set. 
 The above considerations are readily generalized to n-tuples over a 
number field,  F n . 
 
 Intelligence.  Like happiness and love, intelligence does not scale.  We 
readily appreciate intelligence in people, animals, or even plants. We even devise 
tests that purport to measure intelligence quotients (IQ) of individuals.  But we 
cannot model intelligence by a scalar set.     
 
 Rational multiples of an irrational number.  The set of all numbers 
of form   p 2 , where p is a rational number, is a rational scalar set. 

 The set of all numbers of form   p 2 +q 3 , where p are q are rational 
numbers, is not a scalar set.  The set obeys Axioms 1-11, but violates Axiom 12. 
 
 Complex numbers.  The set of all numbers of form bi , where b is a real 
number and i = −1 , is a real scalar set. 



For updated version of this document see http://imechanica.org/node/19709  Zhigang Suo     

February 2, 2017 11 

 The set of all numbers of form  a +bi , where a are b are real numbers and 
i = −1 , is not a real scalar set.  The set obeys Axioms 1-11, but violates Axiom 12.  
The field of complex numbers, however, is a complex scalar set. 
 
  Scalars in Nature*   
 
 Like geometry and analysis, algebra has long been a part of the language 
that describes the world.  We have shown that a scalar set models different 
quantities of the same thing, such as piles of apples, pieces of gold, and amounts 
of money.  Here we look at fundamental scalar sets in Nature. 
 
 International System of Units (SI).  The International System of 
Units is built on seven base units: 

• second for time 
• meter for length 
• kilogram for mass 
• ampere for electric current 
• kelvin for temperature 
• mole for amount of substance 
• candela for luminous intensity 

 
 Of the seven types of quantities, only temperature is not a scalar. 

 
 Time.  The set of all moments in time is not a scalar set, because it is 
unclear how we define the addition of two moments, or the multiplication of a 
moment and a number.  However, we can form a scalar set by the following 
procedure.  Mark a particular moment as the reference.  The difference of any 
other moment relative to this reference defines a directed interval, called 
duration.  All durations form a scalar set over the field of real numbers.  The 
addition of two durations x and y is a durations, formed by placing the tail of x at 
the reference, and placing the tail of y at the head of x.  The multiplication of a 
real number α  and a duration x is a duration α times that of x. 
 Any nonzero duration can serve as a unit of time.  The unit of time can be, 
for example, the duration for a full spin of the Earth, called a day.  The modern 
unit of time is second, defined as 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the ground 
state of the cesium 133 atom. 
 
 Length.  Points on a straight line do not form a scalar set, because it is 
unclear how we define the addition of two points, or the multiplication of a point 
and a number.  However, we can form a scalar set by the following procedure.  
Mark a particular point on the line as the origin.  Any point on the line relative to 
the origin defines an arrow.  Each arrow has a direction and a length.   
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 As we discussed before, the arrows in the line form a scalar set over the 
field of real numbers.  The addition of two arrows x and y is an arrow, formed by 
placing the tail of x at the origin, and placing the tail of y at the head of x.  The 
multiplication of a real number α  and an arrow x is an arrow of length α times 
that of x. 
 Any distance can serve as a unit of length.  The rod preserved near Paris 
defines a unit of length, the meter.  To change one unit of length to another, we 
need to know the factor of conversion.  For example,  
  1 m = 39.375 inch.  
  We now know that the speed of light in vacuum is a constant, independent 
of the direction of propagation and the velocity of the emitter of the light.  In a 
rational system of units, the speed of light in vacuum is set to be 1.  Consequently, 
length and time have the same unit.  In this system of units, second and meter are 
just two units of spacetime.  They convert according to 
  1 s = 299,792,458 m. 
The factor of conversion is exact by convention.   
 Thus, if we use second as a unit of time, and use meter a unit of length, 
the speed of light in vacuum is   
  c = 299,792,458 m/s. 
This number is exact by convention.  Nature creates a beauty.  Human beings 
turn it into a beast. 
 
 Mass.  Quantities of mass form a scalar set.  You might as well regard this 
statement as a law of physics.   
 For this scalar set, the unit of mass, kilogram, is the mass of a block metal, 
called the International Prototype Kilogram (IPK), preserved in a vault located in 
Sevres, France.  Any other mass equals this unit times a real number.  For 
example, 1.7 kg means a mass, which is 1.7 times the mass of the IPK.  The mass 
of the IPK is an element in the scalar set of masses, and by an international 
convention we agree to call it a unit of mass.  The mass 1.7 kg is another element 
in the set. 
 
 Charge.  Quantities of electric charge form a scalar set.  You should 
regard this statement as a law of physics.  Electric charges are quantized.  Every 
electron carries the same charge.  Every proton carries the same charge.  The 
charge on an electron is negative to a charge on a proton.   
 We can of course use the charge on a proton as a unit for charge, a unit 
known as the elementary charge.  The SI unit for charge is called coulomb, which 
is defined in a convoluted way.  The two units convert as follows:   
   change on one proton =  1.60217662×10−19coulombs . 
 
 Amount.  Amounts of a substance form a scalar set.  Each element in the 
set is a certain amount of the substance.  We have looked at an example: pieces of 
gold form a scalar set.  If a substance is an aggregate of a single species of atoms, 
such as gold, we can use one atom as the unit for the scalar set.  If a substance is 
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an aggregate of a single species of molecules, such as water, we can use one 
molecule as the unit of the scalar set.   
 Of course, any nonzero amount of the substance can serve as a unit.  A 
commonly used unit is mole, defined by the number of atoms in 12 grams of C-12, 
an isotope of carbon.  Here is the factor of conversion between the two units: 
   1 mole = 6.022×1023number of atoms (or molecules) . 
This factor of conversion is known as the Avogadro constant.      
 
 Temperature is not a scalar.  Since antiquity, people have been 
devising ways to map temperature to numbers.  Many scientists call the 
temperature a scalar.  This usage is inconsistent with our definition of scalar.  
Temperatures form an ordered set, but not a scalar set.  The addition of two 
temperatures is meaningless.  The multiplication of a temperature and a number 
is also meaningless.  Temperatures are not proportional to one another.     
 By an unfortunate coincidence of English, a system of numerical labeling 
of temperatures is called a scale of temperature.  Of course, temperatures do not 
scale in the sense of being scalars.  A scale of temperatures is akin to a scale of 
earthquakes, or a scale of terrorist threat.  Such a scale merely indicates the order 
of things, not the proportion of things. 
 The SI unit for temperature is kelvin, defined in a bizarre way, which you 
can find online.  However, a rational definition of the unit for temperature is also 
available.  It relies on the relation between temperature, energy, and entropy: 

  
 
T = ∂U

∂S
. 

Entropy is a dimensionless number.  Consequently, a unit for temperature can be 
identical to the unit for energy, which is joule.   
 The two units for temperature convert according to 
   1 kelvin ≈ 1.38×10−23  joule . 
The factor of conversion is called Boltzmann’s constant.  Why do we honor the 
three great scientists in this bizarre way? 
 
 Luminous intensity.  Search online. 
    
 Properties of a Substance* 
   
 Substance, state, and property.  A pure substance is an aggregate of 
atoms or molecules of a single species. Water is a pure substance; it aggregates a 
single species of molecules, H2O.  Wine is not a pure substance; it aggregates 
multiple species of molecules. 
 Let us focus on a pure substance.  The substance reaches a state of 
equilibrium when the properties of the substance are constant in time.  
Commonly measured properties include temperature, pressure, amount, mass, 
volume, energy, and entropy.  Of these seven properties, the first five were known 
in antiquity, but energy and entropy were discovered in the nineteenth century.  
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 Extensive property and intensive property.  Properties of a 
substance have different algebraic structures.  Of the seven properties, 
temperature is not a scalar, but the other six are scalars. 
 Of the six scalars, pressure is peculiar:  it does not share another attribute 
common to amount, mass, volume, energy, and entropy.  The last five properties 
are proportional to one another when temperature and pressure are fixed.  Given 
a substance at fixed temperature and pressure, when the amount of a substance 
doubles, the mass, volume, energy, and entropy also double.  Any property 
proportional to the amount of a substance at fixed temperature and pressure is 
called an extensive property.  Temperature and pressure are called intensive 
properties.   
 Every extensive property is a scalar.  Some intensive properties are scalars, 
but others are not.  
 

       
  
 An isolated system conserves mass, volume and energy, but 
maximizes entropy.  Of all extensive properties, entropy differs from the rest 
in one aspect.  When a substance is just isolated from the rest of the world, the 
substance is not in a state of equilibrium.  For example, when a half bottle of 
liquid water is just isolated from the rest of the world, the liquid may move 
violently, some molecules will vaporize to fill the other half of the bottle, and 
some molecules might even freeze into ice.  After being isolated for some time, 
the substance approaches a state equilibrium.   
 As the isolated substance evolves in time, its mass, volume and energy 
remains constant:  these quantities are conserved.  Entropy of the isolated 
substance, however, is not conserved. As the isolated substance evolves in time, 
its entropy increases, and attains maximum when the substance reaches a state of 
equilibrium.     
 
  Number Field as Scalar Set 
 
 A number field is a scalar set over itself.  A number field and a 
scalar set have different algebraic structures.  The axioms of number field and the 
axioms of scalar set are different, but have many similarities. Indeed, a number 
field F is a scalar set over itself.   
 Axioms 1-5 of scalar set are identical to those of number field.  Axioms 6-
10 of scalar set reduce to those of number field, provided the elements in the 
scalar set are identical to those in F.  For any two elements α  and x in F, the 
multiplication αx  is an element in F.  Any nonzero number u in F serves as a unit 

 scalar non-scalar 
extensive amount, mass, volume, energy, entropy impossible 
intensive pressure temperature 
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for the scalar set.  For any number x in F, there exists a number α  in F, such that 
 x =αu . 
 
 Numerical representation of a scalar set. We have just confirmed 
that a number field is a scalar set over itself.  The converse is not true.  A scalar 
set, in general, is not a number field.  As we have noted, pieces of gold form a 
scalar set, but not a number field. 
 Even though a scalar set in general is not a number field, we can 
represent every scalar set by a number field.  Let S be a scalar set over a number 
field F.  For a fixed nonzero scalar u in S, Axiom 12 says that every element x in S 
is proportional to u—that is, for every x in S, there exists a number α  in F such 
that  x =αu .  We can make a stronger statement.  Given a nonzero u of S, for 
every x in S, there exists a unique number α  in F such that  x =αu .  To see this 
uniqueness, write a scalar x in S as 
   x =αu , 
   x = βu , 
where α  and β  are numbers in F.  The difference of the two expressions is  
    0 = α −β( )u .   
This statement implies that  
  α = β . 
Thus, we can specify a scalar set by a nonzero element u and a number field F.  
We generate all other elements in the scalar set by numerical multiples of u. 
 Once we fix a nonzero scalar u in S, we have just shown that, for every x in 
S, there exists a unique α in F such that 
   x =αu . 
This equation defines a bijection between the sets S and F—that is, a one-one 
correspondence between an element x in S and an element α in F: 
   x ↔α .   
In this sense, the number α  in F represents the scalar x in S.    
 
 Number-scalar bijection preserves proportion.  This bijection, 
 x =αu ,  x ↔α , preserves proportion.  For any number λ  in F,  λx  is also a 
scalar in S, and the magnitude of this scalar in the unit u is the number λα .  
Write 
   λx = λαu . 
Consequently, the bijection also associates the scalar  λx  to its magnitude:  
   λx ↔λα . 
The numerical representation of a scalar set is a proportion-preserving bijection 
between two scalar sets S and F. 
 
  Ordered set and scalar set.  The field of real numbers, R, is an 
ordered set.  There exists a bijection between R and real scalar set S.  Thus, any 
real scalar set is an ordered set.   
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 The converse is not true.  Not every ordered set is a scalar set.  For 
example, temperatures form an ordered set, but not a scalar set.  Addresses of 
buildings in a street form an ordered set, but not a scalar set.  Buildings are not 
additive to one another, or scalable by numbers, or proportional to one another.   
 The field of complex numbers, C, is an unordered set.  There exists a 
bijection between C and any complex scalar set. Thus, any complex scalar set is 
an unordered set. 
 
  Arrows in a Line   
 
 This scalar set is so important that we single it out for a detailed 
discussion.  Watch how this example specifies the five items   S,+,0,F ,∗( )  and 
fulfills the twelve axioms of scalars.  Arrows in a line are important because we 
use them to represent any real scalar set on a piece of paper. 
 
 Arrows form a set.  An arrow drawn in a straight line has a length and 
a direction, pointing from the tail to the head.  The collection of all such arrows 
forms a set S.  Two arrows are regarded as the same element in S if one of them 
can be translated onto the other.  We designate each arrow by a symbol, such as x, 
y, and z. 
 

      
 
 Of course, arrows do not have to be confined to a straight line, so long as 
they are parallel, and two arrows are regarded as the same element in S if one of 
them can be translated onto the other. 
 

   
 
 We next confirm that the set of arrows S in a straight line is a real scalar 
set.  To save space, we will draw arrows on a horizontal line.  
 
 Arrows are additive to one another.  To fulfill Axiom 1, define the 
arrow-arrow addition as follows.  For two arrows x and y, translate the arrows to 
make the tail of y coincide with the head of x.  Call the combination the arrow 
x +y , with its tail coinciding with the tail of x , and its head coinciding with the 
head of y . 
 

 x
 y  z

 x  y  z
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 We can confirm that the arrow-arrow addition is associative—that is the 
operation fulfills Axiom 2.   
 To fulfill Axiom 3, we include in the set S the zero arrow, which has zero 
length and unspecified direction. To fulfill Axiom 4, for every arrow x, we define 
 −x  as an arrow of the same length but in the opposite direction. 
 

   
 
 The arrow-arrow addition clearly commutes.  Indeed, the arrow-arrow 
addition so defined fulfills Axioms 1-5.  That is, the arrows form a commutative 
group. 
 
 Arrows are scalable by real numbers.  Define the number-arrow 
multiplication as follows.  For a positive real number α  and an arrow x, we 
define αx  to be a arrow of the same direction as x, and of length α  times that of 
x.  For a negative number α , we define αx  to be an arrow in the opposite 
direction of x, of length α  times that of x.  The number-arrow multiplication so 
defined fulfills Axioms 6-10. 
 

  
   
 Arrows in a line are proportional to one another.  Any nonzero 
arrow u serves as a unit of the scalar set S.  For any arrow x in the line, there 
exists a real number α , such that  x =αu .   
  
 Graphical representation of a real scalar set.  We have just 
confirmed that arrows in a line form a real scalar set.  We now use the arrows to 
represent any real scalar set.  
 For example, consider the scalar set GOLD.  Choose any nonzero piece of 
gold as a unit u.  For example, u can be one gram of gold.  Represent the piece u 
as an arrow in a line. The line itself is called coordinate.  The origin of the 
coordinate represents the zero scalar (i.e., a piece containing no gold).  Each 
arrow from the origin to a point in the coordinate represents a piece of gold.  To 
guide the eye, mark on the coordinate several scalars proportional to u. 
 

 
 

 x  −x

-3              -2              -1               0       1             2                3                4             

 u

 x   2x   −2x

 x  y  x + y
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 Arrow-gold bijection preserves proportion.  In representing pieces 
of gold by arrows in a line, we establish a bijection between the two sets as 
follows. We choose a piece of gold u as a unit of the scalar set GOLD.  We choose 
an arrow  v  as a unit of the scalar set of arrows in a line.  The bijection associates 
the unit of GOLD to the unit of ARROW: 
    u ↔ v .   
For any real number α , the bijection associates the piece of gold  αu  to the arrow 
 αv : 
    αu ↔αv . 
The bijection preserves the proportion of the two scalar sets. 
 
  Isomorphism 
 
 Piles of apples, pieces of gold, field of real numbers, and arrows in a line 
are things of different types.  Yet one type of things can represent another. We 
now make this representation precise. 
 
 Isomorphism.  Two scalar sets S and T over a number field F are called 
isomorphic if there exists a bijection between S and T such that, if the bijection 
associates a scalar s in S with a scalar t in T, then the bijection also associates  αs  
and  αt  for every α  in F.  That is, 
   s ↔ t  implies  αs ↔αt . 
Such a bijection between two scalar sets is called an isomorphism. 
 An isomorphism is not just a bijection between two unstructured sets, but 
is a bijection of a particular type, taking advantage of S and T being scalar sets.  
An isomorphism between two sets is a bijection that preserves proportion. 
  
 Isomorphism is an equivalence relation.  Being isomorphic is an 
equivalence relation on the collection of all scalar sets.  We can divide the 
collection of all scalar sets by a partition, each part of which is an equivalent 
class, consisting of scalar sets over the same number field F. Any scalar set over a 
number field F is isomorphic (equivalent) to  F .  We may designate each 
equivalent class by a reprehensive,  F . 
 We have seen the equivalence of the real scalar sets: 
   

   APPLE ~ GOLD ∼ R ~ arrows in a line( ) . 
Such is the power of abstraction. 
 Two scalar sets are isomorphic if and only if they are over the same 
number field.  GOLD is not isomorphic to GOLDSILVER.  The former is a real 
scalar set (a one-dimensional vector space), and the latter is a two-dimensional 
real vector space.  However, GOLD is isomorphic to a collection of proportional 
pieces of goldsilver.  The latter is also a real scalar set.    
 Of course, all complex scalar sets are isomorphic.  But a real scalar set is 
not isomorphic to a complex scalar set.   
 Being isomorphic does not mean being the same.  We do not confuse a 
piece of gold with a pile of apples.  We often say that we model a quantity, such as 
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distance or duration, by a real variable.  What we really mean is that we model 
distances by one real scalar set, and model durations by another real scalar set. 
 
 Commodity and money.  Quantities of each commodity form a real 
scalar set.  All commodities are isomorphic.    We trade commodities.  A piece of 
cloth can trade for a bushel of wheat.  Money is a “universal scalar” to help us 
trade commodities. Money is isomorphic to every real scalar set.  We even say 
“time is money”.         
 
 Bean counters abuse isomorphism.  Human beings have been 
obsessive bean counters since antiquity.  We use a bag of beans to represent a 
piece of gold, a parcel of land, or a pile of apples. We count beans whenever we 
can.  Bags of beans form a real scalar set, which is isomorphic to any other real 
scalar set. 
 We count beans even when we should not.  Subconsciously we judge 
people by their heights, weights, or salaries.  Making bags of beans isomorphic to 
things in the world is often impossible, because many things in the world do not 
form scalar sets.  Love does not scale.  Happiness does not scale.   
 An intelligence quotient (IQ) is a score obtained by a person on a test 
purported to map human intelligence to a set of numbers. Various kinds of 
intelligence do not form a scalar set.  They do not even form an ordered set.  
Some people are good at playing basketballs, others are good at counting scores, 
and still others are good at making money out of the games.  These skills are 
different kinds of intelligence.  They are not additive to one another, or scalable 
by numbers, or proportional to one another.  No isomorphism will ever exist 
between various kinds of intelligence and the set of real numbers.     
 We measure the accomplishments of researchers by the numbers of 
citations to their published papers.  The numbers of citations form a scalar set, 
but the accomplishments of researchers do not.  No isomorphism will ever exist 
between the two sets. 
 
  Linear Map between Two Scalar Sets   
 
 Two scalar sets S and T over a number field F are isomorphic because 
there exists a proportion-preserving bijection between the two scalar sets.  If the 
bijection relates an element s in S to an element t in T, 
   s ↔ t ,  
then the bijection also relates  αs  to  αt , 
   αs ↔αt , 
for every number α  in F.  Isomorphism is an equivalence relation: 
    S ~T .  
 Often many proportion-preserving bijections exist between two scalar sets.  
The above notation does not differentiate different bijections.       
 



For updated version of this document see http://imechanica.org/node/19709  Zhigang Suo     

February 2, 2017 20 

 Linear map.  Let S and T be two scalar sets over a number field F.  A 
map g associates every element s in S to a unique element t in T. Write 
  g :S→T , 
  t = g s( ) .  
The map is a linear map if 
  g αx( ) =αg x( )   
for any α  in F and any x in S. 
 An isomorphism is a linear map, but not every linear map is an 
isomorphism.   The definition of linear map allows zero map, a map that sends 
every element in S to the zero element in T.  The zero map is not bijective, and is 
not an isomorphism.  All nonzero linear maps between S and T are isomorphism. 
 
 Examples.  Rate of exchange between two currencies. Amounts of 
dollars form one real scalar set D, and amounts of euros form another real scalar 
set E.  A rate of exchange between the two currencies is a linear map,   r : D→ E .  
For example, a rate of exchange, 
    r = 0.9 euros/dolar , 
means that 0.9 euros exchange with 1 dollar.  When the amount of dollars d 
exchanges with the amount of euros e, we write 
   e = rd . 
 
 Price of a commodity.  Amounts of gold form one real scalar set G, and 
amounts of dollars form another real scalar set D.  A price of gold is a linear map, 
  p :G→ D .  A common unit for price of gold is dollars per ounce of gold.  The 
price of gold changes from time to time.  Each price is a linear map between the 
two scalar sets. 
 
 Density of a substance.   Let M be the set of different masses of gold, and 
V be the set of different volumes.  The linear map ρ :V →M  is the density of gold.  
The density of gold changes with temperature. 
 Atomic mass.  Let M be the mass of a piece of gold, and N be the number 
of gold atom in the piece.   The linear map   µ : N → M  is the atomic mass of gold.  
The atomic mass of gold is fixed. 
 Speed.  Let T be the set of directed intervals of time, and D be the set of 
directed segments on a geometric line.  The linear map c :T→D  is the speed. 
 Power.  Let T be the set of directed intervals of time, and E be the set of 
differences in energy.  The linear map P :T→ E  is the power. 
 Electric current.  Let T be the set of directed intervals of time, and C be 
the set of various amounts of electric charge.  The linear map I :T→C  is the 
electric current. 
 Electric potential.  Let C be the set of various amounts of electric charge, 
and E be the set of various amounts of energy.   The linear map φ :C→ E  is the 
electric potential. 
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 Chemical potential.  Let N be the set of various amounts of a species of 
molecules, and E be the set of various amounts of energy.   The linear map 
µ :N→ E  is the chemical potential. 
 
 Magnitude of a linear map. The magnitude of a linear map is relative 
to the units of the two scalar sets.  Let S and T be two scalar sets over a number 
field F, and g :S→T  be a linear map.  The linear map associates an element s in 
S to an element t in T: 
  t = gs . 
Let u be a unit of S.  An element s in S scales with u, namely,  
  s = s

M
u .   

This expression defines the number s
M

 in F as the magnitude of the scalar s 
relative to the unit u.  Similarly, let v be a unit of T.  An element t in T scales with 
v, namely,  
  t = t

M
v .   

This expression defines the number t
M

 in F as the magnitude of the scalar t 
relative to the unit v.   
 Because gs  is a linear map, we write 
  gs = g s

M
u( ) = sMgu . 

Note that u is an element in S, so that gu  is an element in T, and must scale with 
v.  We write 
    gu = g

M
v . 

This expression maps the unit u of S to the unit v of T.  We call the number g
M

 in 
F as the magnitude of the linear map in the units u and v.   
 A combination of the above expressions gives that  
  t

M
v = g

M
s
M
v . 

The components must equal: 
  t

M
= g

M
s
M

 
This expression relates the three magnitudes.  They are all numbers in F. 
 
 Change of units of the two scalar sets.  Let u and u  be two non-zero 
scalars in S.  The two scalars are proportional to each other: 
  u = pu , 
where p is a number in F, and is the magnitude of the scalar u  relative to the 
scalar u.  Let v and v  be two non-zero scalars in S.  The two scalars are 
proportional to each other: 
  v = rv , 
where r is a number in F, and is the magnitude of the scalar v  relative to the 
scalar v.    
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 Recall that gu = g
M
v  defines the number g

M
 in F as the magnitude of the 

linear map g relative to the two units u and v.  Similarly, g u( ) = gM v  defines the 

number g
M

 in F as the magnitude of the linear map g relative to the two units u  

and v .   The two magnitudes g
M

 and g
M

 are related as 

     g
M
= rg

M
/ p . 

Thus the magnitude of the linear map is covariant with respect to the unit of T, 
but contravariant with respect to the unit of S. 
 
 Examples. Rate of exchange between two currencies.  Say the rate of 
exchange between dollars and Euros is 
   1 dollar = 0.9 euros . 
This rate of exchange between the two currencies is stated when the unit of one 
currency is a dollar, and the unit of the other currency is a euro.   
 If we use a dime as a unit for the currency in the US, then the same rate of 
exchange between the two currencies is written as 
    1 dime = 0.09 euros . 
The magnitude of a rate of exchange depends on the units of the two currencies. 
   
 Linear map between two sets of numbers.  Let S be the set of all numbers 
of form q 2 , and T be the set of all numbers of form bi , where q and b are 

rational numbers, and i = −1 .  A particular a linear map g :S→T  associates an 

element q 2  in S to an element 1.6qi  in T; that is, g q 2( ) = 1.6qi .  This 

description is independent of the choice of units of the two scalar sets.  
 We can also choose units for the two scalar sets, say u =2 2  as a unit of S, 
and v = 3i  as a unit of T.  Write an element s in S as s = ŝ2 2 , and an element t in 
T as t = t̂3i , where ŝ  and t̂  are rational numbers, and are the magnitudes of the 
two scalars relative the two units.   
 Recall that g u( ) = ĝv  defines the rational number ĝ  as the magnitude of 
the linear map g relative to the two units u and v.  Write 
  g 2 2( ) = 1.6( )2i = 1.6( ) 2/3( ) 3i( ) ,  

so that the magnitude of the linear map g is ĝ= 1.6( ) 2/3( ) . 
 
 The collection of all linear maps from one scalar set to another 
scalar set. Let S and T be scalar sets over a number field F.  Let L S,T( )  be the 
collection of all linear maps from S to T.  For every element s in S, every number 
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α  in F, and every linear map g :S→T , α gs( )  is an element in T.  The 
multiplication of α  and g, written as αg , is defined by  
  αg( )s =α gs( ) . 

That is, the collection L S,T( )  is also a scalar set over the number field F. 
 
 Examples.  Prices of a commodity.  A price of a commodity is the 
amount money for a unit amount of the commodity.  The price need not be fixed.  
Any two prices are proportional to one another.  The collection of all prices of a 
commodity forms a scalar set.  
 Maps between numbers.  Let S be the set of all numbers of form q 2 , 
and T be the set of all numbers of form bi , where q and b are rational numbers, 
and i = −1 .  Each linear from S to T associates an element q 2  in S to an 
element rqi  in T, where r is a particular rational number.  That is, each rational 
number r corresponds to a distinct linear map from S to T.  All these linear maps 
constitute L S,T( ) . 
 
 Successive linear maps. Let S, T and U be three scalar sets over a 
number field F.  Consider two successive linear maps, g :S→T  and h :T→U .  
We can use the successive maps to define a map hg :S→U . 
 For example, we can sell one commodity for money, and then use the 
money to buy another commodity.  The two successive linear maps give a map 
that from one commodity to the other commodity.  
 
  Complex Scalar Set 
 
 In the above development, we have mostly assumed that the number field 
is the field of real numbers.  Much of the development is applicable to the field of 
complex numbers, with two significant exceptions.  First, real scalar sets are 
ordered sets, but complex scalar sets are unordered sets.  Second, the graphical 
representation of a real scalar set does not work for a complex scalar set.  We 
have discussed the first difference before, and we now discuss the second 
difference. 
 
 Complex scalar set.  Let S be a scalar set over the field of complex 
numbers C.  We call such a scalar set a complex scalar.  We have shown that every 
scalar set over a number field F is isomorphic to F.  Consequently, every complex 
scalar set S is isomorphic to the field of complex numbers C.  Since we have 
represented complex numbers by arrows in a plane, the complex scalar set S 
must be isomorphic to arrows in a plane.   
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 We next create a bijection between the complex scalar set S and the 
arrows in the plane.  We represent each scalar in S by an arrow in the plane, and 
label each scalar by a symbol, such as u, v, and w.   
 

   
 
 Complex scalars are additive to one another.  The addition of two 
arrows u and v follows the same rule in geometry.  Translate arrow v so that the 
tail of v coincides with the head of u.  The arrow from the tail of u to the head of v 
gives the arrow  u + v .  

  
 
 Complex scalars are scalable by complex numbers.  Represent a 
scalar u by an arrow in a plane.  The scalar 2u is an arrow in the same direction as 
u and twice the length of u.  The scalar 2iu is an arrow in the direction rotated 90 
degrees from that of u and twice the length of u.   
 In general write a complex number as 
    α = rexp iφ( ) , 
where r is modulus of α , and φ  the phase of α .  Thus, the scalar  αu  is an arrow 
in the direction rotated by an angle φ  from that of u, and is of length r times that 
of u. 

    
 
 Complex scalars are proportional to one another.  Once we 
represent a nonzero scalar u in S as an arrow in a plane, any other scalar v in S is 
also an arrow in the plane, obtained by scaling by a complex number α : 
   v =αu . 
By the number-scalar multiplication, the complex number α  stretches and 
rotates the scalar u. 
 
 Do not confuse a complex scalar set with a two-dimensional 
real vector space.  A complex scalar set is isomorphic to C, and a two-
dimensional real vector space is isomorphic to   R2 .  The two sets, C and   R2 , have 
different algebraic structures. 

 w u
 v

 u
  2u   2iu

 ru
 αu

φ

 u
 v  u

 v

 u + v
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 Examples of complex scalars.  In analyzing oscillatory electrical 
circuits and mechanical structures, we often represent quantities as complex 
scalar sets. 
 
   Scalars Build Linear Algebra 
 
 We have listed the axioms of scalars, used scalars to model things in the 
real world, and deduced logical consequences of the axioms.  We are ready to use 
scalars to build the virtual world of linear algebra.  For example, we will build the 
following players in this virtual world. 
 
 Vector space.  The Cartesian product of n scalar sets   S1 ,...,Sn  over a 
number field F is called an n-dimensional vector space V over F.  Write 
    V = S1 × ...× Sn . 

Each element x in V is called a vector, and is an n-tuple of scalars   s1  in   S1 ,...,  sn  

in  Sn : 

    x = s1 ,...,sn( ) . 

 Vectors are additive to one another.  Let   x = a1 ,...,an( )  and   y = b1 ,...,bn( )  
be two vectors in V.  Define the vector-vector addition by the scalar-scalar 
additions: 
    x + y = a1 +b1 ,...,an +bn( ) . 

 Vectors are scalable by numbers in F.  Let   x = s1 ,...,sn( )  be a vector in V 
and α  be a number in F.  Define the number-vector multiplication by the 
number-scalar multiplications: 
     αx = αs1 ,...,αsn( ) . 
 In general, vectors are not proportional to one another.  But we can 
represent any vector x in V using units   u1 ,...,un  in the scalar sets   S1 ,...,Sn : 

    x = α1u1 ,...,α2un( ) , 

where  α1 ,...,α2  are numbers in F. 
     
 Linear map.  Let V and W be two vector spaces over a number field F.  A 
linear map is a map  
  

   A :V → S, x! A x( )   
such that 
   A αx + βy( ) =α A x( )+ βA y( )  
for every x and y in V and every α  and β  in F. 
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 Linear form.  Let S be a scalar set and V be an n-dimensional vector 
space, both over a number field F.  A linear form is a map   f :V → S  such that 
   f αx + βy( ) =α f x( )+ β f y( )  
for every x and y in V and every α  and β  in F. 
 Given V, S, and F, we can define many linear forms.  The collection of all 
the linear forms is an n-dimensional vector space over F, called the dual space of 
V with respect to S. 
 
 Bilinear form.  Let V and W be two vector spaces and S be a scalar set, 
all over a number field F.  A bilinear form is a map   B :V ×W → S  such that 

  B v,w( )  is a linear form in v for every fixed w, and a linear form in w for every 
fixed v. 
 
 Tensors.  Let V be an n-dimensional vector space over a number field F, 
and   S1 ,...,Sk  be several scalar sets also over F.  From the list   V ,S1 ,...,Sk ,F( )  we 
create things—such as forms, dual spaces, and maps—that preserve the two 
properties:  additivity and scalability.  These things are collectively called tensors 
over   V ,S1 ,...,Sk ,F( ) . 
 Tensors are of particular significance in physics.  For example, classical 
physics is built upon a single three-dimensional physical space, along with a 
number of scalar sets like time, mass, energy, and charge.  The vector space, as 
well as every scalar set, is over the field of real numbers.  As we will learn later, 
other vectors, such as forces and electric fields, are derived from the physical 
space and scalar sets. 
 
  Scalars in Textbooks  
 
 Scalars in textbooks of linear algebra.  Textbooks of linear algebra 
use the word “scalar” in two ways.  They correspond to two different algebraic 
structures.  
 In the first usage, the word scalar is a synonym to the word number, an 
element in a number field F.  As we have seen before, a number field is a set F 
closed under two operations:  addition and multiplication.  Adding two elements 
in F gives an element in F, and multiplying two elements in F gives an element in 
F. 
 In the second usage, the word scalar appears in the definitions of linear 
form, bilinear form, quadratic form, and inner product. In this second usage, the 
scalar is an element of a set S, which we call a scalar set over a number field F. 
Adding two elements in S gives an element in S, multiplying an element in S with 
an element in F gives in an element in S, but multiplying two elements in S does 
not give an element in S.  In fact, the last operation is meaningless in the axioms 
of scalar set.  
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 Scalars in textbooks of physics.  In physics, the word scalar is used to 
indicate a property like mass, volume, charge, and energy.  Quantities of such a 
property are additive to one another, scalable by numbers, and proportional to 
one another.  The usage in physics is consistent with the second usage in linear 
algebra, but is inconsistent with the first one in several ways: 

• A physical property like mass is more than just a number; it has a unit.  A 
unit of a scalar set is a concrete thing, such as a pile of apples, a piece of 
gold, and a parcel of land. 

• The multiplication defined on a number field makes no sense to a physical 
quantity like mass:  the multiplication of two elements in a number field  
F gives yet another element in F, but the multiplication of two masses 
does not give another mass. 

• If we regard both mass and volume as elements in a number field F, then 
we need to assign a meaning to the addition of mass and volume.  What 
does that even mean?  There is only one field of real numbers, but there 
are many real scalar sets.  Elements in different scalar sets do not add. 

 
 Do not confuse number and scalar.  For a scalar set S over a number 
field F, given a unit u, a scalar x in S scales with the unit,  x =αu , where the 
magnitude α  is a number in F.  For the set GOLD, the scalar is a physical thing, a 
piece of gold, and the magnitude is a real number.  We do not confuse a piece of 
gold with a real number.  
 Using the same word scalar in two ways, textbooks of linear algebra 
confuse two distinct algebraic structures.  We will not perpetuate this bad 
practice.  Rather, we will call each element in the field F a number, and will 
reserve the word scalar for an element in a scalar set.  
  
 Gibbs’s error.   The great American physicist Gibbs was an early 
developer of vector analysis.  Page 1 of his textbook (Gibbs and Wilson, Vector 
Analysis, 1901) gave two definitions: 
 Definition:  A vector is a quantity which is considered as possession 
direction as well as magnitude. 
 Definition:  A scalar is a quantity which is considered as possessing 
magnitude but no direction. 
 Gibbs’s distinction between vector and scalar is false.  Unfortunately, 
textbooks have been copying these false statements to this day.  We will not 
perpetuate Gibbs’s error.  Rather, for us a scalar set is simply a one-dimensional 
vector space.  For example, parallel arrows form a scalar set.  Any nonzero arrow 
in the set has both direction and magnitude.  All real scalar sets are isomorphic to 
arrows in a line.  All complex scalar sets are isomorphic to arrows in a plane.  
 Scientists tend to be too permissive in using the word scalar.  Many call a 
set of quantities a set of scalars if the set maps to a number field.  Many call 
temperature a scalar; for instance, see page 1 of Gibbs’s textbook, or just see the 
Wikipedia entry on scalars.  As we have explained, this usage is inconsistent with 
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our definition of scalars.  Temperatures are not additive to one another, or 
scalable by numbers, or proportional to one another.  It is odd to call non-
scalable quantities scalars.   


