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P H Y S I C S

Time-independent harmonics dispersion relation 
for time-evolving nonlinear waves
Romik Khajehtourian1† and Mahmoud I. Hussein2,3*†

We present a theory for the dispersion of generated harmonics in a traveling nonlinear wave. The harmonics dis-
persion relation (HDR), derived by the theory, provides direct and exact prediction of the collective harmonics 
spectrum in the frequency–wave number domain and does so without prior knowledge of the u = u(x, t) solution. It is 
valid throughout the evolution of a distorting unbalanced wave or the steady-steady propagation of a balanced 
wave with waveform invariance. The new relation is shown to be a special case of the general nonlinear dispersion 
relation (NDR), which is also derived. The theory is examined on a diverse range of cases of one-dimensional 
elastic waves and shown to hold irrespective of the spatial form of the initial wave profile, type and strength of the 
nonlinearity, and the level of dispersion in the linear limit. Another direct outcome of the general NDR is an 
analytical condition for soliton synthesis.

INTRODUCTION
Wave motion lies at the heart of many disciplines in the physical 
sciences and engineering. For example, natural phenomena involving 
atomic motion, seismic motion, fluid flow, heat transfer, or propa-
gation of light and sound all involve wave physics at some level (1). 
While the theory of linear dispersive waves is fairly complete, much 
has remained to be understood about nonlinear waves and their 
characterization. For linear systems, it is customary to obtain dis-
persion relations that relate the frequency  and wave number  of 
propagating modes. A dispersion relation provides valuable infor-
mation and is often used to characterize a range of physical properties 
of the medium admitting the wave motion (2). In nonlinear systems, 
on the other hand, the notion of a dispersion relation has been 
treated with caution because superposition does not apply. Yet, 
the appeal of retaining nonlinear effects in the study of dispersion 
has motivated several studies in a variety of disciplines, including 
quantum mechanics (3), solid mechanics (4–9), fluid dynamics 
(10–13), acoustics (14), electromagnetics (15, 16), plasma physics 
(17–20), geophysics (21–23), astrophysics (24), and biophysics (25, 26), 
among others. Aside from explicit examination of dispersion, clas-
sical methods for solving the initial-value problem for a wide class 
of nonlinear evolution equations have been developed since the 
late 1960s (27–30).

In many problems, it is often sufficient to consider the effects of 
weak nonlinearities; in such cases, these effects are augmented over 
the linear dispersion relation in the form of perturbations (31). Non-
linear dispersion relations for systems exhibiting weak nonlin-
earities were derived by small-parameter expansions, for example, 
for discrete chains (5, 7), elastic rods (4), and plasma (17). For strong 
nonlinearities, however, exact derivations of NDR are needed. 
While relatively rare, a few exact NDR formulations have been pro-
duced for certain problems; for example, Schürmann et al. (32) pro-
vided an exact NDR for TE-polarized electromagnetic waves in a 

layered structure and Huang et al. (18) and Ginzburg et al. (19) for 
surface plasmon waves.

However, a key question remains, and that is what does it mean 
to have a dispersion relation for nonlinear waves, especially when 
the nonlinearity is strong? One challenge stems from the fact that 
an unbalanced nonlinear wave distorts as it travels and appears to 
ultimately fully lose its original shape, and in many instances, the 
final outcome is onset of a form of instability (1). Inherent to this 
distortion is an intricate mechanism of harmonic generation, a 
phenomenon that is widely used in laser science (33) and ultrasound 
nondestructive evaluation (34–36). Harmonic generation also takes 
place in balanced waves that do not experience distortion (37). In 
the presence of harmonic generation, a Fourier transform of the 
space-time response reveals a fundamental harmonic and a series of  
higher-order harmonics. The distortion that we observe is a mani-
festation of energy exchange from one harmonic to the other (38, 39). 
Aside from dispersion analysis, rigorous theory has been developed for 
the analysis of the spatial response of multiple harmonics. Early works 
in this area include papers by Thurston and Shapiro (40), Tiersten 
and Baumhauer (41), and Thompson and Tiersten (42). Common 
techniques applied on weakly nonlinear systems seek spatial 
solutions for harmonics using perturbation expansions, e.g., see 
publications on elastic waves by Auld (43), Deng (44), and de Lima 
and Hamilton (45). This body of theory follows key experimen-
tal work on harmonic generation in ultrasonic waves in metals 
(34–36, 46, 47); see review by Matlack et al. (48).

In an earlier study (8), we presented an exact dispersion relation 
for a thin elastic rod modeled by a nonlinear second-order partial 
differential equation (PDE). The term “thin” designates a rod model 
with a cross-sectional thickness much smaller than the wavelengths 
of the propagating waves; a thin rod is nondispersive in the small-
amplitude linear limit. Validation by numerical simulation was 
performed, whereby a cosine waveform with a specific value of am-
plitude and a specific value of wave number was initially prescribed and 
the derived NDR was shown to predict, exactly, the instantaneous 
change in the frequency from what is otherwise dictated by the 
linear dispersion relation. No connection was established between 
the derived NDR and the evolved nonlinear wave, either in its 
spatial form or by considering its generated harmonics. An elastic 
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beam, modeled by a fourth-order PDE, was also investigated by the 
same approach, and an exact NDR was derived for a simplified ver-
sion of that system (49); however, no validation by numerical simu-
lation was performed, as the model appeared overly complex to 
integrate numerically.

Here, we provide a theory that characterizes the nature of a non-
linear wave, through its harmonic generation, as it evolves over long 
times. The prediction is in the form of an exact analytical dispersion 
relation that describes the distribution of the generated harmonics 
in the frequency–wave number domain; it is valid at all times for a 
balanced wave or up to the point of breaking if the wave reaches an 
unstable state. This result thus introduces a new insight into the 
notion of an NDR and a new finding pertaining to the spectral char-
acterization of harmonic generation.

We present the theory not only for a thin rod but also for a thick 
rod. A “thick” rod is modeled by a fourth-order PDE, exhibits lateral 
inertia, and is dispersive in the linear limit as the wave amplitude 
B → 0. For both systems, we first derive a general NDR as a function 
of B and wave number  and then specialize our derivation to yield 
a harmonics dispersion relation that predicts the harmonic genera-
tion spectrum associated with a wave having an initially prescribed 
amplitude–wave number pair: B = Be and  = e. Upon presenting 
the theory, we provide validation by numerical simulation followed 
by Fourier transformation, demonstrating applicability for (i) large 
amplitudes, (ii) different types of nonlinearity, (iii) different times 
throughout the evolution, (iv) the presence or lack of dispersion in the 
linear limit, and (v) different initial wave profiles. Last, we provide 
an analytical condition for soliton synthesis, which represents 
yet another outcome of the general NDR.

RESULTS
Theory
Thick elastic rod
We consider an infinite one-dimensional (1D) rod with polar radius 
of gyration r and constant material properties. The rod admits lon-
gitudinal displacements u(x, t) under uniaxial stress (x, t), where x 
and t denote position and time, respectively. The governing non-
linear equation of motion (EOM) is obtained by Hamilton’s princi-
ple ​ ​∫0​ 

t
 ​​(T − U ) ∂ t  =  0​, where ​T  =   [ ​(​∂​ t​​ u)​​ 2​ + ​​​ 2​ ​r​​ 2​ ​(​∂​tx​ 2 ​ u)​​ 2​ ] / 2​ and 

𝒰 = ϵ/2 define the kinetic and strain energy densities, respectively. 
Here,  and  denote the mass density and Poisson’s ratio, and the 
stress in our model follows Hook’s law  = Eϵ, where E is the elastic 
modulus. A linear constitutive law is considered for simplicity, but 
the theory is directly applicable to material nonlinearities as well. 
Geometric nonlinearity is introduced through the definition of strain; 
a finite strain ϵ may, in principle, take the form of any of the Seth-Hills 
family of strain measures (50, 51). Here, we consider, separately, 
the Green-Lagrange strain (GLS) and Hencky strain (HS) measures, 
which are defined as ϵ = ∂xu + (∂xu)2/2 and ϵ = ln (1 + ∂xu), respec-
tively. The EOM for the displacement gradient ​​u ̄ ​  = ​ ∂​ x​​ u​ takes the 
general form

	​​ ∂​ tt​​​u ̄ ​ − ​∂​ xx​​(​u ̄ ​ + N(​u ̄ ​ ) +  ​∂​ tt​​​u ̄ ​ ) = 0​	 (1)

where  =  = c2 and ​N(​u ̄ ​ ) = 3 ​​u ̄ ​​​ 2​ / 2 + ​​u ̄ ​​​ 3​ / 2​ for the GLS measure and 
 = 0,  = c2, and ​N(​u ̄ ​ ) = ln (1 + ​u ̄ ​ ) / (1 + ​u ̄ ​)​ for the HS measure. For 
both cases, the quasistatic speed of sound is given by ​c  = ​ √ 

_
 E /  ​​, and 

for compactness, we have introduced the parameter  = r22. In this 

model, the effect of the lateral inertia is considered only on the lon-
gitudinal displacement; however, the theoretical framework is fully 
valid in the absence of this modeling simplification.

For the limiting configuration of a thin rod, the lateral inertia is 
omitted by setting r = 0. In this medium, a traveling wave profile 
with an initial finite-amplitude Be will experience, in the course of 
its evolution, forward self-steepening in the case of Green-Lagrange 
nonlinearity and backward self-steepening in the case of Hencky 
nonlinearity. Eventually, each wave experiences instability at time 
S. An analysis of this steepening effect and its path to instability 
is given in the Supplementary Materials, where in fig. S1, both 
self-steepening scenarios are demonstrated.
General nonlinear dispersion relation
We introduce a traveling phase variable  = x − t and substitute 
it into Eq. 1, resulting in the transformation from ​​u ̄ ​(x, t)​ to ​​U ̄ ​()​. 
This gives

	​​ ​​ 2​ ​​U ̄ ​​ ​​ − ​​​ 2​ ​(​U ̄ ​ + N(​U ̄ ​ ) + ​​​ 2​  ​​U ̄ ​​ ​​)​ ​​  =  0​	 (2)

which, upon integration twice, yields

	​ (​​​ 2​  − ​​​ 2​ ) ​U ̄ ​ + ​​​ 2​ N(​U ̄ ​ ) + ​​​ 2​ ​​​ 2​ ​​U ̄ ​​ ​​  =  0​	 (3)

The integration constants leading to Eq. 3 represent coefficients 
of a constant term and a secular term and have been set equal to 
zero, which is consistent with a bounded traveling wave solution for 
an initially bounded displacement field.

Now, we seek a general NDR that we associate with any arbitrary 
initial waveform ​​ f  ̄ ​(x, 0)​ belonging to the family of wave functions F 
that is consistent with the following conditions at  = 0

	​​ U ̄ ​(0) = B, ​​U ̄ ​​ ​​(0) = 0, ​​U ̄ ​​ ​​(0) = − B​	 (4)

The choice of “B” is not unique, but this quantity is selected 
because the deviation from the linear dispersion curve depends di-
rectly on this product. Setting  = 0, by definition, restricts the spa-
tial (x) and temporal (t) phases to be equal. This, in turn, enables 
a moving reference frame that follows the traveling wave, which al-
lows for a time-independent nonlinear dispersion analysis. Exam-
ples of F functions include cosine, hyperbolic secant, Gaussian, and 
Lorentzian functions. Upon substitution of Eq. 4 into Eq. 3, we ob-
tain the exact NDR for the GLS and HS measures, respectively, as

	​​ ​​ GLS​  =  c ​√ 
______________________

   (2 + 3B + ​B​​ 2​ ​​​ 2​ ) / (2 + 2​​​ 2​) ​​	 (5)

and

	​​ ​​ HS​  =  c ​√ 
___________________________

   ln (1 + B ) / (B(1 + B ) (1 + ​​​ 2​ ) ) ​​	 (6)

These reduce to a linear dispersive form in the limit of B → 0 and 
a linear nondispersive form in the limit B → 0,  → 0. Figure 1D 
presents a plot of the general NDR for the GLS model, as defined in 
Eq. 5, for a thin rod and B = 0.0125 (see solid red curve). Note that 
nonlinearity by itself causes wave dispersion (8).
Harmonics dispersion relation
We now uncover that the general NDR derived above inherently 
encompasses information on the harmonic generation mechanism 
associated with nonlinear waves characterized initially by a specific 
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amplitude B = Be and wave number  = e. Starting with Eq. 3, we 
impose the set of conditions

	​​ U ̄ ​(0 ) = ​B​ e​​ ​​ e​​, ​​U ̄ ​​ ​​(0 ) = 0, ​​U ̄ ​​ ​​(0 ) = − ​B​ e​​ ​​ e​​​	 (7)

which is a special case of the conditions prescribed in Eq. 4. This 
yields the following exact harmonics dispersion relation for the GLS 
and HS models, respectively

	​​ ​e​ 
GLS​  =  c ​√ 

________________________
   (2 + 3 ​B​ e​​ ​​ e​​ + ​B​e​ 

2​ ​​​ e​​​​ 2​ ) / (2 + 2​​​ 2​) ​​	 (8)

and

	​​ ​e​ 
HS​  =  c ​√ 

_______________________________
    ln (1 + ​B​ e​​ ​​ e​​ ) / (​B​ e​​ ​​ e​​(1 + ​B​ e​​ ​​ e​​ ) (1 + ​​​ 2​ ) ) ​​	 (9)

Each of these relations predicts the exact frequency–wave number 
curve on which all the harmonics will lie following a Fourier trans-
form of the time response of a traveling nonlinear pulse of any arbi-
trary form provided that the initial conditions of the solved PDE are 
consistent with the corresponding  = 0 conditions stated in Eq. 7. 
If the pulse is not balanced, e.g., is experiencing self-steepening, 
then the prediction will be valid up to time S, the instant of onset of 
instability. Alongside the general NDR curve plotted in Fig. 1D for 
the thin-rod GLS model, a harmonics dispersion relation based on 
Eq. 8 is plotted for Be = 0.0125 and e = 4.5 (see dashed red curve). 
The notion of a harmonics dispersion relation represents a new 
paradigm in nonlinear wave science.

Single generic forms of the general NDR and the harmonics 
dispersion relation in terms of the nonlinear function, ​N(​U ̄ ​)​, and the 
strain gradient at  = 0, ​​U ̄ ​(0)​, for the two types of nonlinearity, are pro-
vided in the Supplementary Materials. These generic forms allow us 
to apply the general NDR and the harmonics dispersion relation to 
other types of nonlinearities in a modular fashion.

Validation by direct numerical simulations
In this section, we seek a numerical solution of Eq. 1 to validate our 
assertion that each of Eqs. 8 and 9 (for the GLS and HS measures, 
respectively) represents a dispersion relation for harmonic genera-
tion. We use a spectral method in conjunction with an efficient ex-
plicit time-stepping method to obtain the response as a function of 
position and time. Afterward, a discrete Fourier transform is per-
formed on the simulated space-time field to reveal the spectrum of 
the emerging harmonics and compare their distribution in the 
frequency–wave number domain with the analytically derived 
harmonics dispersion relation (see the Supplementary Materials for 
details on the numerical approach).

We consider a 1D computational domain and prescribe initially 
as an “excitation” a spatially harmonic or a solitary wave profile that 
is characterized by an amplitude Be and a wave number e. In prin-
ciple, any arbitrary but well-defined and smooth wave function  
​​ f  ̄ ​(x, 0 ) ∈  ℱ​ that is consistent with Eq. 7, which are the conditions 
used to derive the harmonics dispersion relation, may be used in 
these simulations. Once a function ​​ f  ̄ ​(x, 0)​ is selected, we set ​​u ̄ ​(x, 0 ) = ​
B​ e​​ ​​ e​​ [ 1 + ​ f ̄ ​(x, 0 ) / (​B​ e​​ ​​ e​​ ) ] / 2​; the “1/2” offset is introduced as a pre-
processing step to facilitate direct comparison with theory. The 
space-time domain is defined by −x* < x ≤ x* (large enough to allow 
an unbalanced nonlinear wave to fully evolve up to the point of 
breaking) with a grid spacing of h = 1 cm and 0 ≤ t ≤ S with a con-
stant time step of t = 1 s.

First, we examine a simple cosine wave profile [for which ​​ f  ̄ ​(x, t ) = ​
B​ e​​ ​​ e​​ cos (​​ e​​(x − ct ) )​] as an excitation signal and apply it to the case 
of the thin rod with GLS nonlinearity. This wave profile has the 
form ​​u ̄ ​(x, t ) = ​B​ e​​ ​​ e​​ [ 1 + cos  (​​ e​​(x − ct ) ) ] / 2​ and is characterized by 
Be = 0.0125 and e = 4.5. We prescribe this ​​u ̄ ​​ field along the entire 
computational domain at initial time t = t0 = 0 and let the simulation 
run freely afterward. Periodic boundary conditions are applied for all 
simulations involving a cosine signal excitation; otherwise, when a 
localized excitation is prescribed, the simulations are not allowed to 
run beyond the time when boundary reflections occur. A time snap-
shot of the simulated motion is plotted in Fig. 1A, showing a clear 
distortion of the wave profile after some traveling time. This distor-
tion is caused by the nonlinear GLS inherently present in the model.

Performing Fourier analysis separately in space and in time on 
the evolved wave field, on a time window that ends at t = 0.83 ms, 
indicates the generation of harmonics in both the wave number and 
frequency domains. The spatial energy spectrum ​​E​​B​ e​​,​​ e​​​ 

S  ​​ and the tem-
poral energy spectrum ​​E​​B​ e​​,​​ e​​​ 

T  ​​ are plotted in Fig. 1(B and C, respec-
tively) (the subscripts indicate that the spectrum is associated with a 
prescribed initial wave with amplitude Be and wave number e). In 
Fig. 1D, we show the contour of ​​E​​B​ e​​,​​ e​​​ 

ST ​  =  ln  ∣​ℰ​​B​ e​​,​​ e​​​ 
ST ​ ∣​, where ​​ℰ​​B​ e​​,​​ e​​​ 

ST ​​  is the 
evolved energy spectrum produced by Fourier analysis in both 
space and time, noting that the Fourier transformation is always 
done at a time close to S (see the Supplementary Materials for details 
of the numerical scheme). The brightened areas in the contour plot 
represent the harmonics, which are consistent with each of the sep-
arately obtained spatial (Fig. 1B) and temporal (Fig. 1C) harmonics. 
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The frequency–versus–wave number distribution of the generated 
harmonics, as produced by standard direct simulations, accurately 
coincides with the theoretical harmonics dispersion curve derived 
in Eq. 8, thus providing firm validation of the theory.
Validation for large wave amplitudes and different types 
of nonlinearity
We repeat the simulation of Fig. 1, considering higher amplitudes 
and also considering both the GLS and HS models. In Fig. 2A, we 
show the time evolution of the same cosine wave but for initial 
amplitudes Be = 0.025, 0.05, and 0.075, and, in Fig. 2B, provide the 
corresponding energy spectra in the frequency–wave number domain. 
For all cases, the harmonics dispersion relation of Eq. 8 perfectly 
predicts the distribution of the harmonics. In Fig. 3, we extend the 
excitation signal amplitude further to a value of Be = 0.1 and, once 

again, show perfect prediction. A wave with an initial amplitude of 
Be = 0.1 is considered strongly nonlinear; this is evident from the 
significant deviation of the general NDR curve for B = 0.1 compared 
to the infinitesimal dispersion relation. The validation is successful 
not only for the GLS model (which exhibits a hardening nonlinearity) 
but also for the HS model (which exhibits a softening nonlinearity), 
thus demonstrating generality of the theory to different types of 
nonlinearities.
Validation throughout wave evolution
Now, we consider the validity of the harmonics dispersion relation 
at different stages of evolution of a nonlinear wave. We refer again 
to Fig. 3 where, in Fig. 3A, we show the initial cosine signal corre-
sponding to Be = 0.1 and e = 4.5 and overlay two subsequent time 
snapshots of the simulated motion. Performing Fourier analysis in 
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space on the wave profile at the time of excitation t0 and at the two 
time instants t1 and t2 elucidates the nature of the temporal evolu-
tion of the wave number spectrum. At t0, only a single harmonic 
exists (which is of the cosine excitation signal). As the wave evolves, 
the nonlinear effects increasingly cause distortion and generation of 

more energized higher harmonics, as shown in Fig. 3B. It is notice-
able, however, that the wave number distribution of the harmonics 
gets established early in the simulation and is sustained as the evo-
lution progresses. To investigate this aspect of harmonic generation 
further, we consider, in Fig. 2 (C and D), the same problem but for 
a slightly smaller excitation amplitude, Be = 0.075. Figure 2C dis-
plays the spatial distortion at three different time instants, t1 = 0.35 ms, 
t2 = 0.55 ms, and t3 = 0.75 ms. The corresponding spectral response 
is shown in Fig. 2D. Once again, the distribution is shown to get 
established at an early stage and sustain itself throughout the evolu-
tion; now, we see this to be the case in the frequency–wave number 
domain representing a state of spatiotemporal spectral invariance. 
These results confirm that the harmonics dispersion relation of 
Eq. 8 is applicable at all times during the nonlinear evolution as long 
as the wave remains stable.
Validation for linearly dispersive models
We also consider a thick rod under the GLS measure and propagate 
the same cosine excitation but now characterized by Be = 0.05 and 
e = 4.5 with various rod thicknesses. Unlike conventional techniques 
such as the method of characteristics that fall short in the presence 
of linear dispersion (52), our theory predicts the harmonic genera-
tion frequency–wave number spectrum even for systems that are 
linearly dispersive (e.g., r ≠ 0), as is shown in Fig. 4. We observe that 
for all r ≠ 0 cases (Fig. 4, C to E), the harmonics dispersion relation 
exhibits dispersion, indicating a nonlinear softening trend for the 
generated harmonics in line with the dispersive nature stemming 
from lateral inertia.
Validation for different initial wave profiles
Next, we simulate the nonlinear wave propagation of a localized pulse 
defined by a hyperbolic secant function, ​​ f  ̄ ​(x, t) = ​B​ e​​ ​​ e​​ sech(​​ e​​(x − ct))​. 
We apply ​​u ̄ ​(x, t) = ​B​ e​​​​ e​​[1 + sech(​​ e​​(x − ct) ) ] / 2​, which is consistent 
with Eqs. 4 and 7, as the initial waveform at t = 0. Figure 5A shows 
the results for Be = 0.025 and e = 6. The initial wave packet propa-
gates along the positive direction; also observed is a characteristic 
trailing wave of modest amplitude radiating in the opposite direc-
tion of the traveling wave. The spatial profile of the waves feature 
the eventual formation of shocks at the leading and trailing edges of 
the wave packet for the GLS and HS measures, respectively, in analogy 
with the behavior observed in Fig. 3A and analyzed further in the 
Supplementary Materials and fig. S1. In Fig. 5B, we consider exci-
tations at two more e values and superpose the Fourier-transformed 
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spectra for all three cases. It is seen that the analytical harmonics 
dispersion curves predict with full conformity the distribution 
of the harmonics for each of the excitations, including in the linear-
ly dispersive case shown in the bottom panel. Note that since the hy-
perbolic secant function has a rich frequency content, the excited 
energy spectrum for each of the three cases displayed in Fig. 5B con-
forms continuously to the harmonics dispersion relations plotted 
in dashed red; this is in contrast to the cosine wave profile cases 
where the spectrum comprises discrete energy spots. Furthermore, 
the set of the intersections of each harmonics dispersion curve with 
its corresponding e value exactly follows the path of the general 
NDR plotted in solid red. We learn from this perfect matching of 
intersections that the general NDR curve traces the fundamental 

harmonic associated with each excitation wave number (for a given 
value of Be). This characteristic is confirmed further in Fig. 5C by 
superimposing the energy spectra of 30 separate simulations for dis-
tinct initial wave packets sharing the same amplitude Be = 0.025 
but covering the range of excitation wave numbers e = 1 to 30, 
with increments of 1. Here, the quantity plotted is ​​∑ ​​ e​​​ ​​ ​E​​B​ e​​,​​ e​​​ 

ST ​   = ​
∑ ​​ e​​​ ​​ [ln∣​ℰ​​B​ e​​,​​ e​​​ 

ST ​ ∣]​, shown as a superposition of windows of energy 
spectra around the fundamental harmonic where each corresponds 
to a particular value of e. The correlation of an NDR with a super-
position of the fundamental harmonic frequencies discretely 
identified from the Fourier spectra corresponding to multiple 
wave number excitations, from separate simulations, was demon-
strated in (53).

The results of Fig. 5 (B and C) confirm that our derived NDR 
and harmonics dispersion relation hold for arbitrary excitation pro-
files such as the hyperbolic secant function considered, as long as 
the excitation signal is initially characterized by Be and e and is 
consistent with Eqs. 4 and 7. Two more examples of different initial 
wave profiles, namely, a Gaussian profile and a Lorentzian profile, 
are examined in the Supplementary Materials and are shown to 
be also accurately characterized by the NDR and harmonics disper-
sion relation.

Soliton synthesis by general NDR
Solitons research traces back to its first observation in a canal by 
J. S. Russell (54) and key early theoretical developments that followed 
(55, 56). Other than their solitary spatial profile, a unique aspect of 
this class of waves is their inherent stability which is commonly 
attributed to a balance between nonlinear and dispersion effects 
(52). Using the general NDR, we are able to find a condition for 
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balance between hardening dispersion (stemming from the nonlinear 
kinematics) and softening dispersion (stemming from the linear 
lateral inertia). This represents a formal approach for the analysis, 
characterization, and engineering of solitons. This approach has 
been presented recently by the authors in the context of 1D periodic 
rods (57). For a thick rod, we formulate the soliton synthesis 
condition as

​  r =  arg min { ​‖​ω​ GLS​​ / c − αBκ‖​ [0,1]​​ / ​max​ 
[0,1]

​ ​(​ω​ GLS​​ / c ) ≤  1 % , α  ∈  ℝ}​	(10)

which gives an optimal value of r = 0.166 for B = 0.05. These values 
generate a linear-nonlinear dispersion balance within 1% error for 
the range 0 ≤ B ≤ 1, which is the case displayed in Fig. 4D, where the 
general NDR appears nearly as a perfect linear (straight) curve. 
The harmonic generation of this nearly balanced wave is dispersive. 
Thus, while minimum dispersion in the general NDR is needed for 
the creation of a soliton (with some error tolerance for a given B 
range), the associated harmonic generation spectrum is not neces-
sarily nondispersive. Figure 6A decomposes the balancing compo-
nents in the general NDR, and Fig. 6 (B to D) illustrates the effect in 
the spatial domain showing, in Fig. 6C, the stable and nearly invariant 
propagation of a synthesized soliton. Future work may extend this 
soliton synthesis concept to more complex models, for example, 
rods/beams with varying cross section (58, 59) or prestretch (60), to 
name a few.

DISCUSSION
We have provided a unified theory of nonlinear waves consisting of 
a general NDR and a harmonics dispersion relation, where the for-
mer encompasses the latter. A general NDR defines, (i) for a given 
amplitude B and wave number , the instantaneous dispersion of a 
nonlinear wave (8) and, (ii) for a given excitation amplitude Be, the 
frequency–wave number trajectory of the fundamental harmonic in 
a superposition of isolated windows of Fourier-transformed non-
linear wave fields spanning a range of excitation wave numbers e. 
Prescription of a condition for soliton synthesis is a natural outcome 
of the general NDR, as demonstrated in Figs. 4 (A and D) and 6 (A 
and C). A harmonics dispersion relation, which is a novel concept, 
defines the frequency–wave number spectrum of the generated har-
monics in a nonlinear wave field for a given excitation amplitude Be 
and wave number e. This relation effectively unravels the inner 
makings of a nonlinear wave. It is derived directly from the govern-
ing nonlinear PDE; thus, it provides a pathway for prediction of the 
spectral content of harmonic generation without knowledge of the 
time-dependent spatial solution or any treatment of the problem in 
the spatial-temporal domain. The HDR is shown to be a special case 
of the general NDR by comparing Eqs. 8 and 9 to 5 and 6. This con-
nection establishes a fundamental unification of two key tenets of 
wave propagation: nonlinear dispersion and harmonic generation. 
Both relations are derived exactly (i.e., without any expansions or 
perturbation analysis).

As shown in the diverse sets of examples given, considering thin 
and thick elastic rods, there is no limitation by the type and strength 
of the nonlinearity, or by the shape of the initial wave profile pro-
vided that it belongs to the family of functions F. There is also no 
restriction on the presence of linear dispersion. The derived re-
lations are applicable at any state of evolution in time as long as 
the wave is balanced or has not yet reached its breaking point if 

unbalanced. These findings underscore the nature of general nonlinear 
dispersion and harmonic generation dispersion as time-independent 
characteristics of the medium and its wave propagation properties, 
for a given amplitude and a given class of initial profiles for the 
evolving or balanced waveform.

Given that the theory at its foundation is based on the introduc-
tion of the traveling wave conditions of Eqs. 4 and 7, it is, in principle, 
agnostic to the type of wave considered. It is therefore applicable to 
other disciplines of wave propagation beyond elastic waves, as well 
as being amenable to extension to multidimensional problems.

MATERIALS AND METHODS
The numerical results presented in this study were obtained using 
an in-house code; see details in the Supplementary Materials. The 
material properties considered are for aluminum:  = 2700 kg/m3, 
E = 70 GPa, and  = 0.33. All reported units are in the SI system.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl3695
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Wave steepening and stability analysis

To investigate the nonlinear wave distortion and breaking phenomena, we consider the limiting
configuration of a thin rod where the lateral inertia is ignored by setting r = 0.∗ In this medium, a
traveling wave profile with finite-amplitude B will experience in the course of its evolution forward
self-steepening in the case of Green-Lagrange nonlinearity and backward self-steepening in the case
of Hencky nonlinearity. In forward steepening, the leading edge has a steeper slope than the trailing
edge; and vice versa in backward steepening. Thus Green-Lagrange-induced steepening takes place
in the direction of propagation and represents a dispersion hardening effect (57) that eventually
leads to the formation of a shock ∂xū = −∞. In contrast, Hencky-induced steepening causes a
tilt opposite to the direction of propagation and represents a dispersion softening effect (61) that
eventually leads to the formation of a shock ∂xū =∞. Both scenarios are demonstrated in Fig. S1.
Consider m(x, t) < 0 and M(x, t) > 0 to be the minimum and maximum value of ∂xū as a function
of time. There exist a finite shock time τS when at least one point of the wave profile slope becomes
vertical, m→ −∞ and M →∞, and a shock forms at the leading edge in the GLS case and at the
trailing edge in the HS case (62). At t = τS, the nonlinear wave becomes unstable. These effects are
quantified by characteristic lines, as demonstrated in the inset of Fig. S1.

The stability of this nonlinear thin rod can be locally evaluated using eigenvalues of Eq. (S1)
which is the equivalent first-order system of Eq. (2) ignoring the effects of lateral inertia,

∂ξŪ = V̄ ,

∂ξV̄ = κ2

ω2∂ξξ(αŪ + βN (Ū)).
(S1)

By analyzing this system, we find two distinct real eigenvalues, one negative and one positive, which
collide into each other on V̄ = 0. The positive eigenvalue indicates that the system is unstable and
the solutions are in the form of breaking waves.

The position and time of the onset of shock may be determined by solving ∂ūx(ū) = 0 (equivalent
to |∂xū(x)| =∞) for a known solution, and setting ∂ūūx(ū) = 0 as a necessary condition to ensure
the uniqueness of ū(x).
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Fig. S1. | Cosine wave experiencing distortion and harmonic generation. Spatial profiles captured at t0 = 0 ms, t1 = 0.08 ms, and t2 = 0.15 ms are shown. Initial
amplitude is Be = 0.1 and initial wavenumber is κe = 4.5. Inset shows the corresponding characteristic lines. Results are for a GLS case (left) and an HS case (right).

∗
Throughout the Supplementary Materials document, we use the same material properties considered in the main article.



Generic form for general NDR and harmonics dispersion relation

The general NDR may be expressed directly in terms of the nonlinear function, N (Ū), and the
strain-gradient at ξ = 0, Ū(0), as

ω = cκ√
1 + γκ2

√√√√1 + N [Ū(0)]
Ū(0)

, (S2)

where N (Ū) = 3Ū2/2 + Ū3/2 for the GLS measure, and N (Ū) = ln(1 + Ū)/(1 + Ū) for the HS
measure and Ū(0) = Bκ. Equation (S2) yields Eqs. (5) and (6).

Similarly, the harmonics dispersion relation may be expressed directly in terms of the nonlinear
function, N (Ūe), and the strain-gradient at ξ = 0, Ūe(0), as

ω = cκ√
1 + γκ2

√√√√1 + N [Ūe(0)]
Ūe(0)

, (S3)

where Ūe(0) = Beκe. Equation (S3) yields Eqs. (8) and (9).
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Fig. S2. | Validation of theory for different types of initial wave profiles. Demonstration of validity of the harmonic dispersion relation [Eq. (8) for GLS nonlinearity] in
capturing the nonlinear harmonics frequency-wavenumber spectrum for four different types of initial signals: (a) cosine, (b) hyperbolic secant, (c) Gaussian, and (d) Lorentzian.
The wave amplitude for all general NDR curves (solid red lines) is B = 0.025; and the excitation wave amplitude and excitation wavenumber for all harmonic dispersion
relation curves (dashed red lines) and numerical simulation results are Be = 0.025 and κe = 15, respectively. All results here are for r = 0.15, which is the same value
of the polar radius of gyration selected for the results presented in the third row of Fig. 5 in the main article. Clearly, the prediction of our derived harmonic dispersion relation
matches perfectly with the space-time Fourier spectrum from the numerical simulations for all four types of initial signals. Also shown at the top left of each sub-figure is the
spatial profile of the signal initially (blue) and at a later stage after its nonlinear evolution (orange).



Validation of harmonic dispersion relation for different initial wave profiles:
Additional Examples
The applicability of the harmonics dispersion relation concept in capturing the harmonics for

different forms of an initial signal/waveform has been demonstrated in the main article for a cosine
signal and a hyperbolic secant signal. In this section, we consider these two initial signal forms again
(for a different combination of Be and κe to avoid repetition) and add two more examples of initial
signals, namely, a Gaussian initial signal and a Lorentzian initial signal. These four signal types are
considered in the presence of linear dispersion in the form of lateral inertia (i.e., with γ 6= 0) in order
to add further complexity and generality. As shown in Fig. S2, the theory [Eqs. (8) in the main
article] provides a perfect prediction of the harmonics distribution within the frequency-wavenumber
spectrum. The parameters selected for these examples are given in Table S1.

Table S1. | Parameters used for different initial signal examples presented in Fig. S2

Parameter γ r Be κe
Value 0.0025 0.15 0.025 15

Computational approach: Description and verification
Description−We simulate the wave propagation governed by Eq. (1) using a spectral method for

the spatial variable in conjunction with an efficient explicit time-stepping method. The nonlinear
PDEs are discretized with the discrete Fourier transform (DFT) in space and marched in time using
a numerical integration scheme. We consider ūj as a discrete function on an N -point spatial grid
xj, j = 1, . . . , N . The DFT is defined by ûk = h

∑
j e−ikxj ūj, for k = −N/2 + 1, ..., N/2, and the

inverse discrete Fourier transform (IDFT) by ūj = 1
2π

∑
k eikxj ûk, for each point. Here, xj = jh where

h = 2π/N is the spacing of the grid points, and k is the Fourier wavenumbers. We apply ∂tū = v̄
followed by the DFT on Eq. (1) to form the corresponding first-order system

∂t

 û

v̂

 =

 0 0

− αk2

1+γk2 0


 û

v̂

 +

 v̂

− βk2

1+γk2FT (N )

 , (S4)

where FT (.) denotes the Fourier transform of the considered function. Differentiating the transfor-
mation [û, v̂]T = Γ [û, v̂]T with respect to time, with Γ = [I, 0;αk2∆t/(1 + γk2), I] being the integral
factor of Eq. (S4), followed by the substitution of the ∂tû and ∂tv̂ values from Eq. (S4) and û and v̂
from the inverse transformation [û, v̂]T = Γ−1 [û, v̂]T, produces the following numerically integrable
system (returning to continuous notation for convenience):

∂tû = − αk2∆t
1 + γk2 û + v̂,

∂tv̂ = αk2∆t
1 + γk2 (− αk2∆t

1 + γk2 û + v̂)− βk2

1 + γk2F(N ).
(S5)

We use the fourth-order explicit Runge-Kutta time-stepping scheme to integrate Eq. (S5). Then
the inverse transformation is applied followed by IDFT on [û, v̂]T to obtain ū(x, t). The direction of
wave propagation in the simulation is dictated by the initial velocity condition we prescribe. Now that
we have the space-time solution, we apply Fourier analysis to the spatio-temporal wave-field discrete
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Fig. S3. | Verification of computational approach on a linear nondispersive rod (GLS measure in left column and HS measure in right column). (a) Infinitesimal-
strain space-time solution for Be = 0.0005 and κe = 6. (b) A representation of the energy spectrum obtained by numerical Fourier transformation. Corresponding exact
dispersion curves from Eqs. (4) and (5) are overlaid as solid lines. Time and space units are [ms] and [m], respectively.

data ūp,q, p = 0, 1, ..., N − 1, q = 0, 1, ..., T − 1 to evaluate EST
l,n = 1

NT

∑
p

∑
q e−2πi(lp/N+nq/T )ūp,q, for

l = 0, 1, ..., N and n = 0, 1, ..., T defining T as the number of time steps. This yields the numerical
frequency-wavenumber energy spectrum EST(κ, ω) (53,63).

Verification−For basic verification of the computational approach, we analyze a rod at the limits
of B → 0, r → 0 to recover the linear dispersion relation ω = cκ from Eqs. (4) and (5). We set r = 0
and choose a small amplitude, B = 0.0005, instead of setting B = 0 to avoid numerical instabilities
in the simulations. The excitation profile considered is the same as the one studied in Fig. 3. These
parameters generate a practically linear nondispersive wave. The space-time solution is shown in
Fig. S3a and the corresponding energy spectrum is plotted in Fig. S3b; we clearly see that numerical
energy spectrum perfectly coincides with the infinitesimal-strain dispersion relation, thus confirming
the verification.



Supplementary movie captions

Movie S1.

Animation (solid red) showing the evolution of a nonlinear wave based on a Green-Lagrange strain-
measure, which represents a hardening nonlinearity. A forward self-steepening effect is observed as the wave
propagates from left to right. This case has no dispersion in the linear (low-amplitude)limit. In the background, an
animation (dashed black) of a corresponding linear wave is shown for comparison.

Movie S2.

Animation (solid brown) showing the evolution of a nonlinear wave based on a Hencky strain
measure, which represents a softening nonlinearity. A backward self-steepening effect is observed as the wave
propagates from left to right. This case has no dispersion in the linear (low-amplitude) limit. In the background, an
animation (dashed black) of a corresponding linear wave is shown for comparison.
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