
 

St. Petersburg Paradox and Failure Probability
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The St. Petersburg paradox provides a simple paradigm for systems that show sensitivity to rare events.
Here, we demonstrate a physical realization of this paradox using tensile fracture, experimentally verifying
for six decades of spatial and temporal data and two different materials that the fracture force depends
logarithmically on the length of the fiber. The St. Petersburg model may be useful in a variety fields where
failure and reliability are critical.
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Failure of materials is ubiquitous. In failure, breakdown
often depends on the occurrence of rare events, such as
large defects in mechanical [1] and dielectric [2,3] break-
down. Although the Weibull model [4] has been used
extensively over the last half century to describe such
events, the model is empirically founded with no firm
theoretical basis. It is of considerable interest then to further
elucidate the relationship between material strength and
scale [5,6].
The St. Petersburg paradox [7] is a game in which the

expectation value of winnings does not agree with the
dictates of common sense. A single trial in the St.
Petersburg game consists of flipping a true coin until it
lands heads; if this occurs on the nth flip, the payout is 2n

dollars. The expectation value of the payout from a single
trial is

P∞
i¼1ð1=2iÞ2i ¼ ∞; however, in a typical trial, only

a few dollars are won. The paradox is that the expected
outcome dramatically differs from the typical one. The first
full resolution of the paradox was given by Feller [8].
Given a sequence of N coin tosses, i.e., (10 110;…;

100 101), where 1 and 0 correspond to the coin landing
heads or tails, the mean number of clusters of length n is
hmðnÞi ¼ ð1 − pÞ2pnN, where p is the probability of the
coin landing tails. For large N, the system is expected to
have many small clusters and fewer large clusters.
No clusters of size n are expected to occur with
n > nmax, where ð1 − pÞ2pnmaxN ¼ 0.5. The largest
expected cluster size in a single chain is thus nmax ¼
− ln½2Nð1 − pÞ2�=lnðpÞ; that is, nmax depends linearly on
the logarithm of the chain length [3].
In this Letter, we report a physical realization of such

behavior, by measuring the tensile force required to fracture
fibers over six decades of fiber length and time for two
materials. Our results show that the force required to
fracture a fiber depends linearly on the logarithm of the
fiber length and is nearly independent of the strain rate.

In addition to material failure, these results may have
applications in fields such as weather forecasting, financial
markets, internet congestion, and hydrology.
There is a fundamental connection between the

St. Petersburg paradox and systems that show a sensitivity
to rare events [9]. In the St. Petersburg game, large profits
result from the rare occurrence of long clusters of tails, i.e.,
(1000; ...; 0001). In failure, breakdown results from the rare
occurrences of large defects. If nmax is a measure of the size
of the largest defect in a fiber length L and if the force
required to fracture the fiber is a linear function of the
defect size, then the force F required to fracture the fiber
can be taken to depend linearly on the logarithm of the fiber
length. Then

F
F0

¼ −α ln
�
L
L0

�
þ β; ð1Þ

where α and β are constants. L0 and F0 are normalizing
constants and are set to the shortest fiber lengths that were
measured in the experiments, described below, since the
length and corresponding force required to fracture a
defect-free fiber is initially unknown.
To validate Eq. (1), we carried out tensile fracturing

experiments on polyester and polyamide fiber samples with
lengths ranging from 1 mm to 1 km (Fig. 1).
For fiber samples greater than 1 m, the terminal end was

clamped to a fixed anchor support, the other was laced over
pulley 1, attached to a lever that pushes on a force gauge
(Omegadyne LC101-25), and is then anchored onto pulley
2 (diameter, 24 cm). Pulley 2 is attached to the shaft of an
electric motor (Dayton 1=4 hp, 323.5∶1, 0.095 rev=s, ac
gearmotor). Software (LabVIEW8.0) using a data acquisition
card (DAQ card PCI-6063E) and a relay controlled the
motor, rotating pulley 2, and measuring the applied load
on the fiber from the force gauge until fracture occurred.
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The fibers rarely fractured near the fiber ends; if this
occurred, the data point was discarded. The experiments
were carried out on a straight 1 km paved bicycle trail during
times of favorable weather. Several supports were used to
prevent the longer fibers from rubbing on the ground.
For fiber samples less than 1 m, pulley 2 was changed to

a another with a diameter of 2 cm to reduce the strain rate,
preventing any wave formation or propagation along the
fibers, and was conducted indoors. The fibers were placed
between two clamps, one fixed to the anchor support and
the other to a sleigh clamp. The sleigh clamp was connected
to pulley 2 using copper wire (18 gauge). To prevent the
fibers from slipping out of the clamps, epoxy drops were
placed at the ends of the polyester fibers. The polyamide
fiber ends were tied (Snell knot) to the eyes of fishing
hooks. The epoxy beads or fishing hooks were then placed
into both the sleigh and anchor clamps. The strain rate of
the tensometer was further reduced by detaching the copper
wire from pulley 2, lacing it over pulley 3, and attaching it
to a water vessel. Using a valve the flow of the water into

the vessel was controlled, from drops to full stream, thereby
controlling the time required to fracture the fibers from
days to seconds. The time evolution of the force applied to a
fiber is shown for a 5.3 m length polyester fiber [Fig. 1(b)].
Initially, a slight tension is applied to enable accurate
measurements of the length of each fiber. The electric
motor is then started and tension builds until the fiber
fractures.

FIG. 1. Schematic of the tensometer and force evolution on a
fiber. (a) The tensile load was applied and measured on the fiber
samples as a function of length and time using a tensometer.
(b) A representative graph of the measured force as a function of
time from a polyester fiber (Gutermann white sewing thread,
filament diameter ¼ 0.025 mm, fiber diameter ¼ 0.25 mm). The
top left inset shows amicroscope image of a polyester fiber sample
and the bottom shows a polyamide fiber sample (Eagle Claw 6 lb
nylonmonofilament fishing line, diameter ¼ 0.22 mm). The scale
bars in both images are equal to 0.1 mm.

FIG. 2. Normalized fracture force for different length fibers.
Normalized fracture force for the (a) polyester (L0 ¼ 1.2 mm,
F0 ¼ 17.84N) and (b) polyamide (L0 ¼ 1.0 mm, F0 ¼ 42.60N)
fibers as a function of fiber length from 1 mm to 1 km. The
datasets were fit using the two parameter ðα; βÞ St. Petersburg,
Weibull, and mean-field models and are summarized in the tables
above each graph. R̄2 was used as a figure of merit.
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The Weibull model asserts the probability P that a single
link will fracture at force f is PðfÞ ¼ 1 − e−ϕðfÞ. The
cumulative probability of n links failing can then be written
as PnðfÞ ¼ 1 − e−nϕðfÞ. Declaring ϕðfÞ of the form
½ðf − fuÞ=f0�m, where f ≥ fu and m; f0 > 0, and differ-
entiating Pn with respect to f gives Pw, the Weibull
distribution. Letting n be proportional to L and maximizing
Pw with respect to f gives the most probable force F for
link fracture, F=F0 ¼ αðL=L0Þβ [4].
To reveal how the fracture force depends on fiber length,

the normalized fracture force for the polyester and poly-
amide fibers as a function of fiber length from 1 mm to
1 km are plotted (Fig. 2). The datasets are fitted using the
logarithmic St. Petersburg model [Eq. (1)], the Weibull
model, predicting a power law dependence, and a mean-
field model [10], F=F0 ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðL=L0Þ

p þ β, combining
both a logarithmic and power law form.
The adjusted coefficient of determination R̄2 was used as

a figure of merit to compare the three models. For both the
polyester and polyamide datasets in Fig. 2, although
the difference in the St. Petersburg and Weibull R̄2 is
small, the St. Petersburg R̄2 was closest to unity, indicating
that the logarithmic dependence of the fiber strength on
length, predicted by the St. Petersburg model, agrees best
with experimental results.
We note, properly, the mean-field model should depend

on three fitting parameters, since scaling L0 in theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðLÞ − lnðL0Þ

p
term does not simply scale α and β.

However, if the scaling factor of L0 is close to unity, the
scaling can be approximated by the change in α and β. We
have therefore included the mean-field model for the sake
of completeness.
The length of a defect-free fiber can now be determined,

Lf ¼ L0eð1−βÞ=α, from Eq. (1) when F=F0 ¼ 1. Using the
fitting parameters retrieved from the tables in Fig. 2, we

find for the polyester fiber Lf ¼ 1.5 mm and for the
polyamide fiber Lf ¼ 0.022 mm.
To probe how the strain rate affects the fiber fracturing

force, the water vessel loading setup, discussed above, was
used to vary the time required to fracture the fibers at a
fixed length (Fig. 3). The fracture force deviated from the
average by 8.7% and 6.2% for the polyester (L ¼ 6.2 m)
and polyamide (L ¼ 3.8 m) fibers, respectively, over a time
span of 6 orders of magnitude, demonstrating a small, but
non-negligible, creep dependence. It is interesting to note
that the dependence of the fracture force on strain rate also
appears to be logarithmic [11].
In conclusion, we demonstrated a physical realization of

the St. Petersburg paradox using tensile fracture. Our
experiments show that the force required to fracture fibers
with lengths from 1 mm to 1 km, using two different
materials, depends linearly on the logarithm of the fiber
length. These results indicate a fundamental connection
between the St. Petersburg paradox and systems that show a
sensitivity to rare events.
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FIG. 3. Fracture force for fibers at different strain rates. The
force to fracture a polyester and polyamide fiber as a function of
strain rate. The data were fit using a linear regression.
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