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  TEMPERATURE 
 
 Circular statements.  What is temperature?  We are told in 
kindergartens that temperature is the quantity measured by a thermometer.  The 
answer begs for another question.  What is a thermometer?  We are then told that 
a thermometer is an instrument that measures temperature.  These answers 
merely link temperature and thermometer.  But what is temperature?  What is a 
thermometer? 
 Another type of circular statements is found in some textbooks of 
thermodynamics. 

• What is temperature?  Temperature is a property shared by two bodies in 
thermal contact, when they stop exchanging energy by heat.  

• What is heat?  Heat is the transfer of energy caused by difference in 
temperature. 

The circular statements nether define heat nor define temperature.  They are 
correct and useful statements:  they link heat and temperature. 
   
 Temperature and heat are distinct quantities.  We will show that 
heat and temperature are distinct quantities, and can be determined by separate 
experiments.  The art of measuring heat is called calorimetry, and the art of 
measuring temperature is called thermometry. 
   
 What can we do for temperature?  We will consider an everyday 
experience—thermal contact. We reach the concept of temperature in two ways: 
first from empirical observations of thermal contact, and then from analyzing 
thermal contact by combining two great principles of nature: an isolated system 
conserves energy and maximizes entropy.   
 An essential step to be a master—rather than a slave—of thermodynamics 
is to get to know temperature.  How does temperature come down as an 
abstraction from everyday experience of thermal contact?  How does temperature 
rise up as a consequence of conserving energy and maximizing entropy?    
 Let me borrow the language of a better-known Bostonian.  And so, my 
fellow enthusiasts of thermodynamics:  ask not what temperature can do for 
you—ask what you can do for temperature. 
 
  CALORIMETRY 
 
 Experimental determination of heat without the concept of 
temperature.  To avoid circular statements, we now review previous lectures, 
and formulate the concept of heat without invoking temperature.  We will also 
describe a method to measure heat without measuring temperature.  The art of 
measuring heat is known as calorimetry.  The art has so many variations that it is 
out of place here to describe them in detail.  But all methods of calorimetry build 
on the concepts of thermodynamic states, internal energy, work, and heat.  Here 
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we are only interested in a method of calorimetry that does not require the 
concept of temperature.   
 
 Thermodynamic states and properties. To fix the idea, let us 
consider a closed system:  a fixed number of water molecules, enclosed in a 
cylinder-piston setup, receiving energy from the weights placed over the piston 
and from the fire outside the cylinder.  The water molecules can be in a liquid, or 
a gas, or a liquid-gas mixture.   
 At any time, we can temporarily make the water into an isolated system.  
Our experience indicates that a system isolated for a long time will reach a state 
of thermodynamic equilibrium.  Our experience further indicates that the fixed 
amount of water can be in many thermodynamic states, capable of two and only 
two independent variations.  We represent the two independent variations using 
two thermodynamic properties.  
 Here we name each thermodynamic state of the closed system by values 
of two thermodynamic properties:  the pressure P in water, and the volume V 
occupied by the water.  The two properties serve as the coordinates of a plane.  

Each point P,V( )  in the plane represents a thermodynamic state.  Often we also 

name a thermodynamic state by a letter, such as A, and give the values of the two 

properties, PA ,VA( ) . 

 
 Adiabatic work.  Consider an adiabatic system.  We seal the system to 
prevent matter from leaking.  We insulate the system to prevent energy from 
leaking by heat.  But we can transfer energy to the system by work, known as 
adiabatic work, written as Wadiabatic.  The process of changing the adiabatic 
system is called an adiabatic process. 
 How do we know whether we have sealed and insulated the system well 
enough to make it adiabatic?  We may change the system from one 
thermodynamic state A to another thermodynamic state B by doing work in 
various ways, such as pushing the piston, passing an electric current through a 
resistor immersed in the water, and rotating a paddle immersed in the water. If 
we obtain the same work for all processes between state A and state B, the sealing 
and insulation are good enough, and the system is adiabatic. 
   
 Experimental determination of internal energy as a function of 
state. The internal energy U of the closed system is a thermodynamic property—
that is, the internal energy is a function of the two independent properties, 

U P,V( ) .  We measure this function by insulating the closed system into an 

adiabatic system.  We then record a process of changing the system from state A 
to state B, and call the work done by the external force the adiabatic work 

Wadiabatic .  State A corresponds to pressure and volume PA ,VA( ) , and state B 
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corresponds to pressure and volume PB ,VB( ) .  When the system changes 

adiabatically from state A to state B, the change in internal energy is 

     U PB ,VB( )−U PA ,VA( ) =Wadiabatic . 

Internal energy is a relative property; we can set the internal energy of any one 
state to be zero, and measure the internal energy of any other states if we can 
connect the two states with an adiabatic process.   
 If we limit ourselves to doing work to the closed system by a quasi-
equilibrium process, then from a given state we can only form a single adiabatic 
path.  To reach a state off this path by adiabatic process, we must do work to the 
closed system by some other means, such as passing an electric current through a 
resistor placed in water.  This way we can do work to the closed system, for 
example, while keeping the volume of the system fixed.  This procedure allows us 

to determine the function U P,V( ) .   

 
 Heat. Suppose that we have discovered all modes of doing work to a 
closed system.  We now block all these modes of doing work. The boundary of the 
system is rigid, so that the system and the rest of world do not exchange energy 
by mechanical work.  The boundary of the system shields electric field, so that the 
system and the rest of the world do not exchange energy by electrical work.  
Indeed, we construct the closed system such that the system and the rest of the 
world do not exchange energy by any kind of work.   
 Thus, the system and the rest of the world do not exchange matter and do 
not exchange energy by work.  But our experience indicates that the system and 
the rest of the world can still exchange energy.  For example, we can change the 
thermodynamic state of the water by fire.  We call such a system a thermal 
system, and call this mode of workless exchange of energy heat.  
 
 Experimental determination of heat.  We now allow a closed system 
to exchange energy with the rest of the world by both work and heat.  For this 

closed system, we have determined the function U P,V( ) .  We change the closed 

system via an arbitrary process, either a quasi-equilibrium or a non-equilibrium 
process, from one state of equilibrium to another.  We identify the two 

thermodynamic states by recording the properties at the two states, PA ,VA( )  and 

PB ,VB( ) . We record the work associated with the process, W.  In general, 

U PB ,VB( )−U PA ,VA( ) ≠W .  The difference defines heat Q associated with the 

process: 

  U PB ,VB( )−U PA ,VA( ) =W +Q . 

We have just prescribed a method of calorimetry that measures heat for any 
process, either a quasi-equilibrium or a non-equilibrium process, without the 
concept of temperature. 



Thermodynamics http://imechanica.org/node/288 Zhigang Suo 

 

October 20, 2015  temperature - 4  

 
 A classification of systems.  We classify systems according to how 
they interact with the rest of the world.  Different authors may classify systems 
differently, and may name them differently.  It is good to spell out the modes of 
interaction for each type of systems.  
 

 exchange 
matter 

exchange energy 
by work 

exchange energy 
by heat 

isolated system no no no 
adiabatic system no yes no 
thermal system no no yes 
closed system no yes yes 
open system yes yes yes 

    
 
  EMPIRICAL OBSERVATIONS OF THERMAL CONTACT  
 
 Thermal contact.  When we need an adjective to denote that a 
phenomenon concerns heat, we call it a thermal phenomenon. For example, on 
absorbing energy, a given quantity of material often increases its volume—a 
phenomenon known as thermal expansion. 
 When two systems exchange energy by heat, we say that they are in 
thermal contact.  Often we idealize thermal contact as follows: 

• The two systems together form an isolated system. 
• The two systems interact in one mode:  exchanging energy by heat only. 

We make the transfer of energy by heat the only mode of interaction between the 
two systems.  We block all other modes of interaction between them.  The two 
systems do not exchange molecules, and do not exchange energy by work.  That 
is, each of the two systems is a thermal system.  The composite of the two systems 
as a whole is an isolated system. 
 Two systems can be in thermal contact without touching each other; for 
example, energy can transfer from one system to the other by electromagnetic 
radiation.  
 
 Experience of hotness.  Temperature is synonymous to hotness.  A 
value of temperature means a place of hotness.  In this section of the notes, we 
will use the word “hotness” and the phrase “places of hotness”, so that we can 
focus on our own experience, without the interference of kindergarten teachers 
and international committees.   
 Our feeling of hotness comes from everyday experience.  We use the 
adjectives hot, warm, cool and cold to indicate places of hotness.  But the four 
words are insufficient to indicate all places of hotness.  Everyday experience tells 
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us that many places of hotness exist, and that all places of hotness map to a real 
variable. 
 
 Why is hotness so different from happiness?  Most our feelings 
however, do not map to real variables.  Think of happiness, love, and anxiety.  It 
is remarkable that this particular type of feeling—hotness—does map to a real 
variable.  What makes hotness so different from happiness?  This question is 
hard to answer because we do not know happiness in the same way as we know 
hotness.  What do we know about hotness?   
 We now form the concept of hotness from empirical observations of 
thermal contact.  We will first describe these experimental phenomena without 
asking why they occur.  These observations are milestones in a long march 
toward a profound discovery of humankind: we can name all places of hotness by 
a real variable. 
   
 Hotness is a child of entropy and energy.  In the later part of the 
notes we will understand these observations in terms of two great principles of 
nature:  an isolated system conserves energy and maximizes entropy. We 
describe another profound discovery of humankind:  hotness is not an orphan; 
rather, hotness is a child of entropy and energy. 
 
  Places of Hotness 
 
 Observation 1: Two systems in thermal contact for a long time 
will stop transferring energy.  The two systems are said to have reached 
thermal equilibrium. 
 For example, a glass of wine has been kept in a refrigerator for a long time 
and is then isolated, and a piece of cheese is kept in a room for a long time and is 
then isolated.  When the glass of wine and the piece of cheese come into thermal 
contact, the vibration of the molecules in the wine will interact with the vibration 
of the molecules in the cheese, through the vibration of the molecules in the glass.  
After some time, energy re-allocates between the wine and the cheese, and stops 
transferring. 
 As another example, consider a tank of water, which we regard as an 
isolated system of many parts.  Even when the system is isolated from the rest of 
the world, energy may flow from one part of the tank to another.  But after some 
time, this transfer of energy will cease, and the isolated system is said to reach 
thermal equilibrium. 
  
 Observation 2:  If two systems are separately in thermal 
equilibrium with a third system, the two systems are in thermal 
equilibrium with each other.  This observation is known as the zeroth law of 
thermodynamics. 
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 Places of hotness.  Consider many isolated systems. Individually they 
have all reached thermal equilibrium—that is, within each isolated system, energy 
has stopped transferring from one part to another.   
 We discover places of hotness by experiments.  We bring two systems into 
thermal contact, and check if they exchange energy by heat.  If the two systems in 
thermal contact do not exchange energy by heat, we say that they are at the same 
place of hotness.  If the two systems in thermal contact exchange energy by heat, 
we say that they are at different places of hotness. 
 
 Observation 3:  For a fixed amount of a pure substance, once 
the pressure and volume are fixed, the hotness is fixed. This fact can be 
checked by the experiment of thermal contact.  This empirical fact is familiar to 
us, but is unimportant to our effort to establish the concept of hotness.  
Nevertheless we have used this observation to illustrate a method of calorimetry 
above. 
    
 Observation 4:  For a pure substance in a state of coexistent 
solid and liquid, the hotness remains fixed as the proportion of solid 
and liquid changes.  This fixed place of hotness is specific to the substance, 
and is known as the melting point or freezing point of the substance.  This 
empirical fact is also familiar to us, but is also unimportant to our effort to 
establish the concept of hotness.  Nevertheless, we will use this empirical fact in 
some illustrations. 
 The hotness where ice and liquid water coexist has acquired many names:  
melting point of ice, freezing point of water, 0 C, 32 F, 273.15 K, etc.  We will 
explain how various naming schemes work shortly. 
 So far we have talked about the melting point of ice as if it were a unique 
place of hotness.  Upon further experiment of thermal contact, we discover that 
the melting point of a pure substance changes with variables such as pressure, 
electric field and magnetic field.  These changes are typically small, and for the 
time being we neglect them. 
 
   Name places of hotness any way you like.  Everyday experience 
indicates that many places of hotness exist. To talk about them individually, we 
need to give each place of hotness a name.  Places of hotness are real:  they exist 
in the experiment of thermal contact.  How to name the places of hotness is our 
choice.  The names exist between our lips, and in our ears and books.  All naming 
schemes are arbitrary decisions of human beings (or committees), but some 
naming schemes are more convenient than others. 
 The situation is analogous to naming streets in a city.  The streets are real:  
they exist regardless how we name them.  We can name the streets by using 
names of presidents, or names of universities.  We can use numbers.  We can be 
inconsistent, naming streets in one part of the city by numbers, and those in 
another part of the city by names of presidents.  We can even give the same street 
several names, using English, Chinese, and Spanish. 
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   Name places of hotness after physical events.  Let us consider one 
specific naming scheme. For a pure substance, its solid phase and liquid phase 
coexist at a place of hotness, known as the melting point of the substance.  We 
can name this place of hotness after the substance. 
 Thus, a system is said to be at the place of hotness named “WATER” when 
the system is in thermal equilibrium with a mixture of ice and water at the 
melting point.  Here are four distinct places of hotness:  WATER, LEAD, 
ALUMINUM, GOLD.  We can similarly name other places of hotness by using a 
large number of pure substances. 
 How does the above naming scheme differ from words used in everyday 
life, such as cold, cool, warm, and hot?  When we say a system is at the place of 
hotness WATER, we mean a specific experimental observation:  the system is in 
thermal equilibrium with an ice-water mixture.  By contrast, when we use the 
word cold, we may not have a specific place of hotness in mind.  Adjectives carry 
little weight in science and engineering.  We need nouns, verbs and numbers.  
 
  Measurement of Hotness 
 
 Thermometry.  Thermometry is the art of measuring hotness.  The art 
has become sophisticated, but its foundation remains simple:  thermometry relies 
on thermal equilibrium. By “measuring the hotness of system X” we mean 
matching system X in thermal equilibrium with a system of a known place of 
hotness.   
 We first build a library of known places of hotness.  For example, we find 
a large number of pure substances, and use their melting points to locate various 

places of hotness.  Name the places of hotness in the library as A,B,C,...{ } .     

 We then use the library to measure the hotness of system X.  We bring 
system X in thermal contact with a system at hotness A, and observe if the two 
systems exchange energy by heat.  If they do not exchange energy by heat, we 
have just measured the hotness of system X—it is at hotness A.  If they do 
exchange energy by heat, we know system X is at a place of hotness different from 
A.  We then bring system X in thermal contact with a system at hotness B.  We 
repeat this procedure until we match system X in thermal equilibrium with a 
system of a place of hotness in the library.   
 What if we cannot match system X with any place of hotness in the library?  
We have just discovered a new place of hotness!  We are the Columbus in the new 
world of hotness.  We add this new place of hotness to the library, and name the 
place X. 
 
 Thermometry and calorimetry.  To practice this art, we need to find 
a way to detect the exchange of energy by heat.  We also need to ensure that, in 
each thermal contact, system X exchanges only negligible amount of energy with 
a system in the library, so that the procedure of measurement negligibly alters 
system X. 
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 Incidentally, “detecting the exchange of energy” does not require us to 
measure the quantity of heat.  For instance, in using a column of mercury as a 
thermometer, the exchange of energy is detected by the rise and fall of the 
column.  In principle, thermometry (the art of measuring hotness) is independent 
of calorimetry (the art of measuring heat).  In practice, however, the two types of 
measurement may mingle somewhat.  Calorimetry determine both the direction 
and the quantity of heat.  Thermometry only needs direction of heat. 
 
 Thermometer.  A thermometer is an instrument that maps places of 
hotness to an observed variable. A set of pure substances, for example, serves as a 
thermometer.  The melting point of each pure substance locates a place of 
hotness.    
 A material also serves as a thermometer. When energy is added to the 
material by heat, the material expands. The thermal expansion of the material 
acts as a one-to-one function.  The domain of the function consists of various 
places of hotness.  The range of the function consists of various volumes of the 
material.  The function maps places of hotness to the volumes of the material. 
 Places of hotness are real, and have nothing to do with how humans 
measure them.  Hotness is independent of the choice of thermometers.  We can 
use one thermometer to calibrate any other thermometer.  Let us calibrate a 
thermal-expansion thermometer using a melting-point thermometer.  For 
example, the thermal-expansion thermometer is made of mercury.  On the 
melting-point thermometer, we mark WATER is the place of hotness at which ice 
and water coexist.  We bring a mixture of ice and water into thermal contact with 
the thermal-expansion thermometer.  When the two systems are in thermal 
equilibrium, the thermal-expansion thermometer also reaches hotness WATER.  
We record that hotness WATER corresponds to the volume of the material. 
 
 Temperature affects everything, and everything is a 
thermometer.  An electrical conductor serves as yet another thermometer.  
When energy is added to the electrical conductor, its electrical resistance 
changes.  Thus, the electrical conductor maps places of hotness to values of 
electrical resistance.  Other commonly used thermometers include bimetallic 
thermometers, pyrometers, and thermocouples.    
 
 Exercise.  Describe practical considerations in constructing a 
thermometer using mercury. 
 
 Exercise.  Describe practical advantages of a thermometer based on 
electrical resistance over a thermometer based on thermal expansion.  
 
  Scale of Hotness    
 
 Observation 5: When a system of hotness A and a system of 
hotness B are brought into thermal contact, if energy goes from the 
system of hotness B to the system of hotness A, energy will not go in 
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the opposite direction.  This observation is a version of the second law of 
thermodynamics, known as the Clausius statement.   
 When the two systems of different places of hotness are in thermal 
contact, the flow of energy is unidirectional and irreversible.  This observation 
does not violate the principle of the conservation of energy, but is not implied by 
the principle of the conservation of energy.  Energy going either direction would 
be conserved. 
 When two systems at different places of hotness are brought into thermal 
contact, energy transfers by heat from the system at a high place of hotness to the 
system at a low place of hotness.  That is, in thermal contact, a difference in 
hotness gives heat a direction.     
  
 Places of hotness are ordered.  This observation allows us to order 
any two places of hotness.  When two systems are brought into thermal contact, 
the system gaining energy is said to be at a lower place of hotness than the system 
losing energy. 
 For example, we say that hotness “LEAD” is lower than hotness 
“ALUMINUM” because, upon bringing melting lead and melting aluminum into 
thermal contact, we observe that the amount of solid lead decreases, whereas the 
amount solid aluminum increases. 
 In thermodynamics, the word “hot” is used strictly within the context of 
thermal contact.  It makes no thermodynamic sense to say that one movie is 
hotter than the other, because the two movies cannot exchange energy.  
 
 Observation 6:  If hotness A is lower than hotness B, and 
hotness B is lower than hotness C, then hotness A is lower than 
hotness C.  
 This observation generalizes the zeroth law of thermodynamics.  By 
making thermal contact, we can order any library of places of hotness one after 
another.  For example, experiments of thermal contact tell us the order of four 
places of hotness:  WATER, LEAD, ALUMINUM, GOLD.  We can order more 
places of hotness by using melting points of many pure substances.  We call an 
ordered library of places of hotness a scale of hotness. 
 
 Exercise.  Learn about a scale of earthquake, a scale of hurricane, a scale 
of happiness, and a scale of danger of terrorist attack.  Compare these scales to a 
scale of hotness.  
 
  Numerical Scale of Hotness 
 
 Observation 7: Between any two places of hotness there exists 
another place of hotness.  The experimental demonstration goes like this.  
We have two systems at hotness A and B, respectively, where hotness A is lower 
than hotness B.  We can always find another system, which loses energy when in 
thermal contact with A, but gains energy when in thermal contact with B.   This 
observation indicates that places of hotness are continuous.   
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 Name all places of hotness by a real variable.  All places of hotness 
are ordered, so that we can name them by using a set of numbers.  Places of 
hotness are continuous, so that we cannot name them by using a set of integers, 
but we can name them by using a real variable.  A map from places of hotness to a 
real variable is called a numerical scale of hotness. 
 Around 1720, Fahrenheit assigned the number 32 to the melting point of 
water, and the number 212 to the boiling point of water.  What would he do for 
other places of hotness?  Mercury is a liquid within this range of hotness and 
beyond, sufficient for most purposes for everyday life.  When energy is added to 
mercury by heat, mercury expands.  The various volumes of a given quantity of 
mercury could be used to name the places of hotness. 
 What would Fahrenheit do for a high place of hotness when mercury is a 
vapor, or a low place of hotness when mercury is a solid?  He could switch to 
materials other than mercury; for example, he could use a flask of gas.  He could 
also use phenomena other than thermal expansion, such as a change in electrical 
resistance of a metal due to heat. 
 
 Long march toward mapping hotness to a real variable.  By now 
we have completed this long march.  In the beginning of this long march, we have 
invoked the analogy of naming streets in a city.  Now note two differences 
between naming streets and naming places of hotness.  First, we do not have a 
useful way to name all streets by an ordered array.  In what sense one street is 
higher than the other?  Second, we do not need a real variable to name all the 
streets.  A city has a finite number of streets.   
 By contrast, observations 6 and 7 enable us to name all places of hotness 
by a single, continuous variable.  Most textbooks state that the zeroth law 
(observation 2) establishes the concept of hotness.  This statement is wrong.  
Zeroth law does not enable us to name all places of hotness by a single, 
continuous variable.  
  
 Map one numerical scale of hotness to another. Once a numerical 
scale of hotness is set up, any monotonically increasing function maps this scale 
to another scale of hotness.  For example, in the Celsius scale, the freezing point 
of water is set to be 0C, and the boiling point of water 100C.  We further require 
that the Celsius (C) scale be linear in the Fahrenheit (F) scale.  These 
prescriptions give a map from one scale of hotness to the other: 

  ( )32
9
5

−= FC  . 

 In general, the map from one numerical scale of hotness to another need 
not be linear.  Any increasing function will preserve the order of the places of 
hotness.  Any smooth function will preserve the continuity of the places of 
hotness. 
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 Exercise.  Learn about the Rankine scale of temperature.  How does the 
Rankine scale map to the Fahrenheit scale? 
 
 Exercise.  How do you calibrate a thermometer based on thermal 
expansion using a thermometer based on electrical resistance?  Will the volume 
of the material in the thermal-expansion thermometer be linear in the electrical 
resistance of the resistive thermometer? 
 
 Non-numerical vs. numerical scales of hotness.  As illustrated by 
the melting-point scale of hotness, a non-numerical scale of hotness perfectly 
captures all we care about hotness.  By contrast, naming places of hotness by 
using numbers makes it easier to memorize that hotness 80 is hotter than 
hotness 60.  Our preference to a numerical scale reveals more the nature of our 
brains than the nature of hotness.  
  
 Numerical values of hotness do not obey arithmetic rules.  Using 
numbers to name places of hotness does not authorize us to apply arithmetic 
rules:  adding two places of hotness has no empirical significance.  It is as 
meaningless as adding the addresses of two houses on a street.  House number 2 
and house number 7 do not add up to become house number 9.  Also, raising the 
temperature from 0C to 50C is a different process from raising temperature from 
50C to 100C.  For instance, for a given amount of water, raising the temperature 
from 0C to 50C takes different amount of energy from raising temperature from 
50C to 100C.    
 
  Ideal-Gas Scale of Hotness    
 
 Observation 8:  All places of hotness are hotter than a certain 
place of hotness, which can be approached, but not attained. So far as 
we know, all places of hotness hotter than this certain place can be attained.  That 
is, there is a lower limit to the places of hotness, but no upper limit to the places 
of hotness.   
 Following this observation, we can name the lowest place of hotness zero, 
and name all other places of hotness by positive real numbers.  Such a scale of 
hotness is called an absolute scale. 
 Under rare conditions, negative absolute temperature can be achieved.  In 
this course we will not treat such conditions.   
 
 Observation 9: Thin gases obey the law of ideal gases.  A flask 
contains a gas—a collection of flying molecules.  Let P be the pressure, V the 
volume, and N the number of molecules.  The gas is thin when NV /  is large 
compared to the volume of an individual molecule. 
 Experiments indicate that, when two flasks of thin gases are brought into 
thermal contact, thermal equilibrium is attained when the two flasks of gases 
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attain an equal value of PV /N .  This observation holds regardless the identity 
of the gases, and is known as the law of ideal gases. 
 The law of ideal gas played significant role in the history of 
thermodynamics, but it is logically unimportant in establishing the concept of 
hotness.  
 
 Ideal-gas scale of temperature.  According to the experimental 
observation, the values of PV /N  define a scale of hotness, known as the ideal-
gas scale of temperature.  Denote this scale of temperature by τ , so that 
  PV /N = τ . 
This scale relates temperature to measurable quantities P, V and N.   
 The ideal-gas scale of temperature is an absolute scale of temperature.  In 
the limit of an extremely thin gas, PV /N→0 , this scale of temperature gives 
τ →0 .   Because N is a pure number, and PV has the unit of energy, this scale of 
temperature has the same unit as energy.  
 
 Observation 10: For a pure substance, its solid phase, liquid 
phase and gaseous phase coexist at a specific hotness and a specific 
pressure.  This point of coexistence of three phases of a pure substance is 
known as triple point.  This empirical fact is familiar to us, but is unimportant in 
establishing the concept of hotness.   
 This observation is incidental in the development of the notion of 
temperature.  Nonetheless an international committee has decided to use the 
triple point of pure water to set a scale of temperature.    
 
 Kelvin scale of temperature.  An international convention specifies 
the unit of temperature by Kelvin (K).  The Kelvin scale of temperature is defined 
as follows: 
 

1. The Kelvin scale of temperature, T, is proportional to the ideal-gas scale of 
temperature, PV /N .   

2. The unit of the Kelvin scale, K, is defined by marking the triple point of 
pure water as K16.273=T  exactly. 

 
 Thus, we write 
  PV /N = kT . 

Here k is the factor that converts the two units of temperature, τ = kT .  The 
factor k is known as the Boltzmann constant.  
 In the literature, the symbol T may denote temperature in both units.  
This practice is the same as using L to denote length, regardless whether the unit 
of length is meter or inch.  
 The conversion factor between the two units of temperature can be 
determined experimentally.  For example, you can bring pure water in the state of 
triple point into thermal contact with a flask of an ideal gas.  When they reach 
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thermal equilibrium, a measurement of the pressure, volume and the number of 
molecules in the flask gives a reading of the temperature of the triple point of 
water in the unit of energy.  Such experiments or more elaborate ones give the 
conversion factor between the two units of temperature: 

  k ≈ 1.38×10−23J/K . 
Thus, the two units of energy convert as 

  1K ≈ 1.38×10−23J . 
 It is hard to have much warm feeling for a numerical scale of temperature 
that just makes the triple point of water have an ugly reading.  Boltzmann’s 
constant k has no fundamental significance. For any result to have physical 
meaning, the product kT must appear together.   
 Often people call kT thermal energy.  This designation is correct only for a 
few idealized systems, and is in general incorrect.  There is no need to give any 
other interpretation:  kT is simply temperature in the unit of energy.   
 
 Modern Celsius scale.  Any scale of temperature can be mapped to any 
other scale of temperature.  For example, the Celsius scale C relates to the Kelvin 
scale T by  
  K15.273−= TC  (T in the unit of Kelvin). 
This modern definition of the Celsius scale differs from the historical definition.  
Specifically, the melting point and the boiling point of water are not used to 
define the modern Celsius scale.  Rather, these two places of hotness are 
determined by experimental measurements.  The experimental values are as 
follows:  water melts at C0  and boils at C975.99  , according to the International 

Temperature Scale of 1990 (ITS-90). 
 The merit of using Celsius in everyday life is evident.  It feels more 
pleasant to hear that today’s temperature is 20C than 0.0253eV or 293K.  It 
would be mouthful to say today’s temperature is J1034.404 23−× .  The hell would 
sound less hellish if we were told it burns at the temperature GOLD.  
Nevertheless, our melting-point scale of hotness can be mapped to the absolute 
temperature scale in either the Kelvin unit or the energy unit: 
 
 Melting-point Kelvin Ideal-gas 
 scale scale scale 
 
 WATER 273.15 K 0.0236 eV 
 LEAD 600.65 K 0.0518 eV 
 ALUMINUM 933.60 K 0.0806 eV 
 GOLD 1337.78 K 0.1155 eV  
 
 Exercise.  What excuses the international committee might offer to 
assign the particular number to the triple point of water?  If we accept this 
decision of the committee about the triple point of water, will the melting point of 
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water be exactly zero degree Celsius?  Will the boiling point of water be exactly 
hundred degree Celsius. 
 

 Exercise.  The radius of the Earth is 6.4×106m , and the mean 

atmospheric pressure at the surface of the Earth is 105Pa .  What is the total mass 
of the atmosphere? 
 
 Exercise.  The atmosphere is composed of a large number of molecules, 
mostly molecular nitrogen (78%), molecular oxygen (21%), and argon (0.093%).  
Other species of molecules make up the remainder of the atmosphere.  The 
concentration of carbon dioxide has increased from 280 parts per million in 
preindustrial times to 365 parts per million today.  Estimate the increase in the 
mass of carbon dioxide in the atmosphere. 
 
 Exercise.  Calculate the number of oxygen molecules per unit volume in 
the atmosphere on the surface of the Earth.  Assume that the atmospheric 

pressure is 105Pa  and the temperature is 20 degree Celsius. 
 
 Exercise.   You surround a piston-cylinder setup with a mixture of ice 
and water.  The cylinder contains a gas.  You move the piston slowly, do 1000-
Joule work, and reduce the volume of the gas by a factor of ten.  How many gas 
molecules are in the cylinder?      
 
  THEORY OF THERMAL CONTACT 
 
 We now link the above empirical observations of thermal contact to two 
great principles of nature:  an isolated system conserves energy and maximizes 
entropy. 
 
  System of Variable Energy  
 
        Consider a system interacting with the rest of the world in a single mode:  
exchanging energy by heat. We block all other modes of interaction between the 
system and the rest of the world.  They do not exchange matter, and they do not 
exchange energy by work. 
 

Q

( )U
U
Ω ( )QU

QU
+Ω

+

Isolate the system at 
energy U 

Isolate the system at 
energy U + Q 

Transfer energy to the system 
by a quantity of heat Q  
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 When a quantity of heat Q  transfers from the rest of the world to the 
system, according to the principle of the conservation of energy, the energy of the 
system increases from U to U + Q. Thus, the change in the energy of the system 
can be measured by the quantity of heat transferred to the system.  The art of 
measuring the quantity of heat is known as calorimetry. 
 A system of variable energy is not an isolated system.  However, when the 
energy of the system is fixed at any particular value U, the system is an isolated 
system.  After being isolated for a long time, the system flips among a set of 
quantum states with equal probability.  Denote the number of quantum states by 
Ω .  Consequently, the system of variable energy is a family of isolated systems, 
characterized by the function ( )UΩ .  Each member in the family is a distinct 
isolated system, with its own amount of energy, and flipping among its own set of 
quantum states.  The system of variable energy is a thermodynamic system of a 
single independent variable—energy. 
 
 Hydrogen atom.  A hydrogen atom changes its energy by absorbing 
photons.  When isolated at a particular level of energy, the hydrogen atom has a 
set of quantum states.  Each quantum state is characterized by a distinct electron 
cloud and spin.   
 The hydrogen atom is a system of variable energy, characterized by the 
function 
  ( ) 2eV6.13 =−Ω , ( ) 8eV39.3 =−Ω , ( ) 18eV51.1 =−Ω ,… 

The domain of the function ( )UΩ  is a set of discrete levels of energy:  

eV1.153.39eV,eV,6.13− ,…   The range of the function is a set of integers: 2, 8, 
18,…. For the hydrogen atom, the levels of energy have large gaps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A bottle of water molecules.  For a complex system like a bottle of 
water molecules, the levels of energy are so closely spaced that we regard the 
energy of the system as a continuous real variable. We can certainly heat up the 
bottle of water molecules, and make it a system of variable energy.  The figure 
illustrates the system at three values of energy.  When isolated at energy aU = , 

( )aΩ

aU =

,...,, 321 ααα

bU =

( )bΩ

,...,, 321 βββ

cU =
( )cΩ

,...,, 321 γγγ
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the system contains a mixture of liquid and vapor, and flips amount a total 

number of Ω a( )  quantum states, labeled as α
1
,α
2
,α
3
,...   When isolated at a 

higher energy, bU = , more liquid transforms into the vapor, and the system flips 

amount a total number of Ω b( )  quantum states, labeled as β
1
,β
2
,β
3
,...   When 

isolated with at an even higher energy, cU = , the bottle contains vapor only, and 
the system flips amount a total number of ( )cΩ  quantum states, labeled as 

,...,, 321 γγγ  

 
  Thermal Contact Analyzed Using Basic Algorithm 
 
 Basic algorithm of thermodynamics.   Recall the basic algorithm of 
thermodynamics in general terms:  

1. Construct an isolated system with an internal variable, x.   
2. Use the internal variable to dissect the whole set of the quantum states of 

the isolated system into subsets.  Call each subset a configuration of the 
isolated system.  When the internal variable takes value x, the isolated 
system flips among a subset of its quantum states.  Obtain the number of 

the quantum states in this subset, Ω x( ) .  

3. Maximize the function Ω x( )  to determine the (most probable) value of 

the internal variable x after the constraint is lifted for a long time. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 Thermal contact and the conservation of energy.  When a glass of 
wine and a piece of cheese are in thermal contact—that is, the wine and the 
cheese interact in one mode:  exchanging energy by heat. We make the composite 
of the wine and cheese an isolated system. 
 Consider a specific partition of energy:  the wine has energy U ʹ′ , and the 
cheese has energy U ʹ′ʹ′ .  According to the principle of the conservation of energy, 
the composite has a fixed amount of total energy, which is designated as totalU . 
Write 

U ʹ′ U ʹ′ʹ′

( )U ʹ′Ωʹ′ ( )U ʹ′ʹ′Ω ʹ′ʹ′

,..., 21 αα ʹ′ʹ′ ,..., 21 αα ʹ′ʹ′ʹ′ʹ′

dUU +ʹ′ dUU −ʹ′ʹ′

( )dUU −ʹ′ʹ′Ωʹ′ʹ′( )dUU +ʹ′Ωʹ′

,..., 21 ββ ʹ′ʹ′ʹ′ʹ′,..., 21 ββ ʹ′ʹ′

partition A partition B 
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  totalUUU =ʹ′ʹ′+ʹ′ . 
 The central mystery is this.  The principle of the conservation of energy 
allows arbitrary partition of energy between the wine and the cheese, so long as 
the total energy in the wine and cheese remains constant.  Our everyday 
experience indicates, however, when the wine and the cheese are brought into 
thermal contact, energy flows only in one direction—that is, the flow of energy is 
unidirectional and irreversible.  Furthermore, after some time, the flow of energy 
stops, and the wine and the cheese are said to have reached thermal equilibrium.  
In the state of equilibrium, the wine and the cheese partition the total energy into 
two definite amounts. 
 
 Isolated system with an internal variable.  We have just 
constructed an isolated system of an internal variable.  The isolated system is the 
composite of the two systems of variable energy.  The internal variable is the 
partition of energy between the systems.  To determine the partition of energy, 
we now analyze this isolated system using the basic algorithm of thermodynamics. 
 
 The number of quantum states in a subset.  Isolated at energy U ʹ′ , 
the wine flips among ( )U ʹ′Ωʹ′  number of quantum states, labeled as { },...,, 21 αα ʹ′ʹ′ .  

Isolated at energy U ʹ′ʹ′ , the cheese flips among ( )U ʹ′ʹ′Ω ʹ′ʹ′  number of quantum states, 

labeled as { },...,, 21 αα ʹ′ʹ′ʹ′ʹ′ .  A quantum state of the composite can be any combination 

of a quantum state chosen from the set { },...,, 21 αα ʹ′ʹ′  and a quantum state chosen 

from the { },...,, 21 αα ʹ′ʹ′ʹ′ʹ′ .  For example, one quantum state of the composite is when 

the wine is in quantum state 2αʹ′  and the cheese is in quantum state 3α ʹ′ʹ′ .  The 

number of all such combinations is 
    ( ) ( )UU ʹ′ʹ′Ωʹ′ʹ′ʹ′Ωʹ′ . 
This is the number of quantum states in the subset of the quantum states of the 
composite.  This subset corresponds to partition A, where energy is partitioned as 
U ʹ′  and U ʹ′ʹ′  between the wine and the cheese. Consider another partition of 
energy:  the wine has energy dUU +ʹ′  , and the cheese has energy  dUU −ʹ′ʹ′ .  That 
is, the wine gains energy dU and the cheese loses energy by the same amount, as 
required by the principle of the conservation of energy.  Isolated at energy 

dUU +ʹ′ , the wine has a total of ( )dUU +ʹ′Ωʹ′  number of quantum states, labeled 

as { },...,, 21 ββ ʹ′ʹ′ .  Isolated at energy dUU +ʹ′ , the cheese has a total of ( )dUU −ʹ′ʹ′Ωʹ′ʹ′  

number of quantum states, labeled as { },...,, 21 ββ ʹ′ʹ′ʹ′ʹ′ .  A quantum state of the 
composite can be any combination of a quantum state chosen from the set 
{ },...,, 21 ββ ʹ′ʹ′  and a quantum state chosen from the { },...,, 21 ββ ʹ′ʹ′ʹ′ʹ′ .  The total number of 
all such combinations is 

    !Ω !U +dU( ) !!Ω !!U −dU( ) . 
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This is the number of quantum states in another subset of the quantum states of 
the composite.  This subset corresponds to partition B, where energy partitioned 
as dUU +ʹ′  and dUU −ʹ′ʹ′  between the wine and the cheese. 
 Both systems—the wine and the cheese—are so large that the partition of 
energy may be regarded as a continuous variable, and that the functions ( )U ʹ′Ωʹ′  

and ( )U ʹ′ʹ′Ω ʹ′ʹ′  are differentiable.  Consequently, the numbers of quantum states in 
the two partitions differ 

  

!Ω !U +dU( ) !!Ω !!U −dU( )− !Ω !U( ) !!Ω !!U( )

=
d !Ω !U( )
d !U

!!Ω !!U( )− !Ω !U( )
d !!Ω !!U( )
d !!U

$

%

&
&

'

(

)
)
dU

 

We have retained only the terms up to the leading order in dU. 
 
 Thermodynamic inequality.  The partition of energy is the internal 
variable of the isolated system, the composite.  For a specific partition of energy, 
the composite flips among a specific subset of the quantum states.  According to 
the fundamental postulate, all the quantum states of the composite are equally 
probable, so that a subset of more quantum states is more probable.  The two 
partitions of energy—A and B—correspond to two subsets of quantum states of 
the composite.  For partition B to happen after partition A in time, partition B 
must have is no less quantum states than partition A: 

  
d !Ω !U( )
d !U

!!Ω !!U( )− !Ω !U( )
d !!Ω !!U( )
d !!U

$

%

&
&

'

(

)
)
dU ≥0 . 

The fundamental postulate gives a direction of time, but not duration of time. 
 Divide the inequality by a positive number, ( ) ( )UU ʹ′ʹ′Ωʹ′ʹ′ʹ′Ωʹ′ , and recall a 
formula in calculus,  

  
d logΩ U( )
dU

=
1
Ω

dΩ U( )
dU

. 

Re-write the above expression as 

  
d log !Ω !U( )
d !U

−
d log !!Ω !!U( )
d !!U

$

%

&
&

'

(

)
)
dU ≥0 . 

This expression contains an inequality and an equation. We examine them in 
turn.   
  
 Thermal equilibrium. The equation is the condition of thermal 
equilibrium.  Energy is equally probable to flow in either direction if  

  
d log !Ω !U( )
d !U

=
d log !!Ω !!U( )
d !!U

. 
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This condition of equilibrium, along with the conservation of energy 

totalUUU =ʹ′ʹ′+ʹ′  determines the partition of energy between the two systems in 
thermal equilibrium. 
   
 Irreversibility and direction of heat. The inequality dictates the 
direction of heat. Given the two thermal systems, the two functions ( )U ʹ′Ωʹ′  and 

( )U ʹ′ʹ′Ω ʹ′ʹ′  are fixed.  For a given partition of energy between the two systems, U ʹ′  

and U ʹ′ʹ′ , we can calculate the two numbers, d log !Ω !U( ) /d !U  and 

d log !!Ω !!U( ) /d !!U .  We then compare the two numbers. 

 If d log !Ω !U( ) /d !U  > d log !!Ω !!U( ) /d !!U , energy flows from the cheese to 

the wine, dU >0 . 

 If d log !Ω !U( ) /d !U  < d log !!Ω !!U( ) /d !!U , energy flows from the wine to 

the cheese, dU <0 . 
 
  Thermodynamic Scale of Temperature 
 
 Thermodynamic scale of temperature.  Given a system of variable 

energy, the function Ω U( )  is specific to the system, so is the derivative 

d logΩ U( ) /dU .  The previous paragraph shows that the value d logΩ U( ) /dU  is 

the same for all systems in thermal equilibrium, and therefore defines a scale of 
temperature.  We will use a particular scale of temperature T set up by  

  
1
T
=
d logΩ U( )
dU

. 

This scale of temperature is called the thermodynamic temperature.  The 
combination of the two great principles—the fundamental postulate and the 
conservation of energy—relates temperature to two other quantities:  the number 
of quantum states and energy.   
 You can revisit all the empirical observations of thermal contact described 
before, and convince yourself they are logical consequences of the fundamental 
postulate, applied in conjunction with the conservation of energy.  In particular, 
the theory of thermal contact has named all places of hotness by a single, positive, 
continuous variable.  

 The function Ω U( )  is a monotonically increasing function:  the more 

energy, the more quantum states.  The above definition makes all levels of 
temperature positive. 
 This scale of temperature also accounts for another empirical observation.  
As indicated by the above inequality, when two systems are brought into thermal 
contact, energy flows from the system with a higher temperature to the system 
with a lower temperature. 
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 But wait minute!  Any monotonically decreasing function of 

d logΩ U( ) /dU  will also serve as a scale of temperature.  What is so special about 

the choice made above?  
 
 Thermodynamic scale of temperature coincides with the ideal-
gas scale of temperature.  Recall the law of ideal gases: 
  T = PV /N , 
where P is the pressure, V the volume, and N the number of molecules.  This 
equation relates the absolute temperature T to measurable quantities P, V and N.  
Historically the law of ideal gases was discovered empirically.  However, this 
empirical discovery does not make it clear that the scale of temperature set up by 

the law of ideal gases is the same as that set by T −1 = d logΩ U( ) /dU .  In a later 

lecture, we will derive the law of ideal gases theoretically and show that, indeed, 
the two scales of temperature are the same.  
 
 Experimental determination of thermodynamic scale of 
temperature. How does a doctor determine the temperature of a patient?  
Certainly she has no patience to count the number of quantum states of her 
patient.  Instead, she uses a thermometer.  Let us say that she brings a mercury 
thermometer into thermal contact with the patient.  Upon reaching thermal 
equilibrium with the patient, the mercury expands a certain amount, giving a 
reading of the temperature of the patient. 
 The manufacturer of the thermometer must assign an amount of 
expansion of the mercury to a value of temperature.  This he does by bringing the 
thermometer into thermal contact with a flask of an ideal gas.  He determines the 
temperature of the gas by measuring its volume, pressure, and number of 
molecules.  Also, by heating or cooling the gas, he varies the temperature and 
gives the thermometer a series of markings. 
 Any experimental determination of the thermodynamic scale of 
temperature follows these basic steps: 

(1) For a simple system, formulate a theory that relates the thermodynamic 
scale of temperature to measurable quantities.     

(2) Use the simple system to calibrate a thermometer by thermal contact.   
(3) Use the thermometer to measure temperatures of any other system by 

thermal contact. 
Steps (2) and (3) are sufficient to set up an arbitrary scale of temperature.  It is 
Step (1) that maps the arbitrary scale of temperature to the thermodynamic scale.   
  
 Division of labor.  Our understanding of temperature now divides the 
labor of measuring absolute temperature among a doctor (Step 3), a 
manufacturer (Step 2), and a theorist (Step 1).  Only the theorist needs to count 
the number of quantum state, and only for a very few idealized systems, such as 
an ideal gas. 
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 As with all divisions of labor, the goal is to improve the economics of 
doing things.  One way to view any area of knowledge is to see how labor is 
divided and why.  One way to contribute to an area of knowledge is to perceive a 
new economic change (e.g., computation is getting cheaper, or a new instrument 
is just invented, or the Internet has become widely accessible).  The new 
economic change will enable us to devise a new division of labor. 
 
 Range of temperatures.  Usually we only measure temperature within 
some interval.  Extremely low temperatures are studied in a science known as 
cryogenics.  Extremely high temperatures are realized in stars, and other special 
conditions.  
    
  Energy-Temperature Curve 
 
 A system of variable energy.  Consider a system of a single 
independent variable, the energy.  The system and the rest of the world interact 
in a single mode:  exchanging energy by heat.  We block all other modes of 
interaction, so that the system and the rest of the world do not exchange matter, 
and do not exchange energy by work. 
 We add energy to the system by heat.  We measure the change in energy U 
by calorimetry, and measure temperature T by thermometry.  We add energy 
slowly:  at each increment of energy, we wait until the system regains thermal 
equilibrium and reaches a uniform temperature. 
We then measure the temperature of the system.   
 The experimental data are plotted as the 
energy-temperature curve.  The temperature 
starts at the absolute zero.  The energy is defined 
up to an additive constant, so that the curve can 
be translated horizontally by an arbitrarily 
amount.  Each point on the curve represents the 
system isolated at a particular value of energy.  
The whole energy-temperature curve represents 
the thermal system. 
   
 Experimental determination of the number of quantum states.  
When a small amount of energy dU  is added to the system, the number of 
quantum states of the system changes according to 

  d logΩ=
dU

T U( )
. 

Once we have measured the function T U( ) , this expression determines the 

function ( )UΩ  up to a multiplicative factor.   

T 

0 
U 
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 To fix the multiplication factor, we set 1=Ω  as 0→T .  That is, at the 
ground state, the number of quantum states is low, and may be set to be one.  
This is a version of the third law of thermodynamics. 
 The above equation suggests a graphic representation.  For a given 
system, we plot the experimentally determined U-T curve into a U- 1−T  curve.  
The area under this curve is Ωlog . 
 Often, the measurement only extends to a 
temperature much above absolute zero.  Assume 
that the measurement gives the energy-
temperature curve in the interval between U0 and 
U.  Upon integrating, we obtain that 

  logΩ U( )− logΩ U0( ) = dU

T U( )U0

U

∫  

The constant Ω U
0( )  is undetermined. 

 
 Heat capacity.  A system is in thermal contact with the rest of world, 
and all other modes of interaction are blocked.  Associated with a small change in 
the energy of a system, dU , the temperature of the system changes by dT .  
Define the heat capacity of the system C by the relation 

  
( )
dU
UdT

C
=
1

. 

Because the temperature has the unit of energy, 
heat capacity is dimensionless.   
 If you’d like to use a different unit for 
temperature, kT  has the unit of energy, and the 
heat capacity is given in units of k.  The heat 
capacity is also a function of energy, ( )UC . 
 
  Entropy    
 
 The Clausius-Gibbs equation. Recall that we have abbreviated the 
phrase “logarithm of the number of quantum states” by a single word “entropy”.  
The fundamental postulate gives us one property—entropy S, the principle of the 
conservation of energy gives us another property—internal energy U.  A system of 

variable energy is characterized by a function, S U( ) . 

 The combination of the two great principles gives us a third property—
temperature T.   The three properties obey a relation:  

  
( )
dU
UdS

T
=
1

. 

This relation defines thermodynamic scale of temperature.  The relation shows 
that temperature is a child of entropy and energy.  We will call this relation the 
Clausius-Gibbs equation. 

U 

T
1

logΩ

U

1
T

C
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 Let us relate the Clausius-Gibbs equation back to an experimental setup.  
Consider a family of isolated systems of a single independent variable, the 
internal energy U.  For example, the system can be a half bottle of wine—that is, a 
mixture of liquid and vapor, consisting of many species of molecules.  Each 
member in the family is a system isolated at a particular value of the internal 
energy U. Each system has been isolated for a long time, has reached a state of 
thermodynamic equilibrium, and has the entropy S.  We characterize this family 

of isolated system by a function S U( ) .  

 For an isolated system in a state of thermodynamic equilibrium of 

internal energy U, the entropy relates to the internal energy by the function S U( ) , 

and the temperature is given by the Clausius-Gibbs equation T = dS U( ) /dU!
"

#
$
−1

. 

   
 Adding energy to a system.  We can write the Clausius-Gibbs equation 
in another way 

  dS =
dU

T U( )
. 

Start with a system in the family, a system isolated at energy U.  We next transfer 
to the system a small amount of energy dU.  How we transfer this amount of 
energy does not matter.  We can place the system in an oven, or pass an electric 
current through a resistor immersed in the system, or rotate a paddle immersed 
in the system.  What matters are that we do transfer a certain amount of energy 
dU, and that we do not add matter to the system and do not change the volume of 
the system.    
 Right after the transfer of energy, the system is not in a state of 
thermodynamic equilibrium.  The liquid might be turbulent, and molecules might 
jump from the liquid to the vapor (evaporation).  The system out of equilibrium 
does not belong to the family of isolated systems, and is not described by the 

function S U( ) . 

 We then isolate the system at energy U +dU .  Isolated for a long time, the 
system reaches a new state of thermodynamic equilibrium, and has entropy 

S U +dU( ) .  The Clausius-Gibbs equation says that 

  S U +dU( )− S U( ) = dU
T U( )

. 

Thus, the Clausius-Gibbs equation applies to a family of isolated systems.  We 
can change one member in the family to another member in the family by adding 
energy.  But each member in the family has been isolated for a long time and has 
reached a state of thermodynamic equilibrium.  The Clausius-Gibbs equation 
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relates the change in entropy, dS = S U +dU( )− S U( ) , to the change in internal 

energy, dU, through the temperature T U( ) . 

 
 Needless complication.  In describing the Clausius-Gibbs equation, 
textbooks of thermodynamics often restrict the change in internal energy dU to 
heat added to the system through a quasi-equilibrium (i.e., reversible) process.  
That’s a lot of nebulous words for a simple idea:  the Clausius-Gibbs equation 
applies to a family of isolated systems, and each member system has been 
isolated for a long time to reach a state of thermodynamic energy.   
 In changing from one member system to another, how we add energy 
does not matter, so long as we isolate the two systems for a long time and let each 
reach a state of thermodynamic equilibrium.  We can add energy either reversibly 
(i.e., slowly), or irreversibly (i.e., violently).  We can add energy either by heat 
(i.e., placing the system in an oven), or by work (i.e., by passing electric current 
through a resistor).  
 
 Yet another way to write the Clausius-Gibbs equation.  The 
Clausius-Gibbs equation relates three thermodynamic properties:  entropy, 
energy, and temperature.  We can use the equation to express one property in 
terms of the other two.  We have already written the Clausius-Gibbs equation in 
two ways: 

  
( )
dU
UdS

T
=
1

, 

  dS =
dU

T U( )
. 

 Here is the third way to write the Clausius-Gibbs equation: 

  dU =T S( )dS . 

Again, Clausius-Gibbs equation applies to the family of isolated systems, and 
each member in the family has been isolated for a long time and has reached 
state of thermodynamic equilibrium.  We now regard the entropy as the 
independent variable, and describe the family of isolated systems collectively by 

the function U S( ) .  We regard temperature as a function of entropy, T S( ) .   

   
 Irrational unit. The entropy S of an isolated system is defined by 
  Ω= logS . 
Entropy so defined is a pure number, and has no unit. 
 When temperature is given in the unit of Kelvin, to preserve the relation 

dUTdS 1−= , one includes the conversion factor k in the definition and write  
  Ω= logkS .   
This practice will give the entropy a unit J/K.  Of course, this unit is as silly as a 
unit like inch/meter, or a unit like joule/calorie.  Worse, this unit gives an 
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impression that the concept of entropy is logically dependent on the concepts of 
energy and temperature.  This impression is wrong.  Entropy is simply the 
shorthand for “the logarithm of the number of sample points”.  The concept of 
entropy is independent of that of energy and of temperature.  We happen to apply 
entropy to analyze thermal contact, where energy and temperature are involved. 
 At a more elementary level, entropy is a pure number associated with any 
distribution of probability, not just the probability distribution of quantum states 
of an isolated system.  For example, we can talk about the entropy of rolling a fair 
die ( 6log=S ), or the entropy of tossing a fair coin ( 2log=S ). 
 
  THEORY OF PHASES 
 
 Graphical derivation of the condition of equilibrium. Consider a 
plane with the energy as the horizontal axis and entropy as the vertical axis.  The 

function S
composite

U( )  consists of two parts.  One part is the entropy of the small 

system, which is the nonlinear function S U( ) , represented as a curve in the 

energy-entropy plane.  The other part is the entropy of the reservoir, which is 
linear in energy, represented in the energy-entropy plane by an inclined line, with 

RT/1  as the slope with respect to the horizontal axis. 
 

     
 

 The vertical distance between the curve S U( )  and the inclined line is the 

function U /TR .  Thermodynamics dictates that this vertical distance should 

maximize when the small system equilibrates with the reservoir. 
 For a fixed RT , the inclined line is fixed.  A line parallel to the inclined line 

may intersect with the curve S U( )  at some points.  All points give the equal value 

energy 

entropy 

S U( )

1 

T
R
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of the vertical distance S
composite

U( ) .   The vertical distance between the two lines 

increases when we move upward the line parallel to the inclined line. From the 

geometry, the vertical distance S
composite

U( )  is maximized when the line parallel to 

the inclined line becomes tangent to the curve S U( ) .  This geometric 

interpretation recovers the conditions of equilibrium: 

  
1
T
R

=
dS U( )
dU

. 

As stated before, at a point on the curve S U( ) , we can form a line tangent to the 

curve.  The slope of the tangent line equals RT/1 . 

 When RT/1  changes gradually, the inclined line rotates, and the 

associated tangent line rolls along the curve S U( )  with one degree of freedom. 

 The function S U( )  is usually convex.  In the above discussion, we 

have assumed that the function S U( )  is convex.  Recall the relation 

1 /T = dS U( ) /dU  and 1 /C = dT U( ) /dU .  The temperature is the slope of the 

entropy-energy curve.  A convex entropy-energy curve means that the 
temperature is a monotonic increasing function of the energy, and that the heat 
capacity is positive.     
 

    
 

 Nonconvex S U( )  causes phase transition.  Now consider a system 

with variable energy, characterized by a nonconvex function ( )US .  Put two 
copies of the system together as two parts of a composite.  The composite has a 
fixed amount of total energy 2U , but the two parts can exchange energy.  Let the 
energy be U −Q  in one part, and be U +Q  in the other part.  Consequently, the 
composite is an isolated system with an internal variable Q.  When a part has a 

S

U
UQU − QU +

( )QUS +

( )QUS −
( )US
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fixed among of energy, the part itself is an isolated system, and has its own set of 
quantum states.   
 A quantum state of one part and a quantum state of the other part in 
combination constitute a quantum state of the composite.  The set of quantum 
states of the composite with internal variable Q constitute a macrostate of the 
composite.  The entropy of this macrostate is ( ) ( )QUSQUS ++− .  For another 
macrostate of the composite, each of the two parts has energy U, so that the 
entropy of this macrostate of the composite is ( )US2 . 

 At a value of U where the function ( )US  is concave, we can find many 
values of Q to satisfy the following inequality: 
  ( ) ( ) ( )USQUSQUS 2>++− . 
Consequently, the composite is more likely to be in a macrostate where the two 
parts have unequal amounts of energy.  The convex portion of the function ( )US  
is never realized in the composite. 
 That we have used two copies of the system is not as artificial as it may 
appear.  Most systems can redistribute energy internally, and effectively behave 
like a composite of multiple copies of a smaller system.  
 
 A pure substance in a single phase.  A substance is an aggregate of a 
large number of a single species of molecules.  The entropy and the energy of the 
piece of the substance, S and U, are proportional to the number of molecules in 
the piece, N.  The entropy per molecule of the substance is s = S /N , and the 

energy per molecule is u =U /N .  When we add energy to the aggregate, the 

entropy of the aggregate in increases. The function s u( )  is specific to the 

substance, and is independent of the size and shape of the piece.   

 When the substance is in a single phase, the function s u( )  is a smooth, 

convex curve.  The temperature is given by 

  
1
T
=
ds u( )
du

. 

  
 Coexistent phases of a pure substance.  Consider a mixture of ice 
and water at the melting temperature mT .  When energy is added to the mixture, 
the amount of water increases at the expense of the amount of ice, but the 
temperature remains constant.   We would like to trace this empirical observation 
back to the fundamental postulate. 
 The substance can be in two phases, Aʹ′  and A ʹ′ʹ′ .  We regard the two 
phases as two systems, one characterized by function ( )us ʹ′ʹ′ , and the other by 

( )us ʹ′ʹ′ʹ′ʹ′ .  Let N ʹ′  be the number of molecule in one phase, and N ʹ′ʹ′  be the number 
of molecules in the other phase.  When the two phases coexist, molecules can 
detach from one phase and attach to the other.  The total number of molecules in 
the mixture, N, remains unchanged:   
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  NNN ʹ′ʹ′+ʹ′= . 
We neglect energy associated with the phase boundaries, so that the energy of the 
two-phase mixture is the sum of the energies of the two phases:  
  uNuNU ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′= . 
Similarly, the entropy of the two-phase mixture is the sum of the entropies of the 
two phases:  
  sNsNS ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′= . 
The above equations are known as the rules of mixture. 
 When N and U  are fixed, the mixture is an isolated system with internal 
variables:  N ʹ′ , N ʹ′ʹ′ , uʹ′ , u ʹ′ʹ′ .  Of all values of the internal variables, the most 
probable ones maximize the entropy of the mixture, subject to the constraint of 
the fixed N and U . 
    

 
 

sN ʹ′

sN ʹ′ʹ′

sNsN ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′

S

U

Aʹ′

A ʹ′ʹ′

uNuN ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′uN ʹ′ uN ʹ′ʹ′
U

T

Aʹ′

A ʹ′ʹ′

mT
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 Graphical representation of the condition for coexistent phases.  
This problem of maximization subject to constraints can be solved in a number of 
ways. Following Gibbs, we will solve this problem using a graph.  Let S and U be 
the entropy and the energy of the mixture of two phases.  In the plane ( )US, , 
each point represents a particular mixture of the two phases.   
 Given a function ( )us ʹ′ʹ′ , the set of points ( )sNuN ʹ′ʹ′,  is a curve on the ( )US,  

plane, representing the substance when all molecules are in phase Aʹ′ .  Similarly, 
given a function ( )us ʹ′ʹ′ʹ′ʹ′ , the set of points ( )sNuN ʹ′ʹ′ʹ′ʹ′ ,  is a curve on the ( )US,  plane, 

representing the substance when all molecules are in phase A ʹ′ʹ′ . 
 Now pick one particular point ( )sNuN ʹ′ʹ′,  on one curve, and pick another 

particular point ( )sNuN ʹ′ʹ′ʹ′ʹ′ ,  on the other curve.  Through the two points draw a 
straight line.  Recall the rules of mixture: 
  NNN ʹ′ʹ′+ʹ′= , 
  uNuNU ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′= , 
  sNsNS ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′= . 
The energy and the entropy of the mixture, U and S, are linear in the number of 
molecules in the two phases.  Consequently, the energy and the entropy of the 
mixture is a point on the straight line. 
 When the energy of the mixture is fixed, the entropy of the mixture is 
maximized when the straight line is tangent to both curves.  The line tangent to 

both curves determines two points, !u , !s( )  and !!u , !!s( ) .  The two points 

correspond two the states of the two phases in equilibrium.  Reading off the 
graph, this condition of equilibrium corresponds to 

  
( ) ( )

u
us

u
us

uu
ss

ʹ′ʹ′∂

ʹ′ʹ′ʹ′ʹ′∂
=

ʹ′∂

ʹ′ʹ′∂
=
ʹ′ʹ′−ʹ′
ʹ′ʹ′−ʹ′

. 

The slope of the tangent defines the melting temperature: 

  
!!s − !s
!!u − !u

=
1
T
m

. 

The latent heat is given by the difference in the energy of the two phases: 
  uuL ʹ′−ʹ′ʹ′= . 
 
 
       ALTERNATIVE INDEPENDENT VARIABLES  
 
 We have already introduced quite a few functions of state, or properties:   
  CTUS ,,,,Ω . 
For a system of a single independent variation, we 
may choose one of the properties as the independent 
variable, and plot any one of the other properties as a 
function of the independent variable.  We will describe 
several common choices of independent variable. 

CTSU ,,,,Ω

Q
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 One difficulty in learning thermodynamics is to learn alternative choices 
of the independent variable, and what these choices mean in theory and 
experiment.  So far we have been dealing systems with a single independent 
variable.  The number of choices will proliferate when we look at systems with 
more independent variables. 
 
 Energy as independent variable.  Consider a plane with two 
coordinates S and U.  On this plane, a system with variable energy is represented 
by a curve ( )US .  A point on the curve represents the system isolated at energy U, 

flipping among ( )Sexp  number of quantum states. The slope of the curve ( )US  

gives the inverse of T.  We can also plot the function ( )UT  on the plane with 

coordinates U and T.   The slope of the curve ( )UT  gives the inverse of C.   
 The horizontal positions of both curves have no empirical significance, 
because energy is meaningful up to an additive constant.  By contrast, the vertical 
positions of the curves do have empirical significance.  We know 1≈Ω  or 0≈S  
at the ground state of the system 0→T . 
 For many systems, the more energy the system has, the more quantum 
states the system has.  That is, the function ( )US  is a monotonically increasing 
function.  According to the Clausius-Gibbs 

equation, T−1 = dS U( ) /dU , the temperature is 

positive.  For some unusual systems, however, 
( )US  is not a monotonically increasing 

function, and the absolute temperature is 
negative.  We will not consider such systems in 
this course.  
 For may systems the function ( )US  is 

convex. A convex function ( )US  means that the 

function ( )UT  is a monotonically increasing 
function.  According to the definition, 

C−1 = dT U( ) /dU , the heat capacity is positive 

C > 0.  That is, the system must receive energy 
to increase its temperature.  We will study non-
convex ( )US  shortly.  
  
 Entropy as independent variable.  One difficulty in learning 
thermodynamics is to learn alternative choices of the independent variable.  So 
far we have been dealing with systems of a single independent variable.  The 
number of choices will proliferate when we look at systems with more 
independent variables.  At this stage, it is helpful to look at several choices of 
independent variable for a system of a single independent variable.   

S

U

T

1

U

1
T

C
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 For a given system, such as the bottle of 
wine in thermal contact with the rest of the world, 
the function ( )US  is a monotonically increasing 
function.  The more energy the system has, the 
larger the number of quantum states among which 
the system flips. Any monotonic function can be 
inverted.  Consequently, the function ( )US  can be 

inverted to obtain the function ( )SU .  The two 

functions, ( )US  and ( )SU , are alternative and 
equivalent ways to describe the family of isolated 
systems.  The two functions correspond to the same 
curve on the ( )US,  plane.  We can always choose to 
plot the independent variable as the horizontal axis.   
 In terms of the function ( )SU , the 
temperature is   

  
( )
dS
SdUT = . 

This equation expresses the temperature as a function of the entropy, ( )ST . The 

temperature is the slope of the ( )SU  curve, whereas the energy is the area under 

the ( )ST  curve.   
 The heat capacity is defined as 

  
( )
dU
UdT

C
=
1

. 

In terms of the function ( )SU , the heat capacity is  

  C =
dU S( ) /dS
dT S( ) /dS

=
dU S( ) /dS
d2U S( ) /dS2

. 

    
 Temperature as independent variable.  In everyday life, we almost 
always use temperature as the independent variable.  Examples include thermal 
baths and thermostat.  
 Using temperature as an independent variable can be tricky because 
temperature and the members of the family of the isolated systems may have a 
one-to-many mapping.  For example, when ice is melting into water, energy is 
absorbed, but temperature does not change, so that associated with the melting 
temperature are many members in the family of the isolated systems.   
 If we stay away from such a phase transition, the function ( )US  is convex.  
Recall the definition of temperature,    

  
( )
dU
UdS

T
=
1

. 

S

U

T

1

S

T

U
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This equation defines the temperature as a function of the energy, ( )UT .  When 

the function ( )US  is convex, the function ( )UT  increases monotonically.  

Consequently, the function ( )UT  can be inverted to obtain ( )TU .   

 In terms of the function ( )TU , the heat capacity is  

  
( )
dT
TdUC = . 

This expression defines the function ( )TC .  A combination of the above two 
equations gives that 

   
( )dT
T
TCdS = . 

The function ( )TU  is typically determined by a combination of thermometry and 

calorimetry.  Once ( )TU  is known, the pair of equations above can be used to 

obtain ( )TC  and ( )TS . 
 
  Control of Temperature 
 
 Reservoir of energy.  A reservoir of energy interacts with the rest of the 
world in only one manner:  exchanging energy by heat.  We further require that, 
upon gaining or losing energy by heat, the reservoir of energy should maintain a 
fixed temperature, which is constant within the reservoir and with respect to time.  
The reservoir of energy is also known as thermal bath or heat bath. 
 We use a reservoir of energy to control the temperature of a small system.  
The system is small in the sense that it has a much smaller heat capacity than the 
reservoir of energy.  The small system and the reservoir exchange energy by heat.  
They do not exchange energy by work, and do not exchange matter.  The small 
system and the reservoir together form an isolated system. 
 
 Coexistent solid and liquid of a pure substance.  We can realize a 
reservoir of energy by using coexistent solid and liquid of a pure substance.  The 
melting point of the substance sets the fixed temperature of the reservoir.  As the 
reservoir and the rest of the world exchange energy by heat, the proportion of the 
solid and liquid changes, but the temperature of the mixture is held at the 
melting point.  
 We transfer energy by heat slowly into or out of the reservoir, so that 
energy has enough time to distribute in the reservoir, and keeps temperature 
uniform within the reservoir.  We avoid heating the liquid above the melting 
point, or cooling the solid below the melting point. 
 When the solid melts or the liquid freezes, the volume of the substance 
changes.  To avoid exchanging energy by work, we leave the substance 
unconstrained, so that the force is negligible. 
 
 Large amount of water.  We can also realize a reservoir of energy by 
using a large tank of water.  Water has large specific heat. When the water loses 
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or gains a small amount of energy, the temperature is nearly unchanged.  Water 
has modest thermal conductivity.  We stir the water gently to keep temperature 
uniform within the reservoir, but do not heat it up.  
 
 Thermostat.  A thermostat is a device that measures temperature and 
switches heating or cooling equipment on, so that the temperature is kept around 
a prescribed level. 
 
 Sous-vide (/suːˈviːd/; French for "under vacuum") is a method of 
cooking.  Food (for example, a piece of meat) is sealed in an airtight plastic bag, 
and then placed in a water bath for a longer time and at a lower hotness than 
those used for normal cooking.  The temperature is fixed by a feedback system.  
Because of the long time and low temperature, sous-vide cooking heats the food 
evenly; the inside is properly cooked without overcooking the outside.  The 
airtight bag retains moisture in the food. 
 
 Isothermal process.  Sous-vide cooking is an isothermal process, in 
which food is cooked at a fixed temperature.  We have also described another 
isothermal process.  At a fixed temperature, water can turn from liquid into gas 
as we increase volume.  We describe this process by modeling a fixed number of 
water molecules as a system of two independent variations.  We can vary 
thermodynamic state of the system by adding energy and increasing volume.  To 
keep temperature constant, the change in energy and the change in volume will 
be related. 
 
 A small system in thermal equilibrium with a reservoir of 
energy.  We model the reservoir of energy by prescribing its entropy as a 

function of its energy, S
R
U
R( ) .  Denote the fixed temperature of the reservoir of 

energy by RT .  When the energy of the reservoir changes from U
0

 to U
R
=U

0
−U , 

the entropy of the reservoir changes by  

  S
R
U
R( )− SR U0( ) = −U

T
R

. 

Because the reservoir maintains a fixed temperature, the change of entropy is 
proportional to the change of energy. 
 We model the small system by prescribing its entropy as a function of its 

energy, S U( ) .  We next analyze this thermal 

contact using the basic algorithm of 
thermodynamics. 
 The reservoir and the small system 
together form an isolated system.   Denote the 
total energy of the composite by  

  Ucomposite =UR +U . 

Reservoir 
 

System U
0
−U

S U( )

T
R
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As the reservoir and the small system changes energy, the total energy of the 

composite, Ucomposite , is fixed.  Thus, the composite is an isolated system of a 

single internal variable, the energy of the small system U.    
 The entropy of the composite, compositeS , is the sum of the entropies of the 

two parts, the reservoir and the small system: 

  Scomposite = SR Ucomposite( )− UTR
+ S U( ) . 

The energy of the composite U
composite

 is fixed, so that SR Ucomposite( )  is a 

constant.  The reservoir maintains its temperature RT .  The entropy of the 

composite is a function of the internal variable, S
composite

U( ) . 

 The composite is an isolated system, flipping among a set of quantum 
states.  When U is fixed at particular value, the composite flips among a 

particular subset of quantum states.  The entropy S
composite

U( )  is the logarithm of 

the number of quantum states in this subset.  The fundamental postulate requires 
that, when the reservoir and the small system equilibrate, the value of the 

internal variable U maximizes the function S
composite

U( ) . This condition of 

equilibrium requires that the quantity in front of the variation to vanish, giving 

  
1
T
R

=
dS U( )
dU

. 

This condition of equilibrium relates the temperature of the reservoir to the 

function characteristic of the small system, S U( ) . Given the temperature RT  of 

the reservoir and the function S U( )  of the small system, the above equation 

determines the energy of the small system.   
 When the composite is in equilibrium, we can also speak of the 
temperature of the small system, T, and equate it to the temperature of the 
reservoir.  We write 

  
1
T
=
dS U( )
dU

. 

The equation recovers the definition of the temperature of the small system. 
 
  Free Energy 
 
 Legendre transform.  A Legendre transform turns a derivative into an 
independent variable.  The topic belongs to Calculus, but is seldom taught.  As we 
will see, Legendre transform plays a significant role in thermodynamics.   

 Let z x( )  be a function of a single variable.  The derivative of the function 

is  
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  M =
dz x( )
dx

.   

The derivative is a function M x( ) .  The increment of the function z x( )  is 

  dz =Mdx . 

Define the Legendre transform of the function z x( )  by 

  L = z −Mx . 
Note that 
  dL = dz −Mdx − xdM . 
The first two terms cancel, so that 
  dL = −xdM  

Provided M x( )  is a one-to-one function, the definition L = z −Mx  leads to a 

function L M( ) .  The relation dL = −xdM  gives that 

  −x =
dL M( )
dM

. 

So long as the function M x( )  is one-to-one, the function z x( )  and its Legendre 

transform L M( )  act symmetrically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A graphic representation of the Legendre transform.   A relation 
between M and x corresponds to a curve in the plane with M and x as axes.  The 
M-x relation is one-to-one if and only if the curve is monotonic.  To simplify the 
description, we use a monotonically increasing curve, and place the origin of the 
coordinates on the curve.  For given values of x and M, the relation dz =Mdx  

indicates that the function z x( )  is the area between the curve and the x-axis.  The 

z x( )

−L M( )
M

x
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relation dL = −xdM  indicates that the function −L M( )  is the area between the 

curve and the M-axis, and the product xM is the area of the rectangle.  The 
Legendre transform means the obvious geometric relation between the three 
areas: 

  z x( )−L M( ) =Mx . 

 
 Helmholtz Free energy.  The Legendre of the function U(S) is 
  F =U −TS . 
This function is known as the free energy, the Helmholtz free energy, or the 
Helmholtz function.   
 The increment is 
  SdTTdSdUdF −−=  
Recall the Clausius-Gibbs equation, TdSdU = .  The above equation becomes that 
  SdTdF −= . 
Consequently, the entropy relates to a partial differential coefficient of the free 
energy: 

  S = −
dF T( )
∂T

. 

Because entropy is a positive number, the free energy F T( )  is a monotonic 

decreasing function of T. 
 
 Debye model (1912).  We have introduced three basic equations.  The 
Clausius-Gibbs equation defines the thermodynamic scale of temperature: 

  
1
T
=
dS U( )
dU

. 

Define the heat capacity C by 

  
1
C
=
dT U( )
dU

. 

Define the Helmholtz function by 
  F =U −TS . 
 To illustrate these definitions, consider a model obtained by Debye (1912).  
Near absolute zero, the internal energy of a solid states the form 

  U = aT 4 , 
where a is a constant. 
 Write the Clausius-Gibbs equation in the form  

  dS =
dU
T

. 

Insert the Debye model U = aT 4 , and we obtain that 
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  S =
4
3
aT 3 , 

where we have used the condition S = 0 at T = 0. 
 Write the definition of the heat capacity as 

  C =
dU T( )
dT

. 

 

Insert the Debye model U = aT 4 , and we obtain that 

  C = 4aT 3 . 
 The Helmholtz function is given by 

  F =U −TS = −
1
3
aT 4 . 

 Up to this point we have used T as the independent variable.  We can of 

course use U as the independent variable.  Invert the Debye model U = aT 4 , and 
we obtain that 

  T U( ) = U /a( )1/4 . 

Insert this expression into S =
4
3
aT 3 , and we obtain that 

  S U( ) = 4
3
a1/4U 3/4 . 

Note that S U( )  is a convex function.  

 
  The Basic Algorithm of Thermodynamics  
  in Terms of Free Energy 
 
 A system with variable energy and an internal variable. Once 
again consider the half bottle of water, now in thermal contact with the rest of the 
world.  We are interested in two variables:  the energy in the bottle, and the 
number of molecules in the gas phase.  The bottle is sealed to prevent molecules 
from escaping the glass.  The number of molecules in the gas phase is an internal 
variable in the system of variable energy.    
 We now formulate the idea in generic terms.  A system is in thermal 
contact with the rest of the world, and we are interested in two variables:  the 
energy of the system U, and an internal variable of the system Y.  When both U 
and Y are fixed at specific values, the system is an isolated system.  Denote the 
number of the quantum states of this isolated system by ( )YU ,Ω .  The entropy of 

the isolated system is ( ) ( )YUYUS ,log, Ω= . 
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 Thermal equilibrium.  A system can be held at a constant temperature 
by a reservoir of energy, also known as a thermostat. We regard the system and 
the thermostat together as a composite.  The composite is an isolated system with 
two internal variables:  the energy U in the system, and the internal variable Y.  A 
pair of values ( )YU ,  specifies a macrostate of the composite. 

 Let RT  be the temperature fixed by the reservoir.  When the system draws 

energy U from the thermostat, the entropy of the thermostat reduces by RTU / .  

Consequently, the entropy of the macrostate ( )YU ,  of the composite is 

  Scomposite = SR Ucomposite( )− UTR
+ S U ,Y( ) . 

Here we have dropped an additive constant. 
 According to the fundamental postulate, of all possible values of the 
internal variables, the most probable values maximize the above entropy of the 
macrostate.  Setting the variation with respect to U to zero, we obtain that  

  
∂S U ,Y( )
∂U

=
1
T
R

.   

This equation recovers a fact we already know.  When the internal variable Y is 
fixed, the system is a system of variable energy.  When the system is in thermal 
equilibrium with the thermostat, the temperature of the system equals that of the 
thermostat.  We will drop the subscript R in the following.   

 Assuming the function S U ,Y( )  is known, the above condition of thermal 

equilibrium defines the function U T ,Y( ) . 

  
 Free energy.  Now returning to the entropy of the composite.  When the 
system and the reservoir are in thermal equilibrium, the energy of the system is 

given by the function U T ,Y( ) . Consequently, the entropy of the composite is to 

be maximized with the other independent variable:  the internal variable Y.  
Temperature T  is no longer a variable, but is fixed by the reservoir.    
 Maximizing the entropy of the composite is the same as minimizing the 
following function: 
  F =U −TS . 

We now change variable U to T using the function U T ,Y( ) .  The above function 

is written as ( )YTF , .  This function contains quantities of the system alone, and 
is known as the Helmholtz free energy of the system.   
 When the system is held at a fixed temperature (i.e., in thermal 
equilibrium with the reservoir), of all values of the internal variable Y, the most 
probable value minimizes the free energy ( )YTF , .  In this minimization, the 
temperature is not a variable, but is fixed by the reservoir.  
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 Examine co-existent phases using the free energy.  The use of free 
energy adds some mathematical convenience.  Once we assume that temperature 
is held constant, we eliminate it from the list of independent variables in 
minimizing the free energy.  We need to minimize the free energy by varying 
some other internal variables.    
 Consider a mixture of two phases held at a temperature T.  Let the free 
energy of the two phases be ( )Tf ʹ′  and ( )Tf ʹ′ʹ′ .  The free energy of the mixture is. 

  ( ) ( )TfNTfNF ʹ′ʹ′ʹ′ʹ′+ʹ′ʹ′= . 
The number of molecules in one phase is the internal variable, to be selected to 
minimize the total free energy.   
 The equation  
  ( ) ( )TfTf ʹ′ʹ′=ʹ′  

determines the phase-transition temperature T
m

.  When T <T
m

, all molecules 

are in one phase.  When T >T
m

 all molecules are 

in the other phase. 
 Recall the definition of the free energy for 
each phase, f = u−Ts .  The condition of 

coexistence ( ) ( )TfTf ʹ′ʹ′=ʹ′  gives 

  !u −T
m
!s = !!u −T

m
!!s . 

This expression recovers what we have obtained 
before. 
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