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Chapter 1

Introduction

Elastic stresses arise during solid state phase transformations due to a lattice pa-

rameter mismatch (misfit) when the resultant phases are coherent. These stresses

have a marked influence on the microstructural evolution: see the reviews [1–4].

Among these stress effects, some may be explained or rationalised using elastically

homogeneous systems in which the phases have the same moduli. For some oth-

ers, however, the difference in moduli (elastic inhomogeneity) is the primary cause.

In this thesis, we consider the latter effects: rafting, phase inversion and thin film

instability.

The following are some of the typical microstructural features observed in coherent

two phase systems:

1. The precipitates change their shape as they grow in size, align along elastically

soft crystallographic directions [5], and sometimes may even split [6–8];

2. The elastic stresses interact with externally applied uniaxial stresses which

results in ‘rafting’, viz., the preferential coarsening of the precipitates either

parallel or perpendicular to the direction of applied stress [9];

3. In a thin film assembly, if the film is harder than the substrate, that can

lead to instabilities in the film (which is known as the ‘Asaro-Tiller-Grinfeld’

instabilities [10]).

In addition, several simulation studies suggest that a microstructure consisting of
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CHAPTER 1. INTRODUCTION 2

soft precipitates in a hard matrix can evolve into one of hard precipitates in a soft

matrix; this is known as ‘phase inversion’ [11].

Of the microstructural features listed above, alignment and shape changes of the pre-

cipitates can be satisfactorily explained assuming the precipitate and matrix phases

to have the same elastic constants; the effect of elastic moduli mismatch between

the two phases, if any, is negligible. On the other hand, in all the other cases, the

elastic moduli mismatch between the two phases plays a key role: rafting in systems

with dilatational misfit, phase inversion and Asaro-Tiller-Grinfeld instabilities will

not be observed in systems in which all the phases have identical elastic constants.

The modelling studies of microstructural evolution in elastically inhomogeneous,

coherent systems can broadly be classified as continuum and atomistic studies. In

continuum studies, the microstructure is described using field variables (like com-

position, for example), in contrast to atomistic models where site occupancy on a

lattice is used to describe the system. While continuum models are based on classical

field theories, the atomistic models are based on (classical) statistical mechanics [3].

The continuum studies are further subdivided into sharp and diffuse interface stud-

ies; in sharp (diffuse) interface models, the field variables vary discontinuously (con-

tinuously) across an interface. The diffuse interface models are also known as phase

field models [3].

The sharp interface models are typically used to obtain analytical results and for

carrying out perturbation/stability analyses. The analytical results are usually ob-

tained under the assumptions of simple geometry, single particle in an infinite ma-

trix, and/or isotropic elasticity. Many of these restrictive assumptions can be re-

laxed, if, numerical methods based on these sharp interface methods are used. Even

in such circumstances (since sharp interface models track interfaces explicitly) singu-

larities arise due to merger or disappearance of microstructural features. Since such

singularities are difficult to handle in a numerical scheme, sharp interface models

have been only of limited use [3, 12].

Diffuse interface models on the other hand are ideal for the study of multiparticle

microstructures, complex geometries, anisotropic elastic parameters, and interface

singularities. However, the results from the diffuse interface models always need
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to be benchmarked against the corresponding sharp interface models; further, the

definitive interface width in these models can lead to difficulties in simulating large

scale microstructures [12].

In this thesis, our emphasis is on continuum diffuse interface studies. The exist-

ing phase field studies of microstructural evolution in elastically inhomogeneous,

coherent, misfitting systems are of relatively recent origin. Some of these studies

assume the difference in the elastic moduli (∆C) between the two phases to be

small [11, 13–17]. In contrast, the microstructural evolution in systems with large

differences in elastic moduli (where higher order corrections are incorporated) has

been studied by Leo et al [18], Zhu et al [19] and Hu and Chen [20].

Almost all the phase field studies on microstructural evolution in systems with large

differences in elastic moduli, solve the equation of mechanical equilibrium under

conditions of prescribed displacement [16,19,20]. Such a boundary condition, though

natural in the study of microstructural evolution in thin films for example, is not

satisfactory in cases (a) where the system evolves under the action of an externally

applied stress, or, (b) where the system evolves with no tractions or constraints on

displacements at the boundary.

Further progress in the study of elastically inhomogeneous systems needed an ac-

curate and computationally viable technique for solving for elastic stresses in these

systems with arbitrary microstructures and prescribed external tractions. There

are at least two possibilities. The first is due to Khachaturyan and his coworkers

in which an equivalent eigenstrain which minimises the strain energy of the corre-

sponding elastically homogeneous system is calculated using a non-conserved order

parameter of Allen-Cahn type [21–24].

The second approach, which we have adapted in this study, is from the literature on

“homogenisation” [25–27]. In this approach, a system which is elastically inhomo-

geneous is replaced by a system of ‘equivalent’ (homogeneous) elastic moduli. The

main ingredient in such a calculation is a consistent calculation of the homogeneous

strain [25,26]; the algorithm for such a consistent calculation (for prescribed traction

boundary conditions) is known as ‘stress-control using strain-control’ approach and

is described in Section 3.2.
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The main emphasis of the homogenisation studies is on the calculation of homoge-

neous moduli, while our interest is in the study of microstructural evolution in elas-

tically inhomogeneous systems in the presence of eigenstrains. So, we have adapted

the solution method to a coherent system with misfit strains; we incorporate the

resultant elastic solutions into a phase field model. Such a phase field model then

allows us to study microstructural evolution in elastically inhomogeneous coherent

solids under conditions of prescribed tractions at the boundary. We demonstrate

the efficacy of the solution technique by comparing our numerical elastic solutions

for (a) misfitting precipitates and (b) cavities under uniaxial stress with the corre-

sponding analytical sharp interface results.

We have used this technique to study two different phenomena in bulk systems with

dilatational misfit: (a) rafting in systems with dilatational misfit, and (b) phase

inversion. In the case of rafting, the system evolves under an externally applied

stress, while in the case of phase inversion, the boundaries are free from both the

traction and displacement constraints.

Though our emphasis in this thesis is on bulk systems which evolve under pre-

scribed traction conditions, our numerical method can also be used for the study of

microstructural evolution in systems with prescribed displacement boundary con-

ditions: see Appendix ?? where we show some of our preliminary results on ATG

instabilities in thin film assemblies.

Our formulation as described in Chapter 3 is valid for three dimensional (3D) elas-

ticity; however, the numerical simulations are carried out in two dimensions (2D).

Typically, elastic fields in such 2D simulations are calculated using a 3D formulation

assuming plane strain conditions to hold. In contrast, in this thesis, we use a pure

2D elastic calculation.

This thesis is organised as follows: in the next chapter, we summarise the typical

microstructural features observed in elastically inhomogeneous systems. In Chap-

ter 3, we describe the diffuse interface formulation; the emphasis in this chapter is

on the validation and characterisation of our numerical method for solving for elastic

stresses in inhomogeneous systems. In Chapter ?? and Chapter ?? we describe our

simulation results from the studies on rafting and phase inversion, respectively. Our



CHAPTER 1. INTRODUCTION 5

results on ATG instability are preliminary, and are described briefly in Appendix ??.

We conclude the thesis with a brief summary in Chapter ??.



Chapter 2

Microstructural evolution in

elastically stressed solids: a review

The literature on the effect of elastic stresses on phase transformations, nucleation,

growth, microstructural evolution, and mechanical properties are vast, rich, and var-

ied: see the excellent monographs [28–31], and reviews [1–4,32,33]. In this chapter,

we summarise the studies on the microstructural evolution in elastically stressed

solids with an emphasis on those microstructural features that result due to elastic

inhomogeneities. Thus, for example, thermodynamics of elastically stressed systems,

and problems of equilibrium shapes of precipitates in elastically stressed systems will

not be discussed here. While the salient features in elastically inhomogeneous sys-

tems are described here, the individual chapters on formulation, rafting, and phase

inversion carry their own detailed literature surveys.

Almost all the experimental studies described in this chapter are electron microscopic

studies. The modelling studies may broadly be classified as continuum and atomistic

studies. The continuum studies are further classified as sharp and diffuse interface

studies. The results from the sharp interface and atomistic models are discussed

in this survey in so far as they concern the study of microstructural evolution in

elastically inhomogeneous systems; however, since we use a diffuse interface model

in this thesis, we give a brief overview of the same in Section 2.6.

We define the elastic inhomogeneity δ to be the ratio of the shear modulus of the

6
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precipitate to that of the matrix:

inhomogeneity, δ =
Gp

Gm
(2.1)

Experimentally, the determination of the elastic constants is quite difficult, particu-

larly at high temperatures. In Ni-Al systems, for example, their values are disputed

and the exact value of δ is not known [34]. Further, it is not even clear whether δ is

greater or less than unity; that is, as to whether the precipitate phase is harder or

softer [35]. These differences in the interpretations of experimental results stem from

the fact that composition, additional alloying elements, temperature, and the heat

treatment affect the measurement of elastic moduli, and it is well near impossible

to keep all these quantities identical across different experimental studies. Hence,

the only conclusion that can be drawn from all these studies is that δ is not unity.

Thus, all the experimental studies can, in principle, be considered to be carried out

on inhomogeneous systems. However, as we discuss below, several theoretical and

modelling studies help us identify the cases in which the effect of inhomogeneity is

primary.

2.1 Particle shape change and alignment

In a classic study on coherent Ni3Al (γ′) precipitates in a Ni-rich (γ) matrix, Ardell

and Nicholson [5] have shown that the precipitates (a) change their shape with

increasing size, and (b) align themselves along the elastically softer directions. The

primary driving force for shape change is the decrease in elastic strain energy while,

that for alignment is the anisotropy in the elastic constants [36, 37]. However, the

role of elastic inhomogeneities on shape change and alignment is not clear from these

experiments.

Particle shape changes are driven by the competition between the interfacial and

elastic energies; hence the role of δ is secondary. For example, studies by Wang et

al [38], and Wang and Khachaturyan [39], show clearly that particle shape change

will occur even if δ is unity. Similarly, there are several diffuse interface studies

which show that the elastic anisotropy, even in the absence of any elastic inhomo-

geneities, can lead to alignment of the misfitting precipitates along elastically softer
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directions [15, 38].

The typical shape changes observed during growth of a precipitate are circle-to-

square transitions (sphere to cuboid transitions in 3D), which are driven by the

elastic energy anisotropy [39]. Similarly, Leo et al [18], show that the same sized

elliptic particle, depending on the relative strength of elastic strain energy might

remain as an ellipse or turn into a circle. We are not aware of any study in which

a growing isotropic (anisotropic) precipitate undergoes a circle-to-ellipse (square-to-

rectangle) transition. The reason for this, though not yet established conclusively,

could be (1) mechanistic or kinetic, viz., the difficulty in choosing one direction over

another [See the atomistic simulations of Lee [40] for example, and the intermediate

shapes that are observed in his simulations], and (2) energetic, viz., the driving

force for shape change as compared to that for growth is very small under growth

conditions.

2.2 Particle splitting, coalescence, and morpho-

logical instabilities

Particle splitting has been reported [6–8, 41–43] in several systems. However, the

interpretation of these experimental observations is disputed by Calderon et al [44];

Calderon et al show that coalescence of particles can give rise to morphologies similar

to splitting patterns. Further, Yamabe-Mitarai and Harada [45], attribute particle

splitting to a kinetic phenomenon associated with the deviation of the precipitate

composition from its equilibrium composition. Thus, experimentally, though it is

clear that particles do split and coalesce, the driving forces and mechanisms of

splitting are also yet to be conclusively established. Further, the effect of δ, if any,

on the particle splitting and/or coalescence is not clear from these experimental

studies.

Energetically, both Doi [6, 42] and Khachaturyan et al [46] have shown the depen-

dence of doublet, quartet, and octet particle splitting on particle size. However,

the simulations of particle splitting during the growth of elastically stressed parti-

cles are inconclusive. In the simulations of Wang et al [38], the matrix nucleates
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at the centre of the precipitate, and grows, resulting in a doublet; but this type of

splitting could be an artifact of the simulation itself. The initial particle size, under

the given elastic parameters, is such that the levels of elastic stress at the centre of

the precipitates are unphysically high, leading to the nucleation of the matrix (and

hence splitting). On the other hand, Banerjee et al [47], show that particle coa-

lescence (in both 2- and 3-D simulations) can lead to aggregation of particles that

gives rise to microstructural features that look like doublet, quartet and octet split

patterns. While the instabilities that arise during growth do not lead to particle

splitting in the simulations of Wang and Khachaturyan [39], similar growth related

instabilities lead to particle splitting in the simulations of Cha et al [48]. All the

studies listed above (except Cha et al) are studies on elastically homogeneous sys-

tems; thus, apart from concluding that the particle splitting and/or coalescence can

happen even in elastically homogeneous systems, the effect of δ on particle splitting

and/or coalescence, if any, is not clear from these simulation studies.

In some Ni-base alloys, as a γ′ precipitate grows into a supersaturated γ matrix,

the precipitate/matrix interface may undergo instabilities [8, 49]; the observations

of Yoo et al [8] further indicate that the anisotropy in the elastic moduli as well as

particle splitting may have a role in producing such dendritic morphologies.

The elastic inhomogeneity may have a role in the development of morphological

instabilities [50]. On the other hand, the study of Yeon et al [51] indicates that even

in elastically homogeneous systems the morphological instabilities can occur. Thus,

from these studies also the effect of δ on morphological instabilities is not clear.

Thus, morphological instabilities and particle splitting/coalescence occur in elasti-

cally stressed particles growing in a supersaturated matrix. However, the driving

forces and the mechanisms of particle splitting, as well as the effect of elastic inho-

mogeneity on splitting, coalescence, and morphological instabilities, both in experi-

ments and in simulations, are yet to be investigated completely.
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2.3 Rafting

In a classic study, Tien and Copley [9], showed that an uniaxial stress leads to

preferential coarsening of γ′ precipitates parallel or perpendicular to the direction

of applied uniaxial stress in nickel-base superalloy single crystals; this phenomenon

is known as rafting.

In systems with dilatational misfit, several studies have shown that the driving force

for rafting goes to zero as δ approaches unity [52–56]. Thus, elastic inhomogeneity is

an essential requirement for rafting in systems with dilatational misfit. Phase field

simulations of rafting have been reported by Zhu et al [19], Leo et al [18], Li and

Chen [16], while atomistic simulations of rafting has been reported by Lee [57]. How-

ever, if the eigenstrains are non-dilatational, elastic inhomogeneity is not essential

for the occurrence of rafting [58].

2.4 Phase inversion

In two phase microstructures, the higher volume fraction usually percolates with

distributed isolated islands of the lower volume fraction. The percolating phase

is the ‘matrix’ while the distributed phase is the ‘precipitate’. However, in some

systems, this correspondence between the volume fraction and topological structure

is reversed. More specifically, an initial microstructure in which the higher volume

fraction phase percolates, evolves into one in which the lower volume fraction phase

percolates. This is known as ‘phase inversion’. Such a phase inversion is reported

in both experimental and numerical studies on phase separating viscoelastic poly-

mer blends (See [59] and references therein). In elastically stressed systems, phase

inversion is said to occur when a microstructure consisting of soft precipitates in

a hard matrix evolves into one of hard precipitates in a soft matrix; such purely

elasticity driven phase inversion have been reported in several (albeit restrictive)

computational studies [11, 18, 60]. However, we are not aware of any experimental

report of such an elasticity driven inversion.
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2.5 Thin film and surface instabilities

The surfaces and interfaces of non-hydrostatically stressed crystalline solids are

found to be unstable with respect to perturbations. Such instabilities have been

widely reported [61–63]: see [4,64,65] for a summary of experimental results. These

instabilities differ from the dendritic instabilities discussed in Section 2.2; while

dendritic instabilities are growth related, the thin film and surface instabilities can

be observed in the absence of growth and are related to the equilibrium shape of

non-hydrostatically stressed solids [66].

In the thin film literature, these elastic stress driven surface and interface instabil-

ities are known as Asaro-Tiller-Grinfeld (ATG) instabilities following the indepen-

dent prediction of such instabilities by Asaro and Tiller [67] and Grinfeld [68]. While

Asaro-Tiller-Grinfeld studied the instability of a solid-liquid interface, Srolovitz [69]

showed that a solid-vapour interface can also undergo an ATG-like instability. Fur-

ther, Sridhar et al [10] have shown ATG-like instabilities to occur even in a solid-solid

interface, as long as the harder (film) phase is embedded in a soft (matrix) phase.

Thus, ATG instabilities are driven by elastic inhomogeneities; they will not occur

in systems in which the interface is shared by two phases with the same elastic

constant.

2.6 Diffuse interface modelling

In a continuum model for the study of two phase microstructures, there are two

distinct ways of treating the interfaces. Based on the manner in which the interface is

described, these models are classified into two types, namely, sharp interface models

and diffuse interface models. In the former, the interface is a plane of discontinuity

across which the properties change abruptly from that of one phase to another. In

the later, the interface width is not determined a priori, and the properties change

over a definite width from that of one phase to another in a smooth fashion.

While the sharp interface approach was pioneered by Gibbs [70], a diffuse interface

model was formulated by Cahn [71, 72] to study spinodal decomposition, in which,
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the interfaces that form during the early stages are indeed compositionally diffuse.

The treatment of Cahn was based on the free energy functional for a composition-

ally nonuniform system; such a free energy functional was derived by Cahn and

Hilliard [73]. Hence, these models based on composition fields (and gradients in

composition) are known as Cahn-Hilliard models. However, in systems which un-

dergo an order-disorder transformation for example, the microstructure is described

by field parameters which are not conserved (unlike the composition field). The dif-

fuse interface models based on such non-conserved order parameter fields, following

the work of Allen and Cahn [74] are known as Allen-Cahn equations. Hybrid models

based on both Cahn-Hilliard and Allen-Cahn equations are also possible.

The main advantage of numerical studies based on the Cahn-Hilliard and/or Allen-

Cahn equations stem from the fact that the field parameters that describe the mi-

crostructure (as well as their higher order spatial derivatives) are continuous every-

where. Hence, the partial differential equations which describe the microstructural

evolution hold in the entire simulation domain; thus, there is no need to track the

interface explicitly. On the other hand, sharp interface based numerical models track

the interface explicitly; hence, they are incapable of treating singularities that arise

due to the formation or disappearance of interfaces.

The diffuse interface models based on the Cahn-Hilliard and Allen-Cahn equations

are used for the study of microstructural evolution in a wide variety of problems:

see [12, 75, 76] for recent reviews.

In this thesis, we base our diffuse interface model on the Cahn-Hilliard equation; we

modify the system energetics to include the elastic energy contributions. The elastic

energy is obtained by solving the elastic field equations in an elastically inhomoge-

neous system under prescribed traction or displacement boundary conditions. The

formulation is described in detail in Section 3.1.

2.7 Summary

Some of the typical microstructural features observed in elastically stressed solids are

as follows: particle shape change, alignment, splitting/coalescence, morphological
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instabilities, rafting, phase inversion, and ATG instabilities. Of these, the elastic

inhomogeneity plays a crucial role in rafting, phase inversion, and ATG instabilities,

while the effect of elastic inhomogeneity, if any, on particle shape change, alignment,

splitting/coalescence, and morphological instabilities are weak and secondary.



Chapter 3

Formulation

Phase field methods based on the Cahn-Hilliard and/or Allen-Cahn equations are

used extensively for the study of microstructural evolution in elastically stressed

solids; see the reviews by Chen [75] and Thornton et al [12]. In these models, the

elastic stress effects are typically incorporated by adding an elastic energy term to

the free energy. The calculation of the elastic energy involves the solution of the

equation of mechanical equilibrium, which is typically solved (in elastically inhomo-

geneous systems) using pseudo-spectral techniques [18] (which are a combination of

finite difference and Fast Fourier Transform (FFT) techniques), (pre-conditioned)

conjugate gradients [19] or spectral techniques based on FFT [20–22]. In this thesis,

we use a diffuse interface model based on the Cahn-Hilliard equation for the study

of microstructural evolution in elastically inhomogeneous systems under either pre-

scribed displacement or prescribed traction boundary conditions. The equation of

mechanical equilibrium is solved using an iterative method based on Fourier trans-

forms. A semi-implicit Fourier spectral method is used for solving the Cahn-Hilliard

equation.

The diffuse interface model and the iterative procedure for solving the equation of

mechanical equilibrium are known in the literature [19–24]. However, in most of

these studies, the equation of mechanical equilibrium is not solved under conditions

of applied tractions [20]; in cases where they are solved, the homogeneous strain

is not calculated in a consistent manner [19]. On the other hand, a method of

14
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obtaining the homogeneous strain is described in the diffuse interface literature by

Wang et al [24], and in the homogenisation literature by several others [25–27].

More specifically, in the homogenisation literature, the algorithm for a consistent

calculation of homogeneous strain under applied traction conditions is described in

great detail (See appendix D of [26], for example).

In Section 3.1, we recount the salient features of the Cahn-Hilliard model, in which

the total free energy is written as a simple sum of chemical and elastic contributions

(each of which is microstructure dependent). In Section 3.2, we recount the equation

of mechanical equilibrium and the constraints and boundary conditions under which

it needs to be solved.

Section 3.3 is central to this chapter, as it deals with with an iterative numerical

technique for solving the equation of mechanical equilibrium in elastically inhomoge-

neous systems. The technique, adapted from the homogenisation literature [25,26],

is efficient and accurate: there are no approximations about the extent of modulus

mismatch and solutions with both prescribed traction and displacement boundary

conditions are possible.

In Sections 3.4, 3.5, and 3.6, we describe the calculation of the elastic energy (and

hence the elastic part of the chemical potential), the non-dimensionalisation and the

details of numerical implementation, respectively.

In Section 3.7, we compare our numerical elastic solutions with the corresponding

analytical, sharp interface solutions for (a) circular and elliptic precipitates (Sec-

tion 3.7.1), and (b) circular cavities in a square plate under a tensile stress (Sec-

tion 3.7.2). Further, these comparisons are used in Section 3.8, (a) to characterise

the numerical method in terms of the effect of various simulation parameters on

the accuracy of the elastic solutions and (b) the efficiency of the numerical method.

In Section 3.9 we present some results from homogeneous strain and homogeneous

moduli calculations in systems with simple geometries, namely, circular precipitates

in a square domain. Finally, we end the chapter with a brief summary.
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3.1 The Cahn-Hilliard equation with modified free

energy

We consider a binary phase separating A-B alloy system exhibiting a miscibility gap.

At a low temperature (say T), any alloy of composition c′0 that finds itself inside

the miscibility gap will consist of two phases m and p with compositions c′m and c′p,

respectively, at equilibrium (see Figure 3.1).

We rescale the composition variable c′ to yield the scaled composition c:

c =
c′ − c′m
c′p − c′m

. (3.1)

With this definition, c is the same as the equilibrium volume fraction of the p-

phase; in particular c takes a value of zero and unity in the matrix and precipitate

phases, respectively. Further, all the variables are rendered non-dimensional using

a characteristic length L′, energy E ′, and time T ′, a suitable choice for which is

deferred to section 3.5. All the equations in our formulation, are presented in terms

of non-dimensional and scaled variables; the dimensional forms of the corresponding

equations are shown in Appendix A.

Let the composition at any point r at time t be denoted by c(r, t). Let the mi-

crostructure of the system be completely described by the composition field. Con-

sider a domain Ω bounded by ∂Ω of such a system; we assume the composition field

to be periodic on Ω, i.e., Ω is the representative region that repeats infinitely to fill

all space (see Figure 3.2). This assumption of periodicity helps us avoid accounting

for the surfaces in our calculations.

Given an initial microstructure (i.e., composition profile), say c(r,0), its future evo-

lution can be studied by solving the following Cahn-Hilliard equation (with periodic

boundary conditions) [71]:
∂c

∂t
= ∇ · M∇µ, (3.2)

where, M is the mobility, c is the (scaled) composition, t is the time, and µ is the

chemical potential, given by

µ =
δ
[

F
NV

]

δc
, (3.3)
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composition; c′m and c′p are the equilibrium compositions of the m and p phases at
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where (δ/δc) denotes the variational derivative with respect to composition, NV is

the number of atoms per unit volume. The total free energy of the system, F , is

assumed to be of the form

F = F ch + F el, (3.4)

where F ch and F el are the chemical and elastic contributions to the free energy; in

other words the state of stress has a negligible effect on F ch. Substituting this free

energy expression in Eqn. (3.3), we obtain the (modified) Cahn-Hilliard equation as

follows:
∂c

∂t
= ∇ · M∇(µch + µel), (3.5)

where,

µch =
δ
[

F ch

NV

]

δc
, (3.6)

and,

µel =
δ
[

F el

NV

]

δc
. (3.7)

The chemical contribution to the free energy is given by the following expression:

F ch = NV

∫

Ω

[f0(c) + κ(∇c)2]dΩ, (3.8)

where, κ is the gradient energy coefficient, and f0(c) is the bulk free energy density

given by

f0(c) = Abc
2(1 − c)2, (3.9)

where Ab is a positive constant which sets the energy barrier between the two equi-

librium phases m and p (see Figure 3.3); thus,

µch = hf(c) − 2κ∇2c, (3.10)

with, hf(c) = (∂f0/∂c).

In this thesis, we assume the mobility M in Eqn. (3.2) and the gradient energy

coefficient κ in Eqn. (3.8) to be (scalar) constants: this amounts to assuming the

interfacial energies and the diffusivities to be isotropic.

The elastic contribution to the free energy is [75]:

F el =
1

2

∫

Ω

σel
ijε

el
ijdΩ (3.11)



CHAPTER 3. FORMULATION 19

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

f 0
(c

)

c

Figure 3.3: The bulk free energy density (with Ab = 1). The equilibrium composi-

tions for the m and p phases are at zero and unity, respectively. The barrier height

between the m and p phases is (Ab/16).

where,

εel
ij = εij − ε0

ij, (3.12)

with ε0 being the position dependent eigenstrain (misfit strain) tensor field; and,

the total strain εij is compatible:

εij =
1

2

{

∂ui

∂rj

+
∂uj

∂ri

}

, (3.13)

where u is the the displacement field, and, (assuming both the m and p phases to

obey Hooke’s law i.e., the phases are linear elastic)

σel
kl = Cijklε

el
ij , (3.14)

where Cijkl is the composition (and hence, position) dependent elastic modulus

tensor.

The eigenstrain is an explicit function of composition and is described by

ε0
ij(c) = β(c)εTδij , (3.15)

where, εT is a constant that determines the strength of the eigenstrain, δij is the

Kronecker delta, and β(c) is a scalar function of composition. The elastic modu-

lus tensor is also an explicit function of composition; in other words, the solid is
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elastically inhomogeneous. The composition dependence of the elastic constants is

described by the following expression:

Cijkl(c) = Ceff
ijkl + α(c)∆Cijkl, (3.16)

where α(c) is a scalar function of composition, and,

∆Cijkl = Cp
ijkl − Cm

ijkl (3.17)

where, Cp
ijkl and Cm

ijkl are the elastic moduli tensor of the p and m phases respectively,

and Ceff
ijkl is an “effective” modulus. The rationale behind the expression (3.16) is

that Ceff
ijkl represents the “effective” elastic modulus of the macroscopic homogeneous

system, and the local (microscopic) perturbations in the elastic moduli about Ceff
ijkl

are described in terms of ∆Cijkl, the difference between the elastic constants of the

p and m phases.

In addition, the entire macroscopic system could be subjected to a homogeneous

stress state σA, i.e., the domain Ω behaves as if it is a single homogeneous block

in spite of the inhomogeneities at the microscopic scale. Note that σA should be

such that the applied traction on the boundaries of the domain Ω is anti-periodic;

i.e., σ · n, is opposite on opposite sides of ∂Ω with n being the unit normal to the

boundary [25, 26].

To obtain the elastic energy, and hence the elastic chemical potential, we have to

solve the equation of mechanical equilibrium, namely,

∇ · σel =
∂σel

ij

∂rj

= 0 in Ω. (3.18)

The Fast Fourier Transform (FFT) based iterative method to solve the above set of

partial differential equations is described below.

3.2 The equation of mechanical equilibrium

The elastic moduli and the eigenstrains are periodic on Ω (since they depend on

composition field which is periodic on Ω); therefore, the solution to the equilibrium

equation (Eqn. (3.18)), should be such that it gives rise to a strain field ε(r) that is
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periodic on Ω (up to an additive constant). The displacement field u(r) which gives

rise to such periodic strain fields can always be written as follows [25]:

u = E · r + u?, (3.19)

where, u? is a displacement field that is periodic on Ω and E is a constant, homoge-

neous strain tensor (assumed to be symmetric without loss of generality, since the

antisymmetric part corresponds to a rigid rotation of the cell). It can be shown [25]

that E denotes the mean strain tensor of the cell (See Appendix B):

〈{εij}〉 = Eij , (3.20)

with the following definition for the mean of a quantity {·}:

〈{·}〉 =
1

V

∫

Ω

{·}dΩ, (3.21)

where V is the volume of the representative domain Ω.

If we denote the periodic strain by ε?, the strain that we derive from the displacement

equation (3.19) becomes (See Appendix B),

εij = Eij + ε?
ij, (3.22)

where,

ε?
ij =

1

2

{

∂u?
i

∂rj

+
∂u?

j

∂ri

}

, (3.23)

and the equation of mechanical equilibrium (3.18) is

∂

∂rj

{Cijkl(Ekl + ε?
kl − ε0

kl)} = 0. (3.24)

Analogous to the expression (3.20) for the homogeneous strain, we can define the

mean stress on the domain Ω as follows:

〈{σel
ij}〉 =

1

V

∫

Ω

σel
ijdΩ. (3.25)

The mean stress thus calculated should equal the applied stress σA [21, 25, 26]. [As

a brief aside, we note that while [25,26] used the homogenisation assumption, Jin et

al [21] used a variational approach to arrive at the above conclusion, viz., that the

mean stress should equal the applied stress.] So, we obtain

σA
ij =

1

V

∫

Ω

Cijkl(Ekl + ε?
kl − ε0

kl)dΩ. (3.26)
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Further, using the definition (3.21), we can define the following mean quantities:

Sijkl = (〈{Cijkl}〉)−1, 〈{σ?
ij}〉 = 〈{Cijklε

?
kl}〉, and 〈{σ0

ij}〉 = 〈{Cijklε
0
kl}〉. (3.27)

Using Eqns. (3.26) and (3.27), we obtain,

Eij = Sijkl (σA
kl + 〈{σ0

kl}〉 − 〈{σ?
kl}〉). (3.28)

Thus, the elasticity problem we wish to solve can be restated as follows:

Given a periodic composition field c on Ω,

solve the equation of mechanical equilibrium

∂

∂rj

{Cijkl(Ekl + ε?
kl − ε0

kl)} = 0 on Ω, (3.29)

with the constraint

Eij = Sijkl(σ
A
kl + 〈{σ0

kl}〉 − 〈{σ?
kl}〉) (3.30)

and the boundary condition

ε?
kl is periodic on Ω. (3.31)

As noted in the introduction, Hu and Chen [20] assume an overall zero prescribed

strain (Eij = 0). In contrast, our present formulation allows for a prescribed overall

stress (which is achieved by controlling the strain). This approach is known as

“stress-control based on strain-control” (See Appendix D of [26]).

Substituting for Cijkl, and ε0
kl in terms of composition, and ε?

kl in terms of the

displacement field in Eqn. (3.29), and using the symmetry properties of the elastic

constants and strains, we obtain

∂

∂rj

{

[Ceff
ijkl + α(c)∆Cijkl]

(

Ekl +
∂u?

l (r)

∂rk

− εTδklβ(c)

)}

(3.32)

= 0.
[

Ceff
ijkl

∂2

∂rj∂rk

+ ∆Cijkl

∂

∂rj

(

α(c)
∂

∂rk

)]

u?
l (r) = Ceff

ijklε
Tδkl

∂β(c)

∂rj

(3.33)

−∆CijklEkl

∂α(c)

∂rj

+∆Cijklε
Tδkl

∂{α(c)β(c)}
∂rj

.
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3.3 Solution to the equation of mechanical equi-

librium

The above equation of mechanical equilibrium (3.33) can be solved using an iterative

procedure [20, 26, 77] as shown below.

3.3.1 Zeroth order approximation

Let us assume that ∆Cijkl = 0 to begin with. Then, the equation of mechanical

equilibrium (3.18) reduces to

Ceff
ijkl

∂2u?
l (r)

∂rj∂rk

= Ceff
ijklε

T δkl

∂β(c)

∂rj

. (3.34)

Taking σT
ij = Ceff

ijklε
T δkl,

Ceff
ijkl

∂2u?
l (r)

∂rj∂rk

= σT
ij

∂β(c)

∂rj

. (3.35)

The above equation can be solved in the Fourier space (See Appendix C). Defining

G−1
il as Cijklgjgk (where g is the vector in the Fourier space), we can write the

solution (in the Fourier space) as follows:

{

(u?
l )

0
}

g
= −JGilσ

T
ijgj{β(c)}g, (3.36)

where the superscript on u?
k denotes the order of approximation, and J is

√

(−1).

3.3.2 Higher order approximations

Having the zeroth order approximation it is possible to refine the solution (See

Appendix C). We can write the nth order refined solution using the (n− 1)th order

solution as follows:

{(u?
l )

n}g = −JGilΛ
n−1
ij gj , (3.37)

where

Λn−1
ij = σT

ij{β(c)}g − ∆CijmnE
n−1
mn {α(c)}g (3.38)

+∆Cijmnε
Tδmn{α[c(r)] β[c(r)]}g − ∆Cijmn

{

α[c(r)]
∂(u?

m)n−1(r)

∂rn

}

g
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3.4 Elastic energy and the corresponding chemi-

cal potential

Let the elastic strain energy be given by

Eel =

∫

Ω

eel(r)dr, (3.39)

where, the local elastic energy density eel is given by

eel(r) =
1

2
Cijklε

el
ijε

el
kl. (3.40)

Since

εel
ij = εij − εo

ij, (3.41)

and,

εij = Eij + ε?
ij, (3.42)

we obtain,

eel(r) =
1

2
Cijkl(Eij + ε?

ij − ε0
ij)(Ekl + ε?

kl − ε0
kl) (3.43)

From the above expressions and the definition of µel, the elastic chemical poten-

tial (3.7), we obtain

NV µel =
1

2
α′(c)∆Cijkl(Eij + ε?

ij − ε0
ij)(Ekl + ε?

kl − ε0
kl) (3.44)

−β ′(c)εT δijCijkl(Ekl + ε?
kl − ε0

kl),

where, the prime represents the differentiation with respect to c. Note that the

above expression is the same as that given by equation 18 in [18].

To summarise, the CH equation that we wish to solve is Eqn. (3.5), namely,

∂c

∂t
= ∇ · M∇(µch + µel). (3.45)

The µch is given by (3.10), namely,

µch = hf(c) − 2κ∇2c, (3.46)

with, hf (c) = (∂f0/∂c) = 2Abc(1 − c)(1 − 2c). The µel is given by Eqn. (3.44),

namely,

NV µel =
1

2
α′(c)∆Cijkl(Eij + ε?

ij − ε0
ij)(Ekl + ε?

kl − ε0
kl) (3.47)

−β ′(c)εT δijCijkl(Ekl + ε?
kl − ε0

kl),
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3.5 Non-dimensionalisation

All the parameters used in our simulations are non-dimensional. We carry out the

non-dimensionalisation using the characteristic length L′, energy E ′, and time T ′

given below (where, the prime represents the fact that these quantities are dimen-

sional):

L′ =

(

κ′

A′

b

)
1

2

, (3.48)

E ′ = A′

b, (3.49)

T ′ =
L′2(c′p − c′m)2

M ′E ′
. (3.50)

The details of the non-dimensionalisation are shown in Appendix A; we note here

that our choice of non-dimensionalisation renders κ, Ab, and M unity. Thus, the

non-dimensional Cahn-Hilliard equation is given as

∂c

∂t
= ∇2(h − 2∇2c + µel), (3.51)

where, the non-dimensional µel is obtained by using a scaled non-dimensional C∗

ijkl

as follows: C∗

ijkl = Cijkl/NV . Finally, our non-dimensional time and length units

correspond to 0.02 seconds and 1 nano-metre, respectively (as we show in the Ap-

pendix A).

3.6 Numerical implementation

3.6.1 Fourier transform and discretisation

Let us consider the domain Ω of size Lx × Ly × Lz; let it be discretised with nodes

at distances ∆x, ∆y, and ∆z along the x, y, and z axes, respectively, and let Nx,

Ny, and Nz be the number of nodes along x, y, and z axes, respectively. Thus, any

node on the domain is identified by a set of integers, namely, (i, j, k) (and by a pair

of integers (i, j) in 2D). We define the (discrete) Fourier transform (F) of a function
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H(r), where r is the real-space Cartesian vector, as follows:

F(H(r)) = H(g) =
∑

Ω

H(r) exp (−2πJg′ · r) dr

=
Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

H(r) exp (−Jg · r) dr, (3.52)

where, g′ is the reciprocal space vector, g = 2πg′ and J =
√

(−1). Similarly, the

inverse Fourier transform is defined as follows:

F−1(H(g)) = H(r) =
∑

Ω

H(g) exp (2πJg′ · r) dg

=

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

H(g) exp (Jg · r) dg. (3.53)

The reciprocal vector g is given as follows: g = m1g1 + m2g2 + m3g3, where, mi

are integers, and g1, g2, and g3 are the basis vectors of the reciprocal lattice:

g1 = 2π
Ly ŷ × Lz ẑ

Lxx̂ · Ly ŷ × Lz ẑ
; (3.54)

g2 = 2π
Lz ẑ × Lxx̂

Lxx̂ · Ly ŷ × Lz ẑ
; (3.55)

and,

g3 = 2π
Lxx̂ × Lyŷ

Lxx̂ · Ly ŷ × Lz ẑ
. (3.56)

Let us consider the equation (3.51) and take the (spatial-) Fourier transform on both

sides of the equations (with the notation that {(·)}g is the Fourier transform of (·)):

∂{c}g

∂t
= −g2({hf}g + 2g2{c}g + {µel}g). (3.57)

Note that these equations are written for every node g on the reciprocal lattice.

The semi-implicit discretisation of the above equation is then obtained as follows [78]:

c(g, t + ∆t) − c(g, t)

∆t
= −g2{hf}g − 2g4c(g, t + ∆t) − g2{µel}g. (3.58)

c(g, t + ∆t) =
c(g, t) − g2∆t({hf}g + {µel}g)

1 + 2∆tg4
, (3.59)

where ∆t is the time step for the numerical integration. Thus the problem of mi-

crostructural evolution reduces to numerically solving the discretised equation(s)

above.
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All our simulations in this thesis are carried out on a (discretised) 2D domain.

Usually, in these simulations, the equation of mechanical equilibrium is solved in 3D

under a plane strain assumption. However, in this thesis, we solve the equation of

mechanical equilibrium in 2D. In such case, the real space is discretised with nodes

at distances ∆x along the x-axis and nodes at distances ∆y along the y-axis, and

the reciprocal lattice vectors are given by g1 = (2π/Lx) x̂ and g2 = (2π/Ly) ŷ.

The (discrete) Fourier transforms needed for our calculations have been carried out

using the free software FFTW (Fastest Fourier Transform in the West) developed

by Frigo and Johnson [79].

3.6.2 Algorithm for microstructural evolution

The following is the algorithm for microstructural evolution:

1. Given a composition profile at time t, we calculate the µch (using Eqn. (3.46))

and its Fourier transform.

2. We solve the problem of mechanical equilibrium for the given composition

distribution, thereby obtaining µel (using Eqn. (3.47)) and its Fourier trans-

form. While solving the equation of mechanical equilibrium, according to our

formulation described above, at each time step, we need to

(a) get the zeroth order solution (using Eqn. (3.36)), and

(b) refine the zeroth order solution (using Eqn. (3.37)) till the error in dis-

placements is less than a given value (typically, less than 10−8 in the

following simulations). We use the L2 norm in defining the error: Let

un(i, j) and un+1(i, j) be the displacement solutions at the grid point

(i, j). Let the total number of grid points in the x and y-directions be M

and N respectively. Then, the error is

Error =

[

M
∑

i=1

N
∑

j=1

(un+1(i, j) − un(i, j)) · (un+1(i, j) − un(i, j))

]

1

2

.

(3.60)
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Since this is an iterative method, it is possible to use the displacements from

the previous time step as the starting point and thus expedite the iterative

refinement procedure. Hence, in our implementation, from the second time

step onwards, the solution from the previous step is used as the starting point

for refinement of the solution.

3. Using {µch}g and {µel}g in Eqn. (3.59), we calculate the composition profile

at some future time t + ∆t.

4. We repeat steps 1-3 to march in time for the given number of time steps.

3.6.3 A note on interpolation functions α(c) and β(c)

The function used for eigenstrain interpolation β(c) (see Eqn. (3.15)) in our model

depends on the reference state for the measurement of the eigenstrain. If the strain-

free matrix phase is used as the reference state, then β(cm) = 0.0 and β(cp) = 1.0. If

the average alloy of composition c0 is used as the reference state, then β(cm) = −c0

and β(cp) = 1.0 − c0. The above conditions are only on the value of β for the m

and p phases, and hence, we have the freedom to choose any functional form for the

intermediate values.

Similar to β, there are several ways of defining the interpolating function α(c) in

Eqn. (3.16). However, if ∆Cijkl is given by (3.17), then, the definition of α is

determined by the expression for the “effective” elastic modulus. In Table 3.1 we

summarise some definitions of “effective” moduli used in the present study (and

some other studies in the literature as well), and the corresponding α expression.

We note that the calculation of α and β functions as well as their derivatives with

respect to the composition variable involves tanh and such other costly function

calls. In our numerical implementation, we have tabulated α and β and read them

off the tables during the calculations. Each table typically consists of 140000 entries

and tabulates these functions for composition values ranging from -0.2 to 1.2.



CHAPTER 3. FORMULATION 29

Sl.no Expression for α Expression for Ceff
ijkl

1
{

1
2
(tanh(2ac − a))

}

− 1
2
, 1

2
(Cp

ijkl + Cm
ijkl) (See [26])

a, a constant

2 {c3(10 − 15c + 6c2)} − 1
2

1
2
(Cp

ijkl + Cm
ijkl)

(See [80])

3 c Cm
ijkl (See [18])

4 c − 1 Cp
ijkl

5 c − c0 Ceff = (1 − c0)C
m + c0C

p

(See [20])

Table 3.1: The interpolation function α and the corresponding Ceff
ijkl
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3.7 Comparison with analytical solutions

As noted earlier, we have the freedom to choose from a variety of interpolation

functions α and β. In this chapter, we wish to compare our numerical results with

corresponding sharp interface, analytical results. The latter results are obtained by

attributing the eigenstrain to the precipitate phase, using the strain-free matrix as

the reference state. Thus, the tanh function and the function of Wang et al [80] are

suitable for our studies.

In particular, the function of Wang et al is ideal for our purposes since it approaches

zero and unity smoothly when the composition goes to zero and unity; hence, in all

our calculations below, we have used the following interpolation functions:

β(c) = c3(10 − 15c + 6c2), (3.61)

and,

α(c) = {c3(10 − 15c + 6c2)} − 1

2
. (3.62)

In addition to β, the complete prescription of eigenstrain includes the tensor εT δij ,

where εT is the strength of the eigenstrain, and δij is the Kronecker delta; hence

(as noted earlier), the eigenstrain ε0 is dilatational. In all our calculations, we use a

value of εT = 0.01 for the precipitate phase, and εT = 0.0 for the cavity.

For a system with cubic elastic constants, the circular averages of the Voigt constants

(C11, C12, and C44) can be related to the average shear modulus G, the Poisson’s

ratio ν, and the anisotropy parameter AZ [55] using the following expressions:

G = C44, (3.63)

ν =
1

2

C12

C12 + C44

, (3.64)

and,

AZ =
2C44

C11 − C12

. (3.65)

If AZ , the anisotropy parameter is equal to unity, the elastic constants are isotropic.

If it is greater (less) than unity, then the elastic constants have a cubic anisotropy,

with 〈10〉 directions (〈11〉 directions) being the softest [81, 82]. Further, we define

the inhomogeneity ratio δ as the ratio of the shear modulus of the precipitate to
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that of the matrix: δ = C
p

44/C
m

44. If δ is equal to unity, then the system is elastically

homogeneous. If it is greater or less than unity, then the precipitate is harder or

softer than the matrix, respectively.

In all our calculations, we maintain the Poisson’s ratio, and the anisotropy parameter

to be the same for both the matrix and precipitate phases. Thus, prescribing ν, AZ ,

and, G of one of the phases, say, the matrix phase, and the inhomogeneity parameter

δ, is sufficient to completely characterise the elastic moduli used in the calculations.

In all our calculations, we keep the shear modulus of the matrix (Gm) fixed at 400

and the Poisson’s ratio (ν) at 0.3.

In Table 3.2, we list all the parameters used in our simulations; these include the

discretisation and numerical simulation related parameters (∆x, ∆y, ∆t, and, the

allowed error in the displacement solution), the kinetic parameter (M), the chemical

free energy related parameters (Ab, and κ), and the elastic parameters that do not

vary across simulations (Gm, ν, and εT ).

In all the calculations described in this chapter, the precipitates are placed at the

centre of the domain: this is achieved by calculating the distance of any grid point

from the centre, and making the composition of the grid point unity if it lies within

the precipitate, and zero, otherwise. Hence, the precipitate-matrix interface is jagged

in all the simulations.

3.7.1 Circular and elliptic precipitates

The analytical solutions are obtained for a single (circular or elliptic) precipitate

in an infinite matrix [28, 83]. We use periodic boundary conditions in our numer-

ical calculations; by making the volume fraction of the precipitate as small as our

simulation allows, we can approach this limit of a single precipitate in an infinite

matrix. In the present set of calculations, we use a precipitate radius R of 25, while

the simulation cell size Lx = Ly = 512: thus the volume fraction of the precipi-

tate is ≈ 0.0075. In the case of non-circular precipitates, R is the equivalent radius:

R =
√

(ap/π), where ap is the area of the precipitate. We have used a grid of ∆x = 1

and ∆y = 1; and a tolerance value of 10−8 for the convergence of the displacement
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Parameter type Parameter Value used

Cahn-Hilliard Model M 1.0

κ 1.0

Ab 1.0

Elastic Gm 400.0

ν 0.3

εT 0.01 (for precipitates)

0.0 (for cavities)

Simulation ∆x 1.0

∆y 1.0

∆t 1.0

Allowed error in displacements less than 10−8

Table 3.2: Parameters used in the simulations
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solutions.

In Figures 3.4 and 3.5 we compare the numerical solutions for the principal and

shear stress components as a function of distance from the centre of the circular

precipitate. The corresponding analytical solutions are also shown (as a dotted line)

for a direct comparison. The stress components (normalised by the characteristic

stress GmεT ) are plotted against the normalised distance (r/R) from the centre of

the precipitate along the x-axis. The elastic constants are isotropic (i.e., AZ = 1),

and, the precipitate is softer than the matrix (δ = 0.5).

From the analytical results, we know that σxx is continuous and σyy is discontinuous

across the p-m interface; σxy is zero everywhere along the x-axis.

From these figures, it is clear that the numerical solutions agree well with the analyt-

ical ones except in the vicinity of the interface. Further, the width of the region over

which there is significant difference can be decreased by reducing the grid size. This

is due to the difficulty in capturing discontinuities and sharp changes using Fourier

series expansions. As is well known, this effect, known as the Gibbs phenomenon,

never disappears even in the limit of an infinite number of terms; as more terms are

included, the location of the overshoot moves closer to the discontinuity (See p. 333

of [84]). In addition, the stress at the edge of the simulation cell is very nearly zero,

indicating that the matrix is effectively infinite.

We have carried out similar comparisons of our numerical solutions for the strain

components at the centre of elastically isotropic (circular and elliptic), soft (δ = 0.5),

homogeneous (δ = 1.0), and hard (δ = 2.0) precipitates, as well as for solutions

inside a circular and an elliptic homogeneous precipitate when the elastic constants

are anisotropic (with AZ = 3.0) (with the corresponding analytical solutions given

by Mura (p. 142 of [28]). We define the normalised error in the principal strain

components at the centre of the precipitate as follows:

Normalised Error =
εNumerical − εAnalytical

εT
(3.66)

In all the calculations, we find that the normalised error is 0.8% or less (for a volume

fraction of ≈ 0.0075). The shear strain components at the centre of the precipitates

are identically zero for all these cases: in our numerical calculations also we find
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Figure 3.4: The normalised principal stress components (a) σs
11, and (b) σs

22 as a

function of normalised distance: analytical and numerical solutions along the x-axis

(from the centre of a circular precipitate). The distance is normalised by R, the

precipitate radius, while the stress is normalised by the characteristic stress GmεT .

The line through the data points is drawn only as a guide to the eye. R = 25;

Lx = Ly = 512; δ = 0.5; AZ = 1.
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Figure 3.5: The normalised shear stress component σs
12 as a function of normalised

distance: analytical and numerical solutions along the x-axis (from the centre of a

circular precipitate). The distance is normalised by R, the precipitate radius, while

the stress is normalised by the characteristic stress GmεT . The line through the data

points is drawn only as a guide to the eye. R = 25; Lx = Ly = 512; δ = 0.5; AZ = 1.

that the shear strain components are of the order of 10−5 or less.

3.7.2 Cavity under an externally applied stress

It is generally believed that iterative procedures like the one described here are not

suitable when the inhomogeneity ratio is very high [19, 24]. There are also reports

suggesting that there is a linear relationship between the inhomogeneity and the

number of iterations needed to reach the solution [26]. However, in our calculations,

for a circular cavity in a plate under an uniaxial applied stress, we are able to obtain

the solution with 9 iterations. The solution obtained is shown in Figure 3.6. In these

cases, the inhomogeneity (δ) is 10−8. Thus, obtaining the solutions in 9 iterations

is both surprising, and highly encouraging.

Our numerical solutions also agree well with the analytical solutions (See page 91

of [85]). In Figure 3.7, we plot the number of iterations required for any given

inhomogeneity. We see that beyond δ = 0.01, the number of iterations remains a
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constant at 9. We further note that the number of iterations is also sensitive to

the volume fraction of the cavity; as the volume fraction of the cavity increases, the

number of iterations needed to reach the solution increases. However, the earlier

conclusion is still valid, viz., for a given volume fraction, the number of iterations

needed to reach the solution becomes a constant beyond some specific inhomogeneity

value.

3.8 Characterisation of the numerical method: ac-

curacy of the elastic solution

The accuracy with which we solve the equation of mechanical equilibrium depends

on the refinement of the grid as well as the tolerance within which the displacement

solution is obtained. Further, as noted earlier, the numerical solutions approach

the analytical solution only in the limit of the volume fraction of the precipitate

approaching zero. In this subsection, we describe the effect of all these three param-

eters on the accuracy of the elastic solution. In all the cases below, the precipitates

are circular (R = 50, Lx = Ly = 1024 so that the volume fraction is about 0.0075)

and are elastically isotropic (AZ = 1): the normalised error in the principal compo-

nents of strain at the centre of the precipitate (see Eqn. (3.66)) is used as a measure

of accuracy.

3.8.1 Effect of grid refinement

In Figure 3.8, we summarise the effect of grid refinement on the solution for both

hard (δ = 2.0) and soft (δ = 0.5) precipitates. The coarsest grid ∆x = 2 that we

have used, produced the largest (normalised) error of less than 1.4% in the principal

strain at the centre of the precipitate. Further, refining the grid to less than ∆x = 1

did not increase the accuracy much. In all our calculations in this thesis, we use a

grid size of unity.

The relatively large error in the case where the grid is ∆x = 2 (though small in

itself) as compared to the case where ∆x = 1, could be due to the jagged nature
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Figure 3.6: The σxx and σyy stress components along the (a) x-axis and (b) y-axis

from the centre of a circular cavity in a square domain under an applied tensile

stress along the x-axis. R = 25; Lx = Ly = 512; σA = 1; δ = 10−8; εT = 0.
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Figure 3.7: The effect of inhomogeneity on convergence; data from simulations of

a circular cavity in a square domain under an externally applied uniaxial stress

(Figure 3.6). The line through the data points is drawn only as a guide to the eye.

of the interface. An increase in the grid size, or the size of the precipitate leads to

a less jagged interface (which approximates the actual shape better) resulting in a

reduction of the error.

3.8.2 Tolerance for the error in displacement solution

The equation of mechanical equilibrium is solved using an iterative procedure, by

refining the displacement solution within a given tolerance value: we use spectral

differentiation to obtain the strains from these displacement values. In Figure 3.9 (a),

we indicate the effect of the tolerance value on the accuracy of the elastic (strain)

solution (for both soft (δ = 0.5) and hard (δ = 2) precipitates). As is clear from the

figure, refining the displacement solution beyond 10−8, does not refine the solution

much, while the further refinement only increases the required number of iterations

(See Figure 3.9 (b)). We set the tolerance limit in our calculations at 10−8.
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Figure 3.8: The normalised error in the principal strain component at the centre of

a circular precipitate as a function of the grid size. The strain is normalised by the

strength of the eigenstrain εT = 0.01 (see Eqn. (3.66)). The lines through the data

points are drawn only as a guide to the eye. R = 50; Lx = Ly = 1024; AZ = 1.

3.8.3 Effective moduli definition

The definition used for the “effective moduli” (with which we calculate the zeroth

order solution) has a strong effect on the convergence properties. In Table 3.3, we

list the number of iterations needed to converge to the solution in three different

cases, viz., 1
2
(Cm

ijkl+Cp
ijkl), Cm

ijkl and Cp
ijkl. Even though all the three expressions lead

to the same solution, using Cm
ijkl or Cp

ijkl as the effective modulus takes two to five

times the number of iterations as compared to the case when the arithmetic average

of the elastic constants is used as the effective modulus; further, when we use the

arithmetic average, the number of iterations needed for convergence is independent

of δ. This is quite surprising because the volume fraction of the precipitate is quite

small (≈ 0.0075); at present, the reason for the faster convergence on using the

arithmetic average of the moduli as Ceff is not clear to us.
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Figure 3.9: (a) The normalised error in the principal strain component at the centre

of a circular precipitate as a function of the tolerance value for the refinement of the

displacement solution. The strain is normalised by the strength of the eigenstrain

εT = 0.01. The lines through the data points are drawn only as a guide to the eye.

(b) The increase in the number of iterations with the decrease in the tolerance for

the refinement of the displacement solution. The lines through the data points are

drawn only as a guide to the eye.
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Inhomogeneity Expression for Ceff
ijkl Number of

iterations

Hard precipitate (δ = 2.0) 1
2
(Cp

ijkl + Cm
ijkl) 4

Cm
ijkl 22

Cp
ijkl 4

Soft precipitate (δ = 0.5) 1
2
(Cp

ijkl + Cm
ijkl) 4

Cm
ijkl 7

Cp
ijkl 8

Table 3.3: The effect of interpolation function α and the corresponding Ceff
ijkl on

convergence.
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3.9 Homogenised quantities

In Section 3.7 above, we compared our numerical results with the available analyt-

ical sharp interface solutions. Though there are no exact analytical solutions for

obtaining homogenised quantities (say, homogenised strain and homogeneous mod-

uli) in an elastically inhomogeneous system, some approximate solutions and trends

are known for simple system geometries. In this section, we describe our results

from a numerical calculation of homogeneous strain and homogeneous moduli, with

relevant comparisons with (approximate) analytical solutions. Further, we also in-

dicate that the contribution of homogeneous strain to the total elastic energy could

be considerable, and hence is important for an accurate study of microstructural

evolution in elastically inhomogeneous solids.

3.9.1 Homogeneous strain

In Figure 3.10 (a), we summarise the effect of volume fraction of the precipitate on

the accuracy of the elastic solution: we plot the value of the homogeneous strain

normalised by the strength of the eigenstrain εT as a function of volume fraction

for soft (δ = 0.5), homogeneous (δ = 1.0) and hard precipitates (δ = 2.0). In the

case of the homogeneous precipitate the normalised homogeneous strain equals the

volume fraction of the precipitate; this is in agreement with the analytical result (See

p.206 of [29]). In the case of a hard (soft) precipitate in a soft (hard) matrix, the

homogeneous strain is greater (smaller) than the volume fraction of the precipitate

as expected. Further, as the volume fraction of the precipitate tends to zero, the

homogeneous strain also tends to zero.

In Figure 3.10 (b), we show that the (normalised) difference in the elastic energy,

namely, the difference between the energy of the system with prescribed zero dis-

placement at the boundary and that with zero tractions on the boundary. The

normalisation was carried out using the elastic energy of the system with prescribed

tractions at the boundary. As is clear from the figure, even at a volume fraction

of 0.2, the energies differ by 100% and for a volume fraction of 0.5, the energy dif-

ference could be as large as 500%. Hence, not calculating the homogeneous strain
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while solving the equation of mechanical equilibrium (as done by Leo et al [18]),

or imposing the zero displacement constraint on the boundary while the natural

boundary conditions demand zero traction at the boundary (as done by Hu and

Chen [20], for example) could produce erroneous results.

3.9.2 Homogeneous moduli

We now consider a square domain of the matrix with a circular precipitate at its

centre. Let both the precipitate and the matrix be isotropic (with Poisson’s ratio of

0.3). Let a tensile stress of a given magnitude (unity, in this case) be applied. The

effective shear modulus of the composite can then be obtained by assuming isotropic

elasticity and calculating the Young’s modulus and Poisson’s ratio using the tensile

and lateral homogeneous strains.

In Figure 3.11 (a), we show the normalised homogeneous shear modulus (Ghom/Gm)

thus obtained for a composite with soft (δ=0.2) and hard (δ=5) precipitates. For

comparison, we also plot the analytical solutions for the dilute distribution of pre-

cipitates with prescribed stress (DD-Σ) and prescribed strain (DD-E) for the same

δ values obtained using the expressions (8.2.13 b) and (8.2.14 b), respectively of

Nemat-Nasser and Hori [30]; our numerical results are in good agreement with the

DD-Σ solutions, especially at smaller volume fractions. Similarly, our numerical cal-

culations of the normalised homogeneous shear moduli of a 2D composite consisting

of circular holes (see Figure 3.11 (b)) are also in good agreement with the corre-

sponding DD-Σ analytical solutions described by the expression (5.1.15 a) in [30].

3.10 Summary

In this chapter, we have presented a phase field model which incorporates the elastic

solutions obtained by solving the equation of mechanical equilibrium in an elastically

inhomogeneous system. The equation of mechanical equilibrium is solved both under

prescribed traction and displacement boundary conditions; further, we show that
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Figure 3.10: The (a) normalised homogeneous strain and (b) the normalised differ-

ence in the elastic energy as a function of the volume fraction of the precipitate.

The homogeneous strain is normalised by the strength of the eigenstrain εT = 0.01,

while, the elastic energy was normalised by the elastic energy for an unconstrained

system. The lines through the data points are drawn only as a guide to the eye.
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Figure 3.11: The normalised effective shear modulus for (a) soft (δ=0.2) and hard

(δ=5) inhomogeneities, and (b) cavities.
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our iterative procedure is both accurate and efficient. Finally, we characterise our

numerical method, and show that our elastic solutions agree very well with the

corresponding analytical solutions. In the following chapters, we use our phase field

model to study microstructural evolution in two systems where elastic inhomogeneity

plays a key role, namely, rafting in systems with dilatational misfit (Chapter ??)

and phase inversion (Chapter ??).



Appendix A

Non-dimensionalisation

In this section, all the primed quantities are dimensional; as noted in Chapter 3, we

use the characteristic energy E ′, time T ′, and length scale L′ to render the equations

non-dimensional.

Let us consider the non-dimensional form of Eqn. (3.2), namely,

∂c′

∂t′
= M ′∇′2µ′. (A.1)

Since we render the dimensional composition variable non-dimensional using Eqn. (3.1),

namely,

c =
c′ − c′m
c′p − c′m

, (A.2)

we obtain ∂c/∂c′ = 1/(c′p − c′m). Further, by definition,

µ′ =
1

N ′

V

δF ′

δc′
(A.3)

=
1

N ′

V

δF ′

δc

∂c

∂c′

=
1

N ′

V (c′p − c′m)

δF ′

δc
.

Since the total free energy of the system involves an integration over the volume [73],
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we have

F ′ = N ′

V

∫

f(c,∇c, . . . )dV ′ (A.4)

=
NV

L′3

∫

f(c,∇c, . . . )dV L′3

= NV

∫

f(c,∇c, . . . )dV.

Also, since δF ′/δc′ has units of energy per unit volume, the chemical potential

µ′ = (1/N ′

V ) [δF ′/δc′] has units of energy per atom. Hence,

µ =
µ′

E ′
=

1

E ′

L′3

NV

δF

δc′
E ′

L′3
(A.5)

=
1

NV

δF

δc′
=

1

NV (c′p − c′m)

δF

δc

Finally, since

∂c′

∂t′
=

∂c′

∂c

∂c

∂t′
(A.6)

= (c′p − c′m)
∂c

∂t′
=

(c′p − c′m)

T ′

∂c

∂t
,

the non-dimensionalisation of the Eqn. (A.1) becomes

∂c

∂t
=

M ′T ′

(c′p − c′m)
∇′2µ′ (A.7)

=
M ′T ′

(c′p − c′m)N ′

V L′2
∇2µ′

=
M ′T ′L′3

(c′p − c′m)NV L′2
∇2

{

δF ′

δc′

}

=
M ′T ′L′3

(c′p − c′m)NV L′2
∇2

{

δF

δc′
E ′

L′3

}

=
M ′T ′E ′

(c′p − c′m)L′2
∇2

{

δ(F/NV )

δc′

}

=
M ′T ′E ′

(c′p − c′m)L′2
∇2

{

δ(F/NV )

δc

∂c

∂c′

}

=
M ′T ′E ′

(c′p − c′m)2L′2
∇2

{

δ(F/NV )

δc

}

Identifying

M =
M ′T ′E ′

(c′p − c′m)2L′2
, (A.8)
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we obtain
∂c

∂t
= M∇2

[

δF/NV

δc

]

. (A.9)

Making the non-dimensional mobility M unity, we obtain the characteristic time

scale as follows:

T ′ =
(c′p − c′m)2L′2

M ′E ′
. (A.10)

Further, using A′

b = E ′ and L′ = {κ′/A′

b}
1

2 renders the non-dimensional κ and Ab

also unity.

Let us consider an fcc crystal with a lattice parameter of 4 Å. Then, the non-

dimensional number of atoms per unit volume would be given by 4L′3/[(4×10−10)3].

Since in our phase field model, the scaled non-dimensional interfacial energy is

(1/3) [86],
1

3
=

γ

NV κ
1

2

. (A.11)

Hence, γ = 4×(L′)3/(3×(4 × 10−10)
3
) Since interfacial energy is scaled by E ′/(L′)2,

we obtain the characteristic energy as follows:

E ′ = 3γ′(4 × 10−10)
3
/4L′. (A.12)

Using a characteristic length scale of 1 nm, and assuming the typical interfacial

energy to be 0.1 J/m2, we obtain E ′ = A′

b = 4.8 × 10−21 Joules.

The non-dimensional mobility M ′ is related to the non-dimensional diffusivity D′ as

follows [87]:

D′ =
∂2f ′

0

∂c′2
M ′. (A.13)

Differentiating the non-dimensional bulk free energy density

f ′

0 = A′

b

[

(c′ − c′m)2(c′ − c′p)
2

(c′p − c′m)4

]

, (A.14)

twice, with respect to c′, we obtain

∂2f ′

0

∂c′2
=

[

2A′

b

(c′p − c′m)4

]

(A.15)

[(c′ − c′p)(2c
′ − c′m − c′p)

+(c′ − c′m)(2c′ − c′m − c′p) + 2(c′ − c′m)(c′ − c′p)]
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Evaluating this quantity at the matrix composition c′m, we obtain

∂2f ′

0

∂c′2
=

2A′

b

(c′p − c′m)2
. (A.16)

Hence,

M ′ =
(c′p − c′m)2

2A′

b

D′. (A.17)

Assuming a typical value of 0.1 for (c′p − c′m), and 1.0×10−16 m2/sec for D′, we

obtain M ′ = 1041.6667 m2/(Joule − sec)

This implies that the characteristic time T ′ = [(c′p − c′m)2L′2]/[M ′E ′] = 0.02sec.
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Proof that E denotes the mean

strain tensor of the cell

Our aim in this Appendix is to show that that E denotes the mean strain tensor of

the cell, i.e., derive Eqn. (3.20), viz.,

〈εij〉 = Eij, (B.1)

with the following definition:

〈(·)〉 =
1

V

∫

Ω

(·)dΩ, (B.2)

where V is the area of the (2D) cell Ω. The derivation below follows Ref. [25], which

presents a generalisation of equation (3.20) to cases where the domain Ω contains

cavities. To derive Eqn. (3.20), we begin by calculating the strain εij from the

equation (3.19):

εij =
1

2

[

∂ui

∂rj

+
∂uj

∂ri

]

, (B.3)

which gives the following expression:

εij = Eij +
1

2

[

∂u?
i

∂rj

+
∂u?

j

∂ri

]

, (B.4)

since we assumed E to be symmetric. Further, we have, by definition,

〈εij〉 =
1

V

∫

Ω

εijdΩ, (B.5)
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using Eqn. (B.4) in the above expression, we obtain,

〈εij〉 =
1

V

∫

Ω

{

Eij +
1

2

[

∂u?
i

∂rj

+
∂u?

j

∂ri

]}

dΩ. (B.6)

Since E is a constant,

〈εij〉 = Eij +
1

2V

∫

Ω

[

∂u?
i

∂rj

+
∂u?

j

∂ri

]

dΩ. (B.7)

If ∂Ω represent the boundary of Ω, following Gurtin (See p.4 of [88]),

〈εij〉 = Eij +
1

2V

∫

∂Ω

(u?
i nj + u?

jni)d∂Ω, (B.8)

where, n is the normal to ∂Ω. Since u? is periodic on Ω and n would be having

opposite signs on the opposite faces of the boundary ∂Ω, the integral vanishes and

we get the Eqn. (3.20):

〈εij〉 = Eij. (B.9)
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The zeroth order approximation

and higher order refinements

The Eqn. (3.35) can be solved in the Fourier space as follows:

∫

Ω

Ceff
ijkl

∂2u?
l (r)

∂rj∂rk

exp (−2πJg′ · r)dr =

∫

Ω

σT
ij

∂β(c)

∂rj

exp (−2πJg′ · r)dr, (C.1)

where g′ is the reciprocal space vector, and J =
√
−1. Let us denote 2πg′ by g and

integrate the above equation by parts once, to obtain

−Jgk

∫

Ω
Ceff

ijkl

∂u?
l
(r)

∂rj
exp (−Jg · r)dr (C.2)

=

−Jgj

∫

Ω

σT
ijβ(c) exp (−Jg · r)dΩ,

where the boundary terms vanish because of the periodic boundary conditions on the

composition c and the strain ε?. Using the notation {(·)}
g

for the Fourier transform

of (·),
Jgk

∫

Ω

Ceff
ijkl

∂u?
l (r)

∂rj

exp (−Jg · r)dr = Jgjσ
T
ij {β(c)}

g
, (C.3)

Let us integrate the LHS of the above equation once more by parts (and use the

periodic boundary condition on the displacement u? to get rid of the boundary

terms):

gkgjC
eff
ijkl{u?

l }g = −Jgjσ
T
ij{β(c)}g. (C.4)
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Defining G−1
il as Ceff

ijklgkgj, we can write the solution in the Fourier space as follows:

{

(u?
l )

0
}

g
= −JGilσ

T
ijgj{β(c)}g, (C.5)

where the superscript on u?
k denotes the order of approximation.

C.1 First order approximation

Having the zeroth order approximation it is possible to refine the solution. Let

us consider the equation (3.18) again. Let us assume that ∆Cijkl is non-zero and

substitute for the zeroth order approximation solution in the second term of the

LHS of the equation. We obtain,

Ceff
ijkl

∂2(u?
l )

1(r)

∂rj∂rk

(C.6)

=

Ceff
ijklε

T δkl

∂β(c)

∂rj

−∆CijklE
0
kl

∂α(c)

∂rj

+∆Cijklε
T δkl

∂{β(c)α(c)}
∂rj

−∆Cijkl

∂

∂rj

(

α(c)
∂(u?

l )
0(r)

∂rk

)

,

where the superscript 0 on E denotes that the homogeneous strain is calculated from

the zeroth order approximation of solution using the equation (3.28).

The above equation can be solved using Fourier techniques as earlier:

{

(u?
l )

1
}

g
= −JGilΛijgj, (C.7)

where

Λij = σT
ij{β(c)}g − ∆CijmnE

0
mn{α(c)}g (C.8)

+∆Cijmnε
T δmn{α(c) β(c)}g − ∆Cijmn

{

α(c)
∂(u?

m)0(r)

∂rn

}

g



APPENDIX D. THE ZEROTH ORDER . . . 55

C.2 Higher order approximations

Generalising the above derivation of the first order solution from the zeroth order

solution, we can write the nth order solution from the (n − 1)th order solution as

follows:

{(u?
l )

n}g = −JGilΛ
n−1
ij gj , (C.9)

where

Λn−1
ij = σT

ij{β(c)}g − ∆CijmnE
n−1
mn {α(c)}g (C.10)

+∆Cijmnε
Tδmn{α[c(r)] β[c(r)]}g − ∆Cijmn

{

α[c(r)]
∂(u?

m)n−1(r)

∂rn

}

g

C.3 Note on convergence

For linear elastic constitutive laws (as well as perfect plasticity and linear visco-

elasticity), the homogenisation problem is known to be well-posed [25]. Further,

Hu and Chen [20] also show that each iteration in an iterative procedure of the

type described above corresponds to a given order of approximation of the Green

function expansion in the formulation of Khachaturyan et al [77]. Thus, our iterative

procedure, outlined in this thesis is expected to converge. However, an iterative

procedure based on FFT for homogenisation studies is known to converge slowly

as the ‘contrast’ (δ � 1) increases [26]; but, as shown in Section 3.7.2, we get, in

practise, a surprisingly fast convergence even for cavities (δ � 1) using the above

methodology (within 9 iterations, albeit for small volume fractions of cavity).
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Modified Gibbs-Thomson equation

The equilibrium compositions of the coexisting phases in a two-phase coherent alloy

are modified both by the geometry (more specifically, the curvature) of the interface

(Gibbs-Thomson or capillarity effect), and by the elastic stresses. All the expressions

in this appendix are taken from Abinandanan [89] and Johnson [53] .

Let ∆cm be the deviation of the composition on the matrix side of a curved interface;

that is,

∆cm = cm
R − cm

∞
, (D.1)

where cm
R is the composition of the interface on the matrix side for a precipitate of

radius R, and cm
∞

is the composition of the interface on the matrix side when the

interface is planar. As noted, there are two contributions to this quantity: one due

to capillarity, ∆cm
c , which depends on the curvature of the interface, and another

due to elastic stresses, ∆cm
el , which depends on the stress and strain fields in the

system.

∆cm
c is given by the Gibbs-Thomson equation:

∆cm
c =

χpγ

(cp
e − cm

e )Ψm
(D.2)

where, χp is the mean curvature of the interface with respect to the precipitate phase,

γ is the interfacial energy density, the cp
e and cm

e are the equilibrium compositions

of the matrix and precipitate, respectively, when they are separated by a planar
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interface, and the quantity Ψm is defined as follows:

Ψm =

[

∂2f0

∂c2

]

cm
e

(D.3)

∆cm
el , that is the correction to the Gibbs-Thomson equation (D.2) due to elastic

stresses is given as follows:

∆cm
el =

χpγ + σm
ij (ε

m
ij − εp

ij) + [σp
ij(ε

p
ij − εTδij) − σm

ij ε
m
ij ]/2

(cp
e − cm

e )Ψm
, (D.4)

where σ and ε are the stress and strain fields respectively.

Let c∞ be the far-field composition. In terms of c∞ and, the interfacial compositions

for the m and p phases, we can define the ‘effective’ supersaturation (∆c) as follows:

∆c =
c∞ − cm

I

cp
I − cm

I

. (D.5)

Thus, for the same precipitate radius and far-field composition, for the free energy

function that we use, we can show that the the denominator remains a constant [53].

Hence, ∆c depends on c∞ − cm
I . Further, since in our case, cp

e is unity and cm
e is

zero, ∆c is given by c∞ − ∆cm. In Table D.1, we list ∆cm
el , the elastic contribution

to the excess matrix interfacial composition around a circular precipitate that has

a dilatational misfit of 0.01 with the matrix.

S. No. System ∆cm
el

1. Soft precipitate (δ = 0.5) 0.0172

2. Inclusion (δ = 1.0) 0.0284

3. Hard precipitate (δ = 2.0) 0.0387

Table D.1: Increase in the interfacial composition on the matrix side due to elastic

stresses in our model system
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