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Abstract  
 
This research focuses on the uncertainties propagation and their effects on reliability of 

polymeric nanocomposite (PNC) continuum structures, in the framework of the combined 

geometry and material optimization.  Presented model considers material, structural and 

modeling uncertainties. The material model covers uncertainties at different length scales 

(from nano-, micro-, meso- to macro-scale) via a stochastic approach. It considers the length, 

waviness, agglomeration, orientation and dispersion (all as random variables) of Carbon 

Nano Tubes (CNTs) within the polymer matrix. To increase the computational efficiency, the 

expensive-to-evaluate stochastic multi-scale material model has been surrogated by a kriging 

metamodel. This metamodel-based probabilistic optimization has been adopted in order to 

find the optimum value of the CNT content as well as the optimum geometry of the 

component as the objective function while the implicit finite element based design constraint 

is approximated by the first order reliability method. Uncertain input parameters in our model 

are the CNT waviness, agglomeration, applied load and FE discretization. Illustrative 

examples are provided to demonstrate the effectiveness and applicability of the present 

approach. 
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1. Introduction 

CNT/Polymer composites have received attention thanks to their enhanced mechanical, 

electrical and thermal properties [1]. Different approaches have been used in order to 

characterize PNCs: atomistic modeling, continuum modeling (which can be also subdivided 

into analytical and numerical approaches) and multi-scale methods [2]. Molecular dynamics 
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(MD) simulations restrict the model to one CNT in a polymer matrix with very short length. 

Pure continuum modeling approaches which usually deal with evaluating the composite 

response in the scale of a Representative Volume Element (RVE), don’t account for 

phenomena taking place on finer scales. Therefore, multi-scale methods were employed 

coupling MD methods and continuum methods. An overview of Multi-scale methods for 

PNCs has been presented in [3].  

The characteristics of a Carbon Nano Tube Reinforced Polymer (CNTRP) material are 

influenced by many uncertainties. These uncertainties include material properties, the 

geometry, loading and boundary conditions and the model uncertainties. Hence, probabilistic 

approaches are needed to determine the reliability of the behavior of nanocomposite 

structures. 

In this research work, uncertainties are classified in three major groups: material 

uncertainties, structural uncertainties and modeling uncertainties (Fig. 1). Material 

uncertainties include the molecular interactions and the CNT diameter at nano-scale, the CNT 

length and CNT-resin interaction at micro-scale, the CNT content, agglomeration, curvature, 

orientation at meso-sclae and the CNT dispersion at macro-scale. Each component e.g. the 

resin can also experience uncertainties in its material properties (such as Young’s modulus 

and Poisson’s ratio). Structural uncertainties lie for instance in the geometry, boundary and 

loading conditions while typical model uncertainties concern the mathematical model, the 

discretization and approximation errors. These uncertainties will propagate over different 

length scales affecting the overall reliability of the structural component.  

 Uncertainty propagation in nanocomposite structures remains an unsolved issue. Rouhi and 

Rohani [4] measured the failure probability of a nanocomposite cylinder under buckling, 

accounting for uncertain design conditions. However, they used micromechanical equations 

at the nano-scale by simply replacing the lattice structure of a CNT with a solid fiber (which 

can lead to inappropriate results [2]). Moreover, they disregard several important CNT 

parameters such as the CNT length, diameter, agglomeration and dispersion without any 

sensitivity evaluation. Furthermore, modeling errors including discretization- and 

approximation errors have not been addressed in detail. Motivated by [4], this research work 

firstly considers the most feasible uncertain design parameters and variables in the model in 

order to get a more realistic insight towards uncertainties and their effects on the final 

nanocomposite product design. Secondly, it  extends the design optimization of 

nanocomposite components from a pure geometry-oriented approach to a material-orientated 
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approach and a “hybrid approach” accounting for the simultaneous optimization of the 

geometry and material. 

 

Fig.1. Uncertainities sources and their propogation over differents length scales and sources  

 

For a specific load, the optimal structural results obviously will be obtained for idealistic 

straight, aligned and not aggregated CNTs. Perfect manipulation of these parameters with 

current technologies seems to be impractical. On the other hand, the behavior of CNTRP can 

be changed more efficiently by varying the content of the CNT rather than changing other 

parameters. To our best knowledge, this is the first approach optimizing the CNT content in 

generic nanocomposite solids considering nearly all CNT parameters. It will answer the 

question how much CNTs should be added to a resin for an optimal and reliable response of 

the structural component. 

The manuscript is organized as follow: Section 2 presents an overview of the stochastic 

multi-scale material model. The reliability concept and the implemented metamodeling 

technique are described in Sections 3 and 4, respectively. Section 5 discusses the Reliability 

Based Design Optimization (RBDO) and approximation based RBDO, while Section 6 

contains some case studies. The concluding remarks are presented in Section 7. 
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2. Stochastic multi-scale CNT/polymer material model 

The stochastic multi-scale model has been adopted from [5,6,7]. Fig. 2 illustrates the 

bottom-up approach including bridging the nano-scale up to the macro-scale (N3M).   

 

 

Fig.2. Involved scales in simulation of CNTRP [5] 

 

The CNT is modeled by a quasi-continuum method using beam elements at the nano-scale. 

Therefore, the strain energy of the beam elements is equated to the interatomic potential 

energy of Carbon-Carbon (C-C) bonds accounting for the 3-D frame structure of the 

molecular lattice. Using beam elements instead of spring or truss elements reduces the 

number of elements in the FE model and consequently reduces the computational cost (to 

find reasons reader can refer to [5]). Neglecting electrostatic interactions between the CNTs 

and the surrounding matrix, the interphase region is modeled by non-bonded van der Waals 

(vdW) interactions. The polymer matrix of the PNC is based on a continuum model at the 

micro-scale as shown in Fig. 3. The interphase behavior is modeled by the adaptive vdW 

Interaction (AVI) based on 3D truss elements [6]. The material behavior of the micro-model 

is up-scaled by developing the concept of equivalent fibers accounting for different CNT-

length and the complex interphase behavior[6].    

 

 

Fig.3. Cuncurrent multi-scale FE model of RVEs as micro-scale [5] 
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Randomly distributed and orientated embedded equivalent fibers at meso-scale can 

experience straight and wavy forms. They can be also concentrated in local aggregates or 

dispersed in some other areas. A schematic view of RVE at meso-scale is shown in Fig. 4. 

Using equivalent fiber technique, micromechanics theories can be used at proper scale of 

meso instead of nano. So, implementing improved micromechanics model by Shi [8], based 

on Mori-Tanaka model [9], the Young’s modulus and Poisson ratio of the block of Fig. 4 can 

be obtained. The effect of the CNT waviness (the state of non-straight shape of CNT) is also 

captured by considering upper and lower bounds of longitudinal and transverse stiffness. 

More details about waviness modeling are presented in Section 6.1. 

 

 

Fig.4. RVE of composite at meso-sclae [5] 

 

A Voigt model has been used to determine the overall properties of the material region at the 

macro-scale. Monte Carlo Simulations (500 realization on an 80  80 material region mesh), 

for the N3M multi-scale model account for the stochastic uncertainties in CNTRP. The N3M 

algorithm is summarized in Fig. 5. 
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Fig.5. Flowchart of developed full stochastic N3M multi-scale material model [5] 

 

3. Structural reliability 

Fig. 6 shows the structural safety concept. Let   and   being the system response and 

resistance of a structural component, respectively. Thus, the system is safe for    . The 

nominal safety factor is defined as                where      and      are conservative 

values (e.g. 2-3 standard deviation below and above the mean, respectively). The nominal 

safety factor may not exactly present the safety margin in a design and it can lead to either 

catastrophic failure or unnecessary conservatism. Therefore, the concept of failure probability 

was introduced. 
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Fig.6. Concept of structural safety and failure probability 

 

According to probability theory, a random event A can be defined by the occurrence of a 

real-valued random value  , which is smaller than a prescribed deterministic value  :                                                                              
The Cumulative Distribution Function (CDF) indicated by      , relates the probability of     to  :                                                                               
Since        , then                and               . The so-called 

Probability Density Function (PDF) is defined by taking derivatives of       with respect to  , (i.e.                ). Finally, the failure probability is presented by                                                                             
and in its general form:                                                                        
where      is the limit state function (LSF) and        denotes a subset of the outcome 

space, where failure occurs. The difficulty in computing Eq. (4) has led to the development of 

various approximation methods. One of the most popular approaches is the First Order 

Reliability Method (FORM). An excellent overview of available methods for structural 

reliability analysis is given in [10] and references therein. 

FORM approximates the LSF by a first order Taylor expansion at the Most Probable Point 

(MPP), the point in the normal space with the highest density on the LSF (see Fig. 7):                                                                              
It can be also shown that: 
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where    and     are the mean value and standard deviation of random variables, 

respectively. Hasofer and Lind [11] presented the current concept of Reliability Index ( ), 

based on the shortest distance from the origin of reduced variables to the limit state surface. 

Mathematically it is described by a minimization problem with an equality constraint: 

                                                                                                  
which leads to the Lagrange-function:                                                                            
Solving Eq. (8) results in finding      which corresponds to the highest value of the PDF as 

shown in Fig. 7. It should be emphasized that FORM requires standard normal non-correlated 

variables; so the vector of random variables   must be transformed into the standard non-

correlated variables vector  :                                                                                  

The reliability   and the corresponding failure probability    can be expressed as:                                                                                                                                                     
where   and     are the standard cumulative distribution function and its inverse for the 

vector of normal variables  , respectively.  

 

 

Fig.7. Graphical representation of the FORM approximation  
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4. Metamodeling  
 

4.1. Concept and application 

In simulation-based optimization, implicit forms of objective functions and constraints 

dealing with either gradient based or gradient free optimization techniques are 

computationally expensive, particularly with increasing number of variables and function 

evaluations. In order to improve the computational efficiency in such design problems, the 

concept of “metamodel” approximating the physical model has been introduced. The 

metamodel is constructed based on a sufficient number of sampling points, typically 

determined through experiments. Selecting a Design Of Experiment (DOE) method for data 

generation, choosing a model to represent the data, fitting the model and finally model 

validation are the four basic steps in metamodeling [12]. In this research work, the kriging 

method [13] has been utilized to approximate our multi-scale material model.  

 

4.2. Kriging method 

In the kriging method, the unknown value of a response for an input sample point should be 

the weighted average of the known values of the responses at its neighbors. The basic form of 

the kriging estimator is: 

                               
                                             

where      is the random field with a trend component      and a residual component               ;   being the location vector for an estimation point;     ,      and       are the number of data points in the local neighborhood of the estimated point, the 

expected (mean) value of      and the assigned kriging weights, respectively. The 

superimposed * also indicates estimated value. The goal is to determine the weights,   , that 

minimize the variance of the estimator:                                                                             
under the unbiased constraint                , where      is the expected value or 

ensemble average. A computer implementation of the kriging method [14] has been used to 

find the unknown weights,   . Fig. 8 (a) compares actual and estimated values of CNTRP 

stiffness obtained by N3M and metamodel, respectively. Fig. 8 (b) shows mean squared error 

for each predicted point. It can be observed that N3M model can be substituted by kriging 

metamodel with high level of accuracy and very cheap computational cost. 
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Fig.8. Verification of the metamodel (a) mean squared error of each predicted point (b) 

 

5. RBDO and metamodel-based RBDO 

Uncertainties influencing the material and structural response of nanocomposites call for 

optimization models which can capture the effects of random variables and yield to reliable 

designs with higher level of confidence. In contrary to Determinstic Design Optimization 

(DDO), in RBDO, design parameters are random variables and the optimization objective 

function is subjected to probabilistic constraints. 

Fig. 9 schematically compares RBDO and DDO. In DDO almost 75% of the designs around 

the deterministic optimum fail while RBDO finds the optimal design allowing a specific risk 

and target reliability level by accounting for the stochastic nature of the random parameters.  

In its basic form the problem of RBDO can be presented as below:                                                                                       
where   is the vector of the design variables with the mean value of the random variable  ,      is the cost or objective function,                 is a vector of       deterministic 

constraints over the design variables  ,         is the reliability constraint enforcing the 

respect of LSF and considering the uncertainty to which some of the model parameters   are 

subjected to.    is the target safety index.  

 

 

http://en.wikipedia.org/wiki/Design
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Fig.9. Schematic comparisons between RBDO and DDO,   stands for objective function 

 

In this research a kriging based metamodel has been utilized in each RBDO iteration. In other 

words: instead of carrying out the RBDO process with the original multi-scale material 

model, the approximation based RBDO is conducted with the metamodel. If the function 

expressing the true nature of the computer analysis result is       , the metamodel of the 

computer analysis is         , and hence       , where  is the error of the 

approximation. So, the metamodel-based RBDO becomes:                                                                                               
Eq. (14) has been solved by the open source software FERUM 4.1 [15] and linked to our FE 

code which evaluates the LSF numerically. The FERUM v4.1 toolbox involves a nested, 

double-loop solution procedure where the outer optimization loop includes inner loops of the 

reliability analysis. In each reliability analysis, the reliability index approach is used as a 

separate optimization procedure in the standard normal space to search for the most probable 

point for each active probabilistic constraint. Fig. 10 illustrates the nested algorithm of the 

RBDO procedure. 

 

Fig.10. Double loop RBDO flowchart 
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6. Case studies 

In our case studies, firstly the RBDO is employed to find the optimal content of CNT as well 

as the optimal geometry of a nancomposite component; and secondly, the sensitivity of the 

structural failure probability with respect to uncertain design variables is quantified. The two 

subsequent examples will show how the uncertainties influence the optimization of the 

structural performance and how the presented algorithm can capture the uncertainties effects. 

Note that hereinafter CNT, equivalent fiber and reinforcing agent are used interchangeably 

for sake of simplicity. Admittedly, readers should distinguish the difference between them 

during interpretation of the results. For example 7.5% fiber equivalent volume fraction as an 

output of the optimization algorithm, should be regarded as 5% CNT volume fraction in 

practice, subtracting the spatial volume of the CNT-polymer interphase region. 

 

6.1 Three-point bending of a beam  

The first example is a three point bending beam as shown in Fig. 11 (a). The cross sectional 

area of the beam is constant along its length. Fig. 11 (b) also depicts the FE mesh while 

Table-1 indicates all design parameters of the beam. The design constraint is the mid 

deflection of the beam which should be smaller than an admissible value as mentioned in 

Table-1. 

 
Fig.11. Geometry (a) and FE mesh (b) of a three-point bending beam 

 

Table-1. Problem definitions for the beam under static loading 

Parameter                               
Value            

           

Max. Deflection 

        
  CNT(volfrac) 

Type D D D D N D D D                                                                                                                                                                                                      
 

Fig. 12 (a) illustrates the reinforcing agent content as optimization objective function versus 

iterations; while the history of the reliability index is also presented. Fig. 12 (b) shows the 

same graphs, where the iteration is started from a different point. The, final results are 
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independent on the iteration start point yielding on optimum at 2.37% reinforcement. Results 

are based on the assumption of random waviness of the CNT in the resin according to the 

procedure discussed in Section 2. 

 

 

Fig.12. RBDO results of a three-point bending beam with initial guess of reinforcement content 9% 

(a) and 1% (b), optimum value is 2.37% for both (a) and (b) 

 

Apart from finding the optimum content of the reinforcement agent, it is also important to 

determine how the uncertainties in the design parameters will affect the reliability of the 

nanocomposite structures. For this purpose, the CNT waviness and the agglomeration 

(material design parameters), the applied load (structural parameter) and the FE discretization 

(modeling parameter), have been selected for more detailed studies. According to [4,5],  the 

waviness is one of the key parameters governing the nanocomposite stiffness. The most 

influential parameter, the CNT content, has been optimized already. 

To analyze the sensitivity of the failure probability with respect to the CNT waviness, other 

CNT parameters (i.e. length, dispersion, agglomeration and orientation) are considered as 

random parameters while the resin Young’s modulus and its Poisson’s ratio are considered as 

deterministic values because their effects on the overall characteristics of the composite are 

negligible [4]. Five different levels of waviness have been defined as “waviness intensity” by 

limiting the upper and lower bounds of longitudinal and transverse stiffness of the RVE. In 
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the first level (W-1: Very fine waviness), the effective Young’s modulus of the CNTRP is a 

random number between the Young’s modulus of the RVEs with the longitudinal and 18 

degree aligned CNTs (with respect to longitudinal direction). So, the effective Young’s 

modulus for W-1 has a value between 80% to 100% of the stiffness of the RVE with 

longitudinally aligned CNTs. Similarly, this concept can be extended to have wavier CNTs 

(i.e. W-2: fine waviness, W-3: moderate waviness, W-4: severe waviness and W-5: very 

severe waviness) by setting a limit on the CNT incline angle. Thus W-2, W-3, W-4 imply that 

the effective Young’s modulus of CNTRP has a value between 60% to 100%, 40% to 100% 

and 20% to 100% of the stiffness of the RVE with longitudinal CNTs, respectively. W-5 also 

stands for the generic case which effective stiffness of the nanocomposite can take a random 

value between longitudinal and transverse stiffness of the RVE. Fig. 13 schematically 

demonstrates the definition of the so called “waviness intensity” concept. 

 

 

Fig.13. Definition of waviness intensity, a phenomenological concept 

 

Fig. 14 (a) depicts the Young’s modulus of the CNTRP versus the reinforcing contents for 

different waviness intensities. Expectedly, an increase in content of reinforcement or decrease 

in the CNT waviness yields to higher composite Young’s modulus. Fig. 14 (b) shows the 

reliability index of the beam versus waviness intensity, for the optimum content of the 

reinforcement (i.e. 2.37%) while other parameters do not experience any variation. Evidently, 

when the waviness increases, the structural stiffness will decrease. Hence, the beam 

deflection will increase and consequently the structural reliability will decrease. One should 

note that for the case of fully wavy CNT (i.e. W-5), the structural reliability is half the 

reliability of a very fine wavy CNT (i.e. W-1).  
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Fig.14. Stiffness of CNTRP versus reinforcement content for different waviness intensities (a) 

Reliability index of the beam versus waviness (b) 

 

Fig. 15 illustrates the effect of the CNT agglomeration on the reliability of the 

nanocomposite component. The Young’s modulus of CNTRP versus the reinforcement 

contents for both aggregated and non-aggregated CNTs is plotted in Fig. 15 (a). The CNT 

agglomeration, reduces the CNTRP stiffness. This reduction is more pronounced for higher 

values of CNT contents; for CNT contents around 2% and less, the agglomeration role can be 

neglected. Fig. 15 (b) shows both the failure probability and the reliability index of the beam 

versus the reinforcement content with and without the CNT agglomeration. Agglomeration 

also reduces the structural reliability index and increases the failure probability of the 

structure but as it can be seen from Fig. 15, its effect can be neglected (maximum difference 

in failure probability considering and disregarding CNT agglomeration is 0.144) without any 

structural safety concern.       

 

Fig.15. Stiffness of CNTRP versus reinforcement contents with and without CNT agglomeration (a) 

Reliability index and failure probability of the beam versus reinforcement contents with and without 

CNT agglomeration (b) 
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The second category of uncertainties (structural uncertainties) is considered in next step, 

assuming a fully wavy CNT (i.e. W5). Fig. 16 shows the reliability index and the failure 

probability of the beam in dependence on the standard deviation of the loading distribution. 

When the standard deviation increases, the failure probability also increases and   decreases. 

The rate of the reliability index changes rapidly for small standard deviations and gradually 

approaches zero (i.e. the system response is not sensitive anymore). An increase in the 

standard deviation of the loading leads to a more uncertain system that is more susceptible for 

failure. 

  

 

Fig.16. Reliability index and failure probability of the beam versus standard deviation of load 

 

Finally the influence of the discretization on the structural reliability is observed. Fig. 17 

depicts the failure probability versus the mesh size parameter, , which has been defined as 

the ratio between the beam height and the number of elements in the vertical direction. It 

could be observed that coarse meshes considerably underestimate the structural failure 

probability while next to       , the failure probability reaches a constant value.  

 

 

Fig.17. Reliability index versus FE mesh,  , parameter which is defined as the ratio between the 

beam height and the number of elements in the vertical direction 
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6.2 Thick cylinder under radial line load  

The second example is a thick cylinder under radial distributed loading. Due to geometrical 

symmetry, only half of the ring is discretized. Fig. 18 (a), (b), (c) and (d) depicts the 

geometry, loading / boundary conditions, FE discretization and deformed configuration, 

respectively. Table-2 lists all design parameters. In this example not only the material but 

also the geometry is simultaneously optimized. At the first step, the minimization of the CNT 

content and the cylinder thickness as optimization objective function,                 and            as deterministic design constraints and the maximum transverse 

deflection with a specified target reliability index (according to Table-2) as stochastic 

constraint have been taken into account.  

 

 Table-2. Problem definitions for thick cylinder under line load 

Parameter                               
Value              

             

Max. trans. 

deflect. 

       

  % CNT +    

Type D D D D N D D D                                                                                                                                                                                        
 

 

 

 

Fig.18. Geometry (a) loading / boundary conditions (b) FE mesh (c) and deformed configuration (d) 

of a thick cylinder under radial line load 

 

The RBDO results are illustrated in Fig. 19 (a). The optimal thickness and reinforcement 

content are 0.278 and 1%, respectively.  In order to check the correctness of our approach the 

ring thickness is restricted to an optimum 0.278 in the next simulation. This new constraint is 
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imposed by changing the deterministic constraints to                 and            . To obtain the same reliability index, the effect of the thickness reduction should 

be compensated by another design variable, i.e. the CNT content. Fig. 19 (b) shows the 

results under the new constraints. The optimal thickness now is 0.259 (quite close to 

constraint’s upper limit) while the optimum reinforcement content is increased up to 9.35%. 

 

 

Fig.19. RBDO results of a thick cylinder under radial line load for design constraints as                 &            (a)                 &             (b) for both cases    and         stand for ring thickness and reinforcement content, respectively 

 

Subsequently, the minimization of both CNT content and cylinder volume have been 

followed with consideration of the deterministic design constraints                ,           ,           ,            and the stochastic design constraint 

according to Table-2. As Fig. 20 shows,              ,          ,          and           are optimal values of the design parameters.  
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Fig.20. RBDO results of a thick cylinder to find minimum reinforcement content and minimum 

volume of cylinder including deterministic design constraints as                 &            &            &            and stochastic constraint as maximum transverse 

displacement equal to 0.007 with     

 

7. Conclusions 

Deterministic approaches for nanocomposite modeling and optimization might be unrealistic 

for certain applications and may yield to either catastrophic failure or unnecessary 

conservatism. Although probabilistic approaches can cover uncertainties effects, their 

implementations do not necessarily yield reliable nanocomposite designs. Detailed 

investigations on uncertainties and their propagation should be performed for realistic and 

reliable PNC structures. Uncertainty propagation over different length scales and through 

various sources have been addressed for nanocomposite components. Potential uncertainties 

have been categorized in material, structural and modeling levels. To fully address 

uncertainties in material level, a stochastic multi-scale material model (which includes all 

important aspects of the CNTRP including CNT length, orientation, dispersion, 

agglomeration and waviness, at different length scales from nano- up to macro-scale) has 

been utilized. To improve the computational efficiency, the evaluation of material properties 



20 
 

has been surrogated by a metamodel. The results for two selected examples show that the 

failure probability of a polymeric nanocomposite structure, strongly depends on the CNT 

parameters, especially the CNT volume fraction and the waviness. The influence of the CNT 

agglomeration is nearly negligible. It was observed that neglecting the CNT agglomeration 

can simplify the model and decrease the computational time without remarkable loss in 

model accuracy. Furthermore, the loading condition and discretization affect the reliability of 

the system. Coarse meshes underestimate the failure probability of a beam while fine meshes 

admittedly increase computational cost. Thus sufficiently refined discretization should be 

investigated in order to have realistic assessment of the reliability of PNC structures. An 

increase in the standard deviation of the applied load, which physically means more 

uncertainties in the system, resulted in the structure with a smaller reliability index. Finding 

the optimal content of CNT was also presented to optimized the material instead of the 

geometry. As a further step forward, concurrent optimization of material parameters and 

geometrical parameters (hybrid optimization) was conducted to present a comprehensive 

solution for current demands in fully optimized designs of nanocomposite components. 
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