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Abstract

This research focuses on the uncertainties propagatiriheir effects on reliability of
polymeric nanocomposite (PNC) continuum structures, infrdmaework of the combined
geometry and material optimization. Presented model derssimaterial, structural and
modeling uncertainties. The material model covers unoéeaiat different length scales
(from nano-, micro-, meso- to macro-scale) via a stsoh approach. It considers the length,
waviness, agglomeration, orientation and dispersiona@lrandom variables) of Carbon
Nano Tubes (CNTs) within the polymer matrix. To incre&gedomputational efficiency, the
expensiveto-evaluate stochastic multi-scale material modeld&esn surrogated by a kriging
metamodel. This metamodel-based probabilistic optimizatas been adopted in order to
find the optimum value of the CNT content as well as ¢dpimum geometry of the
component as the objective function while the impliciité element based design constraint
is approximated by the first order reliability method. Underigput parameters in our model
are the CNT waviness, agglomeration, applied load and F&etmtion. lllustrative
examples are provided to demonstrate the effectivenadsapplicability of the present

approach.

Keywords. Reliability Based Design Optimization (RBDO), Reliability Analysis,
Carbon Nano Tube (CNT), Multi-Scale M odeling, CNT/Polymer Composite

1. Introduction

CNT/Polymer composites have received attention thankthdém enhanced mechanical,
electrical and thermal properties [1]. Different appreacthave been used in order to
characterize PNCs: atomistic modeling, continuum modelingcfwtan be also subdivided
into analytical and numerical approaches) and multieseethods [2]. Molecular dynamics
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(MD) simulations restrict the model to one CNT in aypatr matrix with very short length.
Pure continuum modeling approaches which usually deal withuawadg the composite
response in the scale of a Representative Volume Element (RVE), don’t account for
phenomena taking place on finer scales. Thereforeti-sadle methods were employed
coupling MD methods and continuum methods. An overview of Muglie methods for
PNCs has been presented in [3].

The characteristics of a Carbon Nano Tube Reinforcdgnfeo (CNTRP) material are
influenced by many uncertainties. These uncertainiietude material properties, the
geometry, loading and boundary conditions and the modertamaties. Hence, probabilistic
approaches are needed to determine the reliability of #mavibr of nanocomposite
structures.

In this research work, uncertainties are classified ireethmajor groups: material
uncertainties, structural uncertainties and modeling rtmioges (Fig. 1). Material
uncertainties include the molecular interactions andCt& diameter at nano-scale, the CNT
length and CNT-resin interaction at micro-scale, thel €ontent, agglomeration, curvature,
orientation at meso-sclae and the CNT dispersionaatranscale. Each component e.g. the
resin can also experience uncertainties in its material properties (such as Young’s modulus
and Poisson’s ratio). Structural uncertainties lie for instance in the geometry, boundary and
loading conditions while typical model uncertainties condte mathematical model, the
discretization and approximation errors. These unceigai will propagate over different
length scales affecting the overall reliability of 8teuctural component.

Uncertainty propagation in nanocomposite structuresinsnaan unsolved issue. Rouhi and
Rohani [4] measured the failure probability of a nanocompasii@der under buckling,
accounting for uncertain design conditions. However, theg usicromechanical equations
at the nano-scale by simply replacing the lattice straatfia CNT with a solid fiber (which
can lead to inappropriate results [2]). Moreover, thesredjard several important CNT
parameters such as the CNT length, diameter, aggloowratid dispersion without any
sensitivity evaluation. Furthermore, modeling errors luiding discretization- and
approximation errors have not been addressed in detailvatied by [4], this research work
firstly considers the most feasible uncertain desigarmpaters and variables in the model in
order to get a more realistic insight towards uncertandied their effects on the final
nanocomposite product design. Secondly, extends the design optimization of

nanocomposite components from a pure geometry-orientedaabpto a material-orientated



approach and a “hybrid approach” accounting for the simultaneous optimization of the
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Fig.1. Uncertainities sources and their propogation over differentgHescales and sources

For a specific load, the optimal structural results olstipwvill be obtained for idealistic
straight, aligned and not aggregated CNTs. Perfect matigulaf these parameters with
current technologies seems to be impractical. Owther hand, the behavior of CNTRP can
be changed more efficiently by varying the content of GNT rather than changing other
parameters. To our best knowledge, this is the first agproptimizing the CNT content in
generic nanocomposite solids considering nearly all CNT pateam It will answer the
guestion how much CNTs should be added to a resin for amal@nd reliable response of
the structural component.

The manuscript is organized as follow: Section 2 presentsvarview of the stochastic
multi-scale material model. The reliability concept ah@ implemented metamodeling
technique are described in Sections 3 and 4, respectivelyorsbatliscusses the Reliability
Based Design Optimization (RBDO) and approximation based RBDOe V@&ction 6

contains some case studies. The concluding remarks aented in Section 7.



2. Stochastic multi-scale CNT/polymer material model
The stochastic multi-scale model has been adopted froén7[5,Fig. 2 illustrates the

bottom-up approach including bridging the nano-scale up to theorsaale (N3M).

Fig.2. Involved scales in simulation of CNTRP [5]

The CNT is modeled by a quasi-continuum method using beaneeiermat the nano-scale.
Therefore, the strain energy of the beam elemenequated to the interatomic potential
energy of Carbon-Carbon (C-C) bonds accounting for 3He frame structure of the
molecular lattice. Using beam elements instead of spoingruss elements reduces the
number of elements in the FE model and consequently redbeecomputational cost (to
find reasons reader can refer tg)[9\Neglecting electrostatic interactions between the CNTs
and the surrounding matrix, the interphase region is maédsienon-bonded van der Waals
(vdW) interactions. The polymer matrix of the PNCbh&sed on a continuum model at the
micro-scale as shown in Fig. 3. The interphase behaviorogeled by the adaptive vdW
Interaction (AVI) based on 3D truss elementp [llhe material behavior of the micro-model
is up-scaled by developing the concept of equivalent finecounting for different CNT-

length and the complex interphase behavior[6].
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Fig.3. Cuncurrent multi-scale FE model of RVEs as micro-scale [5]



Randomly distributed and orientated embedded equivalent fibersneso-scale can
experience straight and wavy forms. They can be alsoeotrated in local aggregates or
dispersed in some other areas. A schematic view of BWEeso-scale is shown in Fig. 4
Using equivalent fiber technique, micromechanics theoriesbeansed at proper scale of
meso instead of nano. So, implementing improved micrbareécs model by Shi [8], based
on Mori-Tanaka model [9}he Young’s modulus and Poisson ratio of the block of Fig. 4 can
be obtained. The effect of the CNT waviness (the stabem-straight shape of CNT) is also
captured by considering upper and lower bounds of longitudinatrandverse stiffness.
More details about waviness modeling are presented in Séction

Fig.4. RVE of composite at meso-sclae [5]

A Voigt model has been used to determine the overall propeftihe material region at the
macro-scale. Monte Carlo Simulations (500 realizadioran 80x 80 material region mesh),
for the N3M multi-scale model account for the stocleasticertainties in CNTRP. The N3M

algorithm is summarized in Fig. 5.
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3. Structural reliability
Fig. 6 shows the structural safety concept. Leand R being the system response and

resistance of a structural component, respectively. Tthessystem is safe far < R. The

. . . R .
nominal safety factor is defined &F.=—" whereR,,,, andL,,,, are conservative

nom

values (e.g. 2-3 standard deviation below and above the, mespectively). The nominal
safety factor may not exactly present the safety manga design and it can lead to either
catastrophic failure or unnecessary conservatism. Therdfte concept of failure probability

was introduced.
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Fig.6. Concept of structural safety and failure probability

According to probability theory, a random eveéxtcan be defined by the occurrence of a
real-valued random valu€, which is smaller than a prescribed deterministic value
A={X|X<x} (1)
The Cumulative Distribution Function (CDF) indicated By(x), relates the probability of
[A] to x:
Fx(x) = Prob[A] = Prob[X < x] (2)
Since —ow < x < +oo, thenlim,__, Fy (x) =0 and lim,_,, Fx (x) = 1. The so-called

Probability Density Function (PDF) is defined by taking deiwest of Fx(x) with respect to
x, (i.e. fx(x) = :_xFX(x) ). Finally, the failure probability is presented by
Pr = Prob[g(x) < 0] 3

and in its general form:

Pr = Prob[g(xy, %5, ..., xp) < 0] = J. ...J.fX(x)dx 4

g(x)=0
whereg(.) is the limit state function (LSF) angl(.) < 0 denotes a subset of the outcome
space, where failure occurs. The difficulty in computing BEyjhés led to the development of
various approximation methods. One of the most popular apimeais the First Order
Reliability Method (FORM). An excellent overview of availableethods for structural
reliability analysis is given in [10] and references there

FORM approximates the LSF by a first order Taylor expandidtheaMost Probable Point
(MPP), the point in the normal space with the highessitleon the LSF (see Fig):7

G(x) = g(ux) + Vg(ux)™ (x — px) (5)
It can be also shown that:

n

. 172
tg = g(ux) and 05 = [z (%) U)?i] (6)

=1



where uy and g,, are the mean value and standard deviation of random \emabl

respectively. Hasofer and Lind [11] presented the current pordeReliability Index (3),
based on the shortest distance from the origin of extluariables to the limit state surface
Mathematically it is described by a minimization problethvan equality constraint:

f = min(U. UT)%

S.t: (7)
gU) =0
which leads to the Lagrange-function:
1
L= EUTU + 2g(U) » minimize (8)

Solving Eq. (8) results in finding ,pp Which corresponds to the highest value of the PDF as
shown in Fig. 7 It should be emphasized that FORM requires standard nowonatorrelated
variables; so the vector of random variab¥snust be transformed into the standard non-

correlated variables vectér.

U= (Fy(x)) 9)

The reliabilityR and the corresponding failure probabilRycan be expressed as:
R =®(B) (10.a)
Pr=1-R=1-®(p) = ®(—p) (10.b)

where® and®~! are the standard cumulative distribution functiod &s inverse for the

vector of normal variableX, respectively.
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Fig.7. Graphical representation of the FORM approximation



4. M etamodeling

4.1. Concept and application

In simulation-based optimization, implicit forms of olijge functions and constraints
dealing with either gradient based or gradient free opdinoia techniques are
computationally expensive, particularly with increasing bamof variables and function
evaluations. In order to improve the computational effigieincsuch design problems, the
concept of “metamodel” approximating the physical model has been introduced. The
metamodel is constructed based on a sufficient numbesaafpling points, typically
determined through experiments. Selecting a Design Of Expdrifid€@E) method for data
generation, choosing a model to represent the datmgfithe model and finally model
validation are the four basic steps in metamodeling [IRihis research work, the kriging
method [13] has been utilized to approximate our multi-scaterrmhmodel.

4.2. Kriging method
In the kriging method, the unknown value of a responsarionput sample point should be
the weighted average of the known values of the respatges neighbors. The basic form of

the kriging estimator is:

n(u)

Z'@) = m@) = ) A[2(e) —m(u)] (11)

where Z(u) is the random field with a trend componen{u) and a residual component
R(w) = Z(u) — m(u); u being the location vector for an estimation poirg), m(uw) and
Aq(u) are the number of data points in the local neightmdhof the estimated point, the
expected (mean) value of(u) and the assigned kriging weights, respectively. The
superimposed also indicates estimated value. The goal is to deterthie weightsa,, that
minimize the variance of the estimator:

of(w) =Var{Z*(u) —Z(w)} =0 (12)
under the unbiased constraiE(Z*(u) —Z(u)) = 0, whereE(.) is the expected value or
ensemble average. A computer implementation of the krigiathod [14] has been used to
find the unknown weightsl,. Fig. 8 (a) compares actual and estimated values of CNTRP
stiffness obtained by N3M and metamodel, respectively. Hilg) 8hows mean squared error
for each predicted point. It can be observed that N3M mealelbe substituted by kriging

metamodel with high level of accuracy and very cheap caatipaal cost.
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5. RBDO and metamodel-based RBDO

Uncertainties influencing the material and structural respofhsenocomposites call for
optimization models which can capture the effects of randariables and yield to reliable
designs with higher level of confidence. In contraryDeterminstic Design Optimization
(DDO), in RBDO, design parameters are random variablesrenaptimization objective
function is subjected to probabilistic constraints.

Fig. 9 schematically compares RBDO and DDO. In DDO almost 758teadesigns around
the deterministic optimum fail while RBDO finds the omindesign allowing a specific risk
and target reliability level by accounting for the stotibasature of the random parameters.

In its basic form the problem of RBDO can be presensdatéow:

£1(6), ..., f-1(8) < 0
Jf 8 = - Bx,0) < 0 (13)

where@ is the vector of the design variables with the medunevaf the random variabl¥,

min
0

C(0)s.t
C (@) is the cost or objective functiofy (8), ..., f,—1(0) is a vector ofg — 1) deterministic
constraints over the design variab@sf, (X, 0) is the reliability constraint enforcing the

respect of LSF and considering the uncertainty to which sdrtiee model paramete are

subjected tog, is the target safety index.
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In this research a kriging based metamodel has beeredtifizezach RBDO iteration. In other
words: instead of carrying out the RBDO process with theinalignulti-scale material
model, the approximation based RBDO is conducted with thamaetel. If the function
expressing the true nature of the computer analysis rissuk f(x), the metamodel of the
computer analysis isy = f(x), and hencey =§+¢, where £ is the error of the
approximation. So, the metamodel-based RBDO becomes:
£(6), ---:fq—1(9) <0

(X0 =8 - B(X,6) <0
Eqg. (14) has been solved by the open source software FERUMS5] and linked to our FE

min

0 C(@)s.t

(14)

code which evaluates the LSF numerically. The FERUM vddlbbx involves a nested,
double-loop solution procedure where the outer optimizatiop Includes inner loops oféh
reliability analysis. In each reliability analysis, thdiakility index approach is used as a
separate optimization procedure in the standard normed ¢pasearch for the most probable
point for each active probabilistic constraint. Fig. 10stifates the nested algorithm of the
RBDO procedure.
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Fig.10. Double loop RBDO flowchart
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6. Case studies

In our case studies, firstly the RBDO is employed to fiveloptimal content of CNT as well
as the optimal geometry of a nancomposite componadtsacondly, the sensitivity of the
structural failure probability with respect to uncertain des@mables is quantified. The two
subsequent examples will show how the uncertainties irdkighe optimization of the
structural performance and how the presented algorithmagaare the uncertainties effects.
Note that hereinafter CNT, equivalent fiber and reinforaggnt are used interchangeably
for sake of simplicity. Admittedly, readers should chgtiish the difference between them
during interpretation of the results. For example 7.3%érfequivalent volume fraction as an
output of the optimization algorithm, should be regarde®%sCNT volume fraction in

practice, subtracting the spatial volume of the CNTyper interphase region.

6.1 Three-point bending of a beam

The first example is a three point bending beam awsho Fig. 11 (a). The cross sectional
area of the beam is constant along its length. Fig. 1hldo) depicts the FE mesh while
Table-1 indicates all design parameters of the beare. ddsign constraint is the mid
deflection of the beam which should be smaller than amissible value as mentioned in

Table-1.

a) b)

Fig.11. Geometry (a) and FE mesh (b) of a three-point bending beam

Table-1. Problem definitions for the beam under static loading

Parameter L, L, E Vi P LSF B Obj. Func.
u=760 Max. Deflection
Value 5 1 10 0.3 3 CNT(volfrac)
o=10 2.5e73
Type D D D D N D D D

Length:m, E:GPa, P:Appliedload (KN), v:Poisson ratio, m:matrix ,volfrac: volume fraction

D:deterministic, N: normal distribution, u: mean value, ¢ : standard deviation B: Reliability Index

Fig. 12 (a) illustrates the reinforcing agent contentmsmzation objective function versus
iterations; while the history of the reliability indexasso presented. Fig. 12 (b) shows the

same graphs, where the iteration is started from areliffepoint. The, final results are
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independent on the iteration start point yielding on optmat 2.37% reinforcement. Results
are based on the assumption of random waviness of the ICWE iresin according to the

procedure discussed in Section 2.
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Fig.12. RBDO results of a three-point bending beam with initiadsguof reinforcement content 9%
(a) and 1% (b), optimum value is 2.37% for both (a) and (b)

Apart from finding the optimum content of the reinforeemagent, it is also important to
determine how the uncertainties in the design parametiiraffect the reliability of the
nanocomposite structures. For this purpose, the CNT wavinassthan agglomeration
(material design parameters), the applied load (strugtaraimeter) and the FE discretization
(modeling parameter), have been selected for more detdilelies. According to [4,5], the
waviness is one of the key parameters governing the naposim stiffness. The most
influential parameter, the CNT content, has been optithédready.

To analyze the sensitivity of the failure probability widspect to the CNT waviness, other
CNT parameters (i.e. length, dispersion, agglomerationcoaigshtation) are considered as
random parameters while the resin Young’s modulus and its Poisson’s ratio are considered as
deterministic values because their effects on theativeharacteristics of the composite are
negligible [4]. Five different levels of wawss have been defined as “waviness intensity” by

limiting the upper and lower bounds of longitudinal and trars stiffness of the RVE. In
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the first level (W-1:Very fine waviness), the effective Young’s modulus of the CNTRP is a
random number betweehe Young’s modulus of the RVEs with the longitudinal and 18
degree aligned CNTs (with respect to longitudinal dir@gti®Go, he effective Young’s
modulus for W-1 has a value between 80% to 100% of the stifioesise RVE with
longitudinally aligned CNTsSimilarly, this concept can be extended to have wavier CNTs
(i.e. W-2: fine waviness, W-3: moderate waviness, W-4: severenessviand W-5: very
severe waviness) by setting a limit on the CNT incline afigies W-2, W-3, W-4 imply that
the effective Yang’s modulus of CNTRP has a value between 60% to 100%, 40% to 100%
and 20% to 100% of the stiffness of the RVE with longitudindll'€, respectively. W-5 also
stands for the generic case which effective stiffnéshedonanocomposite can take a random
value between longitudinal and transverse stiffnesshef RVE. Fig. 13 schematically

demonstrates the definition of the so called “waviness intensity” concept.

< <

<

<
A,
@
(<)
=

A

<

<@

Fig.13. Definition of waviness intensity, a phenomenological concept
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Fig. 14 (a) depicts the Young’s modulus of the CNTRP versus the reinforcing contents for
different waviness intensities. Expectedly, an incréasentent of reinforcement or decrease
in the CNT waviness yields to higher composite Young’s modulus Fig. 14 (b) shows the
reliability index of the beam versus waviness intensity, ti@ optimum content of the
reinforcement (i.e. 2.37%) while other parameters do notriexpe any variation. Evidently,
when the waviness increases, the structural stiffness willease. Hence, the beam
deflection will increase and consequently the structurabiity will decrease. One should
note that for the case of fully wavy CNT (i.e. W-5), thteuctural reliability is half the
reliability of a very fine wavy CNT (i.e. W-1).
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Fig.14. Stiffness of CNTRP versus reinforcement content for wdiffe waviness intensities (a)
Reliability index of the beam versus waviness (b)

Fig. 15 illustrates the effect of the CNT agglomeration the reliability of the
nanocompositecomponent. The Young’s modulus of CNTRP versus the reinforcement
contents for both aggregated and non-aggregated CNTSs tedplatFig. 15 (a). The CNT
agglomeration, reduces the CNTRP stiffness. This reductiomore pronounced for higher
values of CNT contents; for CNT contents around 2% arg] fbe agglomeration role can be
neglected. Fig. 15 (b) shows both the failure probabilitythed-eliability index of the beam
versus the reinforcement content with and without the @iydlomeration. Agglomeration
also reduces the structural reliability index and increabkesfailure probability of the
structure but as it can be seen from Fig.its5effect can be neglected (maximum difference
in failure probability considering and disregarding CNT agglotimras 0.144) without any
structural safety concern.

il —+—F.P. (without agglomeration) 20.0

-=--F.P. (with agglomeration)

R.l. (with agglomeration)
145 | --m-without agglomeration 0.9 —e—R.L (without agglomeration)

—=—withagglomeration 0.8 -

Failure Prob.
Reliability Index

Young's Mod. (GPa.)

(o] 0.02 0.04 0.06 0.08 0.1 0.12 0

Reinforcement%

a) b)

Fig.15. Stiffness of CNTRP versus reinforcement contents withwithout CNT agglomeration (a)
Reliability index and failure probability of the beam versusfoegement contents with and without

CNT agglomeration (b)
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The second category of uncertainties (structural urioggs) is consideredh next step
assuming a fully wavy CNT (i.e. W5). Fig. 16 shows the religbiidex and the failure
probability of the beam in dependence on the standard dewviatithe loading distribution.
When the standard deviation increases, the failure prdiyaddsio increases angl decreases.
The rate of the reliability index changes rapidly for krs@ndard deviations and gradually
approaches zero (i.e. the system response is notigersitymore). An increase in the
standard deviation of the loading leads to a more unnesyatem that is more susceptible for

failure.
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Fig.16. Reliability index and failure probability of the beam versusdsach deviation of load

Finally the influence of the discretization on theustural reliability is observed. Fig. 17
depicts the failure probability versus the mesh size paenigtwhich has been defined as
the ratio between the beam height and the number of elsrrethe vertical direction. It
could be observed that coarse meshes considerably umtatesthe structural failure

probability while next tdr = 0.05, the failure probability reaches a constant value.
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—m 06
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0.4
L 03

0.2
0.1

Failure Prob.

0.0

035 0.3 0.25 0.2 0.15 01 0.05 0

h parameter

Fig.17. Rdiability index versus FE meshh, parameter which is defined as the ratio between the

beam height and the number of elements in the verticaltidinec
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6.2 Thick cylinder under radial line load

The second example is a thick cylinder under radial dig&dloading. Due to geometrical
symmetry, only half of the ring is discretized. Fig. 1§, (@), (c) and (d) depicts the
geometry, loading / boundary conditions, FE discretizadod deformed configuration,
respectively. Table-2 lists all design parameters. In thesngle not only the material but
also the geometry is simultaneously optimized. At the $isp, the minimization of the CNT
content and the cylinder thickness as optimization obgdiinction, 1% < volfrac% <
10% and 0.1 < t. < 0.4 as deterministic design constraints and the maximumvieses
deflection with a specified target reliability index (accogdito Table-2) as stochastic

constraint have been taken into account.

Table-2. Problem definitions for thick cylinder under line load

Parameter R, L, E, Vin P LSF B Obj. Func.
Max. trans.
u=1000
Value 1 15 10 0.3 deflect. 3 % CNT +t,
o =200
7e3
Type D D D D N D D D

Length: m, E:GPa, P:Applied load (KN/m), v:Poisson ratio, m: matrix, c: cylinder

D:deterministic, N:normal distribution, u: mean value, ¢ : standard deviation [: Reliability Index

Max. Deflection
Deformed
i 1, I; Undeformed

\ \ \ Height=L

a) b) ) d)

Fig.18. Geometry (a) loading / boundary conditions (b) FE mesh (c) afiodnaed configuration (d)

of a thick cylinder under radial line load

The RBDO results are illustrated in Fig. 19 (a). The ogitithickness and reinforcement
content are 0.278 and 1%, respectively. In order to cheatotinectness of our approach the

ring thickness is restricted to an optimum 0.278 in the siextilation. This new constraint is
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imposed by changing the deterministic constraintd%< volfrac% < 15% and 0.1 <

t. < 0.26. To obtain the same reliability index, the effect af thickness reduction should
be compensated by another design variable, i.e. the CNiergo Fig. 19 (b) shows the
results under the new constraints. The optimal thicknesg is 0.259 (quite close to

constraint’s upper limit) while the optimum reinforcement content is increased up to 9.35%.
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Fig.19. RBDO results of a thick cylinder under radial line load fl@sign constraints at% <
volfrac% < 10% & 0.1 < t. < 0.4 (a)1% < volfrac% < 15% & 0.1 < t. < 0.26 (b) for both cases

t. andvolfrac stand for ring thickness and reinforcement content ecsely

Subsequently, the minimization of both CNT content antindgr volume have been

followed with consideration of the deterministic designsiraintsl% < volfrac% < 10%,

01<t. <03, 1.2<L.<17, 09<R.<1.1 and the stochastic design constraint
according to Table-2. As Fig. 20 shows|frac = 9.34%, R, = 0.9333, L. = 1.333 and

t. = 0.2032 are optimal values of the design parameters.
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Fig.20. RBDO results of a thick cylinder to find minimum reinforaamh content and minimum
volume of cylinder including deterministic design constrairgsl® < volfrac% < 10% & 0.1 <

t; <03 & 1.2<L. <17 & 09< R, < 1.1 and stochastic constraint as maximum transverse
displacement equal to 0.007 wjth= 3

7. Conclusions

Deterministic approaches for nanocomposite modeling and optiorizmight be unrealistic
for certain applications and may yield to either cabgdtic failure or unnecessary
conservatism. Although probabilistic approaches can coverrtaimt@es effects, their
implementations do not necessarily yield reliable nangosite designs. Detailed
investigations on uncertainties and their propagation shaaildebformed for realistic and
reliable PNC structures. Uncertainty propagation over diffelength scales and through
various sources have been addressed for nanocomposite emgpdPotential uncertainties
have been categorized in material, structural and moddérgls. To fully address
uncertainties in material level, a stochastic multilscmaterial model (which includes all
important aspects of the CNTRP including CNT length, oaigon, dispersion,
agglomeration and waviness, at different length scales fiano- up to macro-scale) has

been utilized. To improve the computational efficiency,dtaluation of material properties
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has been surrogated by a metamoddéie results for two selected examples show that the
failure probability of a polymeric nanocomposite structwteongly depends on the CNT
parameters, especially the CNT volume fraction and theness. The influence of the CNT
agglomeration is nearly negligible. It was observed tiegflecting the CNT agglomeration
can simplify the model and decrease the computationa wwithout remarkable loss in
model accuracy. Furthermore, the loading condition asatetization affect the reliability of

the system. Coarse meshes underestimate the failipalplity of a beam while fine meshes
admittedly increase computational cost. Thus suffityergfined discretization should be
investigated in order to have realistic assessment ofefiebitity of PNC structures. An

increase in the standard deviation of the applied load, wplyysically means more

uncertainties in the system, resulted in the structutte avsmaller reliability index. Finding

the optimal content of CNT was also presented to opgichithe material instead of the
geometry. As a further step forward, concurrent optinopabf material parameters and
geometrical parameters (hybrid optimization) was conductegrésent a comprehensive

solution for current demands in fully optimized designs obroamposite components.
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