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SUMMARY

A numerical technique for non-planar three-dimensional linear elastic crack growth simulations is

proposed. This technique couples the extended finite element method and the fast marching method.

In crack modeling using the extended finite element method, the framework of partition of unity is

used to enrich the standard finite element approximation by a discontinuous function and the two-

dimensional asymptotic crack-tip displacement fields. The initial crack geometry is represented by two

level set functions, and subsequently signed distance functions are used to maintain the location of

the crack and to compute the enrichment functions that appear in the displacement approximation.

Crack modeling is performed without the need to mesh the crack, and crack propagation is simulated

∗Correspondence to: N. Sukumar, Department of Civil and Environmental Engineering, University of California,

One Shields Avenue, Davis, CA 95616, USA. E-mail: nsukumar@ucdavis.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: OISE-0233373

Copyright c© 2007 John Wiley & Sons, Ltd.



2 N. SUKUMAR ET AL.

without remeshing. Crack growth is conducted using the fast marching method; unlike a level set

formulation for interface capturing, no iterations nor any time step restrictions are imposed in the

fast marching method. Planar and non-planar quasi-static crack growth simulations are presented to

demonstrate the robustness and versatility of the proposed technique. Copyright c© 2007 John Wiley

& Sons, Ltd.

key words: partition of unity, enrichment function, level sets, signed distance function, fast

marching method, stress intensity factor, crack propagation

1. INTRODUCTION

In linear elastic fracture mechanics, the accurate modeling of cracks and crack growth in three

dimensions remains a challenging problem. This difficulty is especially pronounced for non-

planar crack configurations with the finite element method due to a few factors: (1) accurate

solution of the elastostatic boundary-value problem is required in the vicinity of the crack

front, and hence mesh refinement around the crack front becomes a necessity; (2) the crack

needs to conform to the mesh and with crack advance, remeshing algorithms are needed; and

(3) a widely accepted crack growth law in three dimensions is still elusive.

In this paper, we propose a new non-planar crack growth model by coupling the fast

marching method (FMM) [1, 2] to a three-dimensional implementation of the extended finite

element method (X-FEM) [3]. The two methods form a natural partnership for capturing a

monotonically advancing front whose front velocity is obtained via the solution of a system

of coupled elliptic equations. In the coupled method, the fast marching method maintains

the location and motion of the crack front via signed distance functions, whereas the X-FEM

is used to compute the local front velocity. The use of signed distance functions for crack
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 3

growth modeling was introduced in Sukumar et al. [4, 5] for planar three-dimensional cracks,

and subsequently level set algorithms for crack propagation in two dimensions [6] and for

arbitrary three-dimensional non-planar cracks [7, 8] were proposed. Propagation of multiple

planar cracks using the fast marching method is treated in Reference [9]. In this paper, we

combine the implementation for non-planar cracks presented in Moës et al. [7] with a fast

marching algorithm for crack advance.

In the proposed approach, a fixed Eulerian mesh is used, and no remeshing is required in

crack propagation simulations, which are the principal points of departure when compared to

existing finite element approaches for crack growth modeling. Furthermore, the meshes used

for the mechanical model (extended finite element analysis) and the fast marching method are

distinct, which was also the case in the implementation for three-dimensional planar cracks [5].

In References [7,8], the same unstructured tetrahedral mesh is used for the mechanical analysis

and for the level set update, and recently, Prabel et al. [10] have implemented the level set

update algorithm of Gravouil et al. [8] on a structured mesh. The use of a structured mesh

eases the level set implementation and also facilitates faster convergence [10]. Duflot [11] has

presented an overview of techniques used to represent and update level sets for two- and

three-dimensional crack propagation.

Some of the prominent numerical methods used for planar and non-planar crack growth

in three dimensions are: finite element methods [12, 13], boundary element-based techniques

[14–19], and boundary integral equations [20, 21]. Gao and Rice [22] and Lai et al. [23]

used perturbation analysis to study planar and non-planar cracks, whereas Lazarus and co-

workers [24–26] conducted planar crack growth simulations. Apart from the earlier cited works,

many recent investigators have also adopted the partition of unity framework for crack growth
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4 N. SUKUMAR ET AL.

simulations in three dimensions [27–31].

The remainder of this paper is organized as follows. In the next section, we provide a self-

contained description of the FMM and the X-FEM. In Section 3, details on the non-planar

crack growth algorithm using the fast marching method and its coupling to the X-FEM are

presented. Numerical simulations for planar and non-planar crack problems appear in Section 4,

and we close with some final remarks in Section 5.

2. NUMERICAL TECHNIQUES

We first present an overview of the two underlying numerical methods that are used in this

study. The theoretical basis of the methods and a description of the numerical algorithms are

outlined.

2.1. Fast Marching Method

The fast marching method [1, 2] represents an evolving interface as a level surface of a higher

dimensional function φ, where the location of the interface at time T is given by the level set

{x : φ(x) = T}. It is said that φ is the time of crossing map for the motion of the interface. For

this method, let the initial interface be given by the level set {x : φ(x) = 0}. The construction

of the time-independent function φ(x) is accomplished by computing the values of φ(x) on

the mesh in an ordered fashion starting from the initial surface and then moving outwards by

solving

G‖∇φ‖ = 1, (1)

where G is the local normal velocity of the interface. Thus, the evolution of the interface is

computed in one pass through the mesh in contrast to iterative type methods (e.g., level set
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 5

method) previously employed. This gives the fast marching method the advantage of significant

speed.

The primary restriction to the fast marching method is that it is only applicable when the

speed function is monotonic (G has the same sign everywhere), though efforts to extend this

have been proposed in Reference [32]. Even though this is a significant restriction, there are

still many applications (e.g., crack propagation as is the case in this investigation) where this

method is useful.

The solution of Eq. (1) is constructed by using upwind finite differences to approximate

∇φ. We solve for the values of φ in a monotonically increasing fashion so that the upwind

differences are always valid and all the mesh points are eventually computed. This sequential

procession through the mesh points is maintained by a heap sort which controls the order in

which the mesh points are computed.

To begin, the mesh points are separated into three disjoint sets, the set of accepted points A,

the set of tentative points T , and the set of distant points D. The mesh points in the set A are

considered computed and are always closer to the initial interface than any of the remaining

mesh points. The mesh points in T are all potential candidates to be the next mesh point to

be added to the set A. The mesh points in T are always kept sorted in a heap sort so that the

best candidate is always easily found. The mesh points in D are considered too far from the

initial interface to be possible candidates for inclusion in A. Thus, if x ∈ A, y ∈ T , and z ∈ D,

then φ(x) < φ(y) < φ(z). Figure 1 shows the relationship between the different sets of mesh

points.

One of the key components in the fast marching method is the computation of the estimate

of φ for points in T . Suppose, for example, mesh points xi−1,j,k, xi,j+1,k, xi,j,k−1 ∈ A, and
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Figure 1. Illustration of the sets A, T , and D.

xi,j,k ∈ T . Given the values of φi−1,j,k, φi,j+1,k and φi,j,k−1, we must estimate the value of

φi,j,k. This is accomplished by looking at the discretization of Eq. (1) given by

(
φi,j,k − φi−1,j,k

∆x

)2

+

(
φi,j+1,k − φi,j,k

∆y

)2

+

(
φi,j,k − φi,j,k−1

∆z

)2

=
1

G2i,j,k
. (2)

Eq. (2) reduces to a quadratic equation in the unknown value φi,j,k. The new estimate for

φi,j,k is given by the largest of the two roots of Eq. (2). The remaining configurations and the

resulting quadratic equations can be derived in a similar fashion and results in the following

formulation:

max

(
φi,j,k − φi−1,j,k

∆x
,−φi+1,j,k − φi,j,k

∆x
, 0

)2

+max

(
φi,j,k − φi,j−1,k

∆y
,−φi,j+1,k − φi,j,k

∆y
, 0

)2

+max

(
φi,j,k − φi,j,k−1

∆z
,−φi,j,k+1 − φi,j,k

∆z
, 0

)2

=
1

G2i,j,k
. (3)

Now the fast marching method can be assembled as an algorithm:

1. Initialize all the points adjacent to the initial interface with an initial value, put those
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 7

points in A. A discussion about initialization follows at the end of this section. All

points xi,j,k /∈ A, but are adjacent to a point in A are given initial estimates for φi,j,k

by solving Eq. (3) for the given configuration of neighboring points in A. These points

are tentative points and put in the set T . All remaining points are placed in D and

given initial value of φi,j,k = +∞.

2. Choose the point xi,j,k ∈ T that has the smallest value of φi,j,k and move it into A.

Any point that is adjacent to xi,j,k (i.e. the points xi−1,j,k, xi,j−1,k, xi+1,j,k, xi,j+1,k,

xi,j,k−1, xi,j,k+1) that is in T has its value of φ recalculated using Eq. (3). Any point

adjacent to xi,j,k and in D has its value of φ computed using Eq. (3) and is moved into

the set T .

3. If T 6= ∅, go to step 2.

For N nodes, the method has a total operation count of O(N logN). If G ≡ 1, then Eq. (1)

becomes the Eikonal equation and the solution φ gives the distance from x to the zero contour

φ−1(0). Where Eq. (1) is used in the algorithm presented in this paper, we exclusively use

G ≡ 1.

The fast marching method is often used in conjunction with the level set method [33]. In

the level set method, the interface speed function must be defined at least in a neighborhood

of the interface, not just on the interface itself. Therefore, the speed function F defined on the

interface φ = 0 must be extended to a function Fext defined on the entire domain in such a way

that Fext is constant in the direction normal to the interface [34]. This leads to the equation:

∇Fext · ∇φ = 0, (4)

F (x) = Fext(x)
∣
∣
φ(x)=0

.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–39

Prepared using nmeauth.cls
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Equation (4) is designed so that ‖∇φ‖ = 1 is maintained in the level set method wherever φ

is smooth. Eq. (4) is also an evolution equation for Fext with its initial data located on the set

φ = 0, and can be discretized using upwind finite differences to get

{
Fi,j,k − Fi−1,j,k

∆x

∣
∣
∣
∣
−Fi+1,j,k − Fi,j,k

∆x

}

max

(
φi,j,k − φi−1,j,k

∆x
,−φi+1,j,k − φi,j,k

∆x
, 0

)

+

{
Fi,j,k − Fi,j−1,k

∆y

∣
∣
∣
∣
−Fi,j+1,k − Fi,j,k

∆y

}

max

(
φi,j,k − φi,j−1,k

∆y
,−φi,j+1,k − φi,j,k

∆y
, 0

)

+

{
Fi,j,k − Fi,j,k−1

∆z

∣
∣
∣
∣
−Fi,j,k+1 − Fi,j,k

∆z

}

max

(
φi,j,k − φi,j,k−1

∆z
,−φi,j,k+1 − φi,j,k

∆z
, 0

)

= 0,

(5)

where only one of the finite differences of F is chosen to be in the same upwind direction as

the corresponding upwind direction for φ.

By selecting nodes in the mesh in the same order as for a fast marching method, and using

the same upwind finite difference discretization as used in Eq. (3) to discretize Eq. (4), the

function Fext can also be computed in a single pass over the mesh.

Finally, one very important, yet often overlooked part of the fast marching method and also

its application to velocity extension is how it is initialized. Typically, the interface is given as

a level surface, and the initial data is provided on that surface. However, the fast marching

method requires initial data to be located on nodes of the mesh that are adjacent to the

interface, but not necessarily on the interface. It was shown in Reference [2] that the accuracy

of the fast marching method is significantly impacted by the accuracy of initializing the values

on the nodes from the data given on the interface. It was also shown in Reference [2] how to

improve the initialization process to obtain higher order accuracy for the overall computation

using local tricubic interpolants.

Let Vijk = {xi,j,k,xi+1,j,k,xi,j+1,k,xi+1,j+1,k,xi,j,k+1,xi+1,j,k+1,xi,j+1,k+1,xi+1,j+1,k+1}
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 9

xijk xi,j,k xi+1,j,k

xi,j+1,k xi+1,j+1,k

xi,j,k+1

xi+1,j,k+1

xi,j+1,k+1 xi+1,j+1,k+1

Figure 2. Illustration of a voxel (right) and the surrounding nodes required for generating a tricubic

interpolant (left).

be the voxel illustrated in Fig. 2. A voxel contains a given surface φ(x) = 0 if the set of

nodes in the voxel are not all of the same sign. To initialize the FMM, tricubic interpolants are

constructed for each voxel that contains the initial surface using the nodes of the voxel and

the surrounding nodes as shown in Fig. 2. Let p(x) be the tricubic interpolant for the voxel

Vijk. Using this interpolant, the point on the initial surface p(x) = 0, nearest to a given point

x̄ is found by solving the pair of equations

p(x) = 0 (6)

∇p(x)× (x̄− x) = 0.

These equations are solved using a modified Newton’s method. Once the nearest point x is

found, properties on the initial surface can be mapped from x to x̄ including the distance to

the surface, ‖x − x̄‖, or the interface velocity. This method will be used in a few different

places in the final algorithm.
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2.2. Extended Finite Element Method

The partition of unity finite element method [35,36] is a generalization of the standard Galerkin

finite element method. In the literature, numerical techniques such as the extended finite

element method (X-FEM) [3,37] and the generalized finite element method [38] are particular

instances of the partition of unity method. The promise of the X-FEM has been in the area

of fracture mechanics, with emphasis on the modeling of crack (strong) discontinuities using

minimal enrichment. Furthermore, on coupling to level set and fast marching methods, the

need for remeshing in crack growth simulations has been alleviated.

Consider a body Ω ⊂ � 3, with boundary Γ. The boundary Γ consists of the sets Γu, Γt,

and Γic, such that Γ = Γu ∪ Γt ∪mi=1 Γic. All the internal crack surfaces Γic are assumed to be

traction-free. The field equations for small displacement elastostatics (zero body forces) are:

∇ · σ = 0 in Ω, (7a)

σ = C : ε, (7b)

ε = ∇su, (7c)

where σ is the Cauchy stress tensor, ε is the small strain tensor, ∇s is the symmetric gradient

operator, and C is the elastic moduli tensor for a homogeneous isotropic material. The essential

and natural boundary conditions are:

u = ū on Γu, (8a)

σ · n = t̄ on Γt, (8b)

σ · n = 0 on Γic, (i = 1, 2, . . . , m), (8c)

where n is the unit outward normal to Ω, ū and t̄ are prescribed displacements and tractions,

respectively, and m is the number of cracks.
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 11

The weak form of the elastostatic boundary-value problem given in Eqs. (7) and (8) is: find

u ∈ V such that
∫

Ω

σ : δε dΩ =

∫

Γt

t̄ · δu dΓ ∀δu ∈ V0. (9)

In the X-FEM, trial functions uh(x) ∈ Vh ⊂ V and test functions δuh(x) ∈ Vh
0 ⊂ V0 of the

form given in Eq. (10) are used in the weak form. A standard Galerkin procedure is then used

to obtain the discrete equations [3, 37].

For three-dimensional crack modeling in the X-FEM [3], the framework of partition of

unity [35] is used to introduce a discontinuous function (Heaviside) that has a jump across

the crack within the standard displacement-based approximation. Furthermore, for improved

accuracy and to model crack fronts that terminate within the interior of a finite element,

the plane strain asymptotic crack fields are also used as enrichment functions. The enriched

displacement approximation for three-dimensional crack modeling is [3]:

uh(x) =
∑

i∈I

Ni(x)ui

︸ ︷︷ ︸

standard FE

+
∑

j∈J

Nj(x)H(x)aj

︸ ︷︷ ︸

Heaviside enrichment

+
∑

k∈K

Nk(x)
4∑

α=1

ψα(x)bkα

︸ ︷︷ ︸

crack front enrichment

, (10)

where Ni(x) is the finite element shape function of node i, ui are the classical degrees of

freedom associated with node i, aj are the enriched degrees of freedom associated with node

j and the Heaviside function H(x) (discontinuous across the crack interior), and bkα are the

enriched degrees of freedom associated with node k and the crack front enrichment functions

ψα(x), which are defined as [39]

{ψα(x), α = 1–4} =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}

, (11)

where r and θ are local crack front polar coordinates of point x (Fig. 3a). Furthermore, in

Eq. (10), I is the set of all nodes in the mesh, the set K consists of nodes that contain the
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12 N. SUKUMAR ET AL.

crack front within their shape function support closure, and J is the set of nodes whose shape

functions supports are cut by the crack interior and do not belong to set K:

K = {k : k ∈ I : ω̄k ∩ Λc 6= ∅} (12a)

J = {j : j ∈ I : ωj ∩ Γc 6= ∅, j /∈ K} , (12b)

ωi = {x : Ni(x) > 0} , (12c)

where ωi is the support (open set) of Ni(x), Γc denotes the crack surface and Λc is the crack

front. Apart from the selection of nodes for enrichment, partitioning algorithms are used to

perform numerical integration of the weak form integrals on either side of the crack interior [3].

3. THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH MODEL

3.1. Level Set Description of Non-Planar Three-Dimensional Cracks

The surface and front of a three-dimensional crack are represented by a pair of functions φ1, φ2

(Fig. 3b). The crack surface will be represented by the zero level set of φ1, while the location

of the crack front is captured by a second level set function φ2. Combining the two, the crack

discontinuity (open set) and the crack front of the discontinuity are represented by the sets

Γc = {x : φ1(x) = 0 and φ2(x) ≤ 0}, (13)

Λc = {x : φ1(x) = 0 and φ2(x) = 0}.

Near the crack, φ1, φ2 provide the local coordinate information necessary for evaluating the

enrichment functions used in the X-FEM.

The sign of φ1 provides the value of H(x). The function φ1 will be maintained parallel to

the crack surface so that xs1 is tangent to φ
−1
1 (0) at all points on the crack front. Similarly, φ2

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–39
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θ x

Λc

x
r

n

x2

3x

1
s

s

s

s

Crack front

(a)

φ1 = 0

φ2 = 0

crack discontinuity

(b)

Figure 3. Enrichment and level-set representation of crack. (a) Coordinate configuration for crack

front enrichment; and (b) Level set functions φ1 and φ2 to represent the crack surface and front,

respectively.

will be maintained orthogonal to the crack plane so that xs2 is tangent to φ−12 (0). For planar

cracks, the signed distance functions are simplified: φ1(x) is independent of t, and only φ2(x)

needs to be updated after every time step [4, 5].

The advantage of this approach for capturing the crack surface is that important coordinate

information necessary for evaluating the enrichment functions can be provided quickly and

easily. For instance, the xs1 coordinate at a point x is given by φ2(x) and the xs2 coordinate

is given by φ1(x) [4, 5, 7]. From this coordinate information, it is then trivial to compute the

values of r and θ used in the enrichment functions (see Fig. 3a):

r =
√

φ21 + φ22, θ = tan−1(φ1/φ2). (14)

The FMM is used in a number of different ways in order to update φ1, φ2, and hence advance

the crack front. Before discussing the details, we present a basic overview of the algorithm,
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14 N. SUKUMAR ET AL.

which assumes that we are given φn1 , φ
n
2 for the time tn, and a crack front velocity vector

F = Fkek (Einstein summation convention) has been computed from the X-FEM.

1. The distance function to the crack front, ρ, is computed.

2. The velocity F is mapped onto grid points near the crack front, and then extended into

the rest of the domain by solving

∇F · ∇ρ = 0. (15)

3. New functions φn+11 , φ̃2
n
are constructed using F and ρ so that Γc is left unchanged,

but φn+11 = 0 is aligned with F, and φ̃2
n
is normal to φn+11 .

4. φ̃2
n+1

is the result of advancing in time by ∆t:

φ̃2
n+1

= φ̃2
n − ‖F‖∆t. (16)

5. The final φn+12 is constructed by reinitializing φ̃n+12 , i.e., recomputing the signed distance

to the set φ̃n+12 = 0.

These steps are illustrated in Fig. 4, and in Fig. 5, the distance functions ρ, φ1 and φ2 are

illustrated for a penny crack.

In the following subsections we provide more detail for each of the steps. With the objective

of making the description self-contained, where necessary, we have reproduced parts of the

algorithms presented in Reference [2].

3.1.1. Computing the distance to the crack front The distance function to the crack front is a

critical step in the algorithm for updating the crack front. While Eq. (14) is a reasonable

approximation for the purpose of determining enrichment functions, we found that this

approximation was not quite accurate enough for a critical step in the advancement of the crack
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φ
1

n+1
 = 0

φ
2

n+1
 = 0

φ
2

n+1
 = 0

φ
1

n+1
 = 0

φ
1

n

 = 0

φ
2

n

 = 0

φ
2

n

 = 0

φ
1

n

 = 0

φ
∼

2

n

 = 0

φ
∼

2

n

 = 0

F

crack discontinuity

crack tip at t
n

crack tip at t
n+1

Figure 4. Illustration of the steps required to advance the crack front shown viewed on edge: (1) the

initial crack discontinuity is given by φn

1 = 0 with the crack front at the intersection with φn

2 = 0, (2)

φn+1
1 and φ̃2

n

are computed so that they are in line with the front velocity vector F, (3) the front is

advanced by shifting φ̃2

n+1
= φ̃2

n

− ‖F‖∆t.

front. So instead, we compute the distance to the crack front using a combination of a local

tricubic approximation, coupled with the FMM. The local tricubic approximation provides

the initial conditions on grid points near the crack front, and the FMM then computes an

approximation of ρ everywhere else.

The tricubic approximation is based on the work in Reference [2], and provides a smooth

interpolant between grid point values of a function. The interpolants are computed using local

data, but by construction form a globally C1 function. The interpolant is only valid within

each rectangular region bounded by grid points, as illustrated in Fig. 2.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–39

Prepared using nmeauth.cls



16 N. SUKUMAR ET AL.

2.0
1.5
1.0
0.5
−2

2.01.50.0 1.0

−1

0.50.0

0

1

2

φ2 = 0

φ1 = 0

ρ = 0.5

Figure 5. Distance functions in the FMM for a penny crack of unit radius located on x3 = 0.

Let Vijk be a voxel that contains both surfaces φ1 = 0 and φ2 = 0, and let pφ1
, pφ2

be the

tricubic interpolants of φ1, φ2 respectively. To find the distance to the crack front from a given

point x̄ we must find the point x that solves the following three equations:

pφ1
(x) = 0, (17)

pφ2
(x) = 0, (18)

(x− x̄) · (∇pφ1
×∇pφ2

) = 0. (19)

The solution is computed using a modified Newton iteration similar to that used in

Reference [2]. Once x is found, the distance from the point x̄ to the crack front is then
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THREE-DIMENSIONAL NON-PLANAR CRACK GROWTH 17

ρ(x̄) = ‖x̄− x‖. Note that the nearest point to the crack front from a given point x̄ may not

be within the given voxel, but because the construction of the tricubic polynomials is globally

C1, the algorithm is able to find at least one point within the crack front that will be closest

to x̄, and that point will be contained in one of the voxels.

Let X(x̄, Vijk) be the point such that

pφ1
(X(x̄, Vijk)) = 0, (20)

pφ2
(X(x̄, Vijk)) = 0,

‖x̄−X(x̄, Vijk)‖ = min
x∈Vijk
pφ1

(x)=0

pφ2
(x)=0

‖x̄− x‖.

The value of X(x̄, Vijk) is computed using the tricubic interpolant described above. The initial

distance to the crack front is then computed on each grid point near the crack front. A point

is near the crack front if it is in the neighborhood of a voxel that contains the crack front as

illustrated in the left panel of Fig. 2. At that point, the distance function is given by

ρ(x̄) = min
i,j,k
‖x̄−X(x̄, Vijk)‖. (21)

Once the distance has been computed on each of the grid points surrounding the crack

front, these points are used as initial data for the FMM. In this case, because we want the

distance function, the FMM is used to solve the Eikonal equation:

‖∇ρ‖ = 1. (22)

This results in computing the distance function from the crack front on all the grid points in

a single pass through the grid.

3.1.2. Extending the tip velocity The extension of the crack front velocity on the grid is also

accomplished using the FMM. As for the distance, the velocity data must first be mapped onto
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18 N. SUKUMAR ET AL.

the grid points surrounding the crack front. For simplicity, we use the same points initialized

by the tricubic interpolant when computing the distance function.

Note that since the X-FEM and the FMM are not using the same meshes, the velocity data

is not given at grid points and therefore must be interpolated onto the grid points. Suppose

the velocity vector is to be computed at grid point xijk, and suppose the front velocity data is

provided as a list of sample coordinates, x`, and the corresponding front velocity vector, F`. We

search for the two sample coordinates closest to xijk, say x`1 , x`2 . Let x̄ = (1− α)x`1 + αx`2 ,

0 ≤ α ≤ 1, be the point on the segment with ends x`1 , x`2 nearest to xijk. We then interpolate

the value of the velocity vector at the same point, hence

Fijk = (1− α)F`1 + αF`2 . (23)

Once the velocity data is mapped onto the grid points near the crack front, the velocity

is extended to the rest of the domain using the fast marching method as described in

Reference [34]. In this case, since the distance to the crack front is already computed, the

velocity extension is computed in the same order as ρ and using the upwind approximation

from Eq. (5) for the equation

∇Fk · ∇ρ = 0, (k = 1, 2, 3). (24)

3.1.3. Computing φn+11 and φ̃2
n

Now that both the distance to the crack front and the crack

front velocity have been extended to the entire domain, the calculation of the new surface and

orthogonal front functions are exercises in geometry. Points that are near the crack surface

and behind the crack front are left alone, but points that are ahead of the crack front need to

be recomputed. This leads to a set of different regions where the new surface and front values

are to be computed. These regions are illustrated in Fig. 6.
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Figure 6. The domain is broken into four regions. A point x is in region: (B) if φn

2 (x) ≤ 0 and

φ̃2

n

(x) ≤ 0; (A) if φn

2 (x) > 0 and φ̃2

n

(x) > 0; (I) if φn

2 (x) ≤ 0 and φ̃2

n

(x) > 0; (O) if φn

2 (x) > 0 and

φ̃2

n

(x) ≤ 0.

Clearly, the determination of which region x belongs relies on the value of φ̃2
n
(x). The value

of φ̃2
n
(x) can be computed by using the gradient of the distance function coupled with the

extended velocity F(x):

φ̃2
n
(x) = ρ(x)

∇ρ(x) · F(x)

‖∇ρ(x)‖‖F(x)‖ , (25)

which is geometrically depicted in Fig. 7b. If ‖F(x)‖ < ε for some small threshold ε, then for

stability we take φ̃2
n
(x) = φn2 (x). In our code, we used ε = 10−7.

We can now identify to which region x belongs, and then compute the value of φn+11 (x).

The goal is to get an extrapolation of the crack surface in the direction of the front velocity
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20 N. SUKUMAR ET AL.

F. The regions are:

B: If φn2 (x) ≤ 0 and φ̃2
n
(x) ≤ 0, then x is behind the crack front before and after the

crack front direction has changed. The values of φ1 and φ2 will remain unchanged in

this region to preserve the location of the crack surface. Therefore,

φn+11 (x) = φn1 (x). (26)

A: If φn2 (x) > 0 and φ̃2
n
(x) > 0, then x is ahead of the crack both before and after the

current update. In this case, φ1 will be determined by the orthogonal distance to a linear

extrapolation of the crack front in the direction of the crack velocity F. This leads to

the formula

φn+11 (x) = ρ(x)
∇ρ(x)
‖∇ρ(x)‖ ·

(
F(x)×∇φn1 (x)

)
× F(x)

‖
(
F(x)×∇φn1 (x)

)
× F(x)‖ , (27)

which is shown in Fig. 7a.

I: If φn2 (x) ≤ 0 and φ̃2
n
(x) > 0, then x is in the inside part of the turn. In this case, the

proper distance to the crack surface will be the minimum of the distance to the crack

surface behind the crack front and the extrapolated crack front in the direction of the

crack velocity F. Thus,

φn+11 (x) = minmod

{

φn1 (x), ρ(x)
∇ρ(x)
‖∇ρ(x)‖ ·

(
F(x)×∇φn1 (x)

)
× F(x)

‖
(
F(x)×∇φn1 (x)

)
× F(x)‖

}

, (28a)
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Figure 7. Update formulas for signed distance functions. (a) φ1; and (b) φ2.

where

minmod(a, b) =







a |a| ≤ |b|

b |b| < |a|
. (28b)

O: If φn2 (x) > 0 and φ̃2
n
(x) ≤ 0, then x is on the outside of the turn. In this case, the

proper distance is simply the distance to the current crack front, which is given by

φn+11 (x) = sign(φn1 (x))ρ(x). (29)

3.1.4. Advancing the front Finally, the front has been properly rotated to be normal to the

extended crack surface, i.e. ∇φ̃2
n · ∇φn+11 = 0, in the region beyond the crack front. The final
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22 N. SUKUMAR ET AL.

step to advance the crack front is to move it according to the magnitude of the velocity for

time step ∆t, therefore we have

φ̃2
n+1

(x) = φ̃2
n
(x)− ‖F(x)‖∆t. (30)

Note, however, that the resulting φ̃2
n+1

is not a signed distance function. If this is not true,

then this will cause problems when φ1, φ2 are used as enrichment functions in the X-FEM.

Therefore, we must reconstruct the distance function to the crack front by using reinitialization.

Reinitialization is a technique often employed in level set methods, and was first introduced by

Chopp [40]. However, the reinitialization method we will use is that detailed in Reference [2],

which is shown to be much faster and more accurate. In this case, we are computing the distance

to the surface φ̃2
n+1

= 0, and we use tricubic interpolants and the fast marching method in a

manner similar to that detailed earlier, and as described in Reference [2]. Reinitializaton gives

us the final φn+12 (x). For good measure, we also reinitialize the function φn+11 (x) even though

it should already be a signed distance function by construction.

3.2. Computation of Fracture Parameters

The stress fields at the front of a crack in a homogeneous, isotropic elastic solid have the form:

σij =
KI√
2πr

σIij(θ) + +
KII√
2πr

σIIij (θ) + +
KIII√
2πr

σIIIij (θ), (31)

where δij is the Kronecker delta, KI , KII , KIII are the stress intensity factors, and the θ-

variations are given in many textbooks, for e.g., see Lawn [41]. Fracture parameters such as

the stress intensity factors or the energy release rate are measures of the intensity of the crack

front fields. The general crack-tip contour integral at point s along a three-dimensional crack
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front is [42]:

I(s) = lim
Γ→0

ξl(s)

∫

Γ(s)

Pljnj dΓ, (32)

where Γ(s) is a contour that lies in a plane passing through point s and is perpendicular to

the crack front, ξl(s) are the components of the local (virtual) crack extension, and ni are

the components of the unit outward normal to the contour Γ (Fig. 8). A specific form of the

tensor P, namely Plj = Wδlj − σijui,l, which is the energy-momentum tensor in continuum

mechanics [43], yields the energy release rate G(s):

G(s) = lim
Γ→0

cl(s)

∫

Γ(s)

Pljnj dΓ, (33)

where cl(s) is the component of a unit vector that is perpendicular to the crack front and lies

in the local tangent plane to the crack surface at point s. In addition, W is the strain energy

density, σij are the components of the Cauchy stress tensor, and ui are the displacement

components. In general, the jump in the energy-momentum tensor denotes the driving force

acting on a defect (e.g., crack or interface).

Γ

s n

Figure 8. Three-dimensional crack front.

In three dimensions, the plane strain fields are only asymptotically approached at the crack

front, and hence the above contour integral can be used only very near the crack front. It is

precisely near sharp discontinuities (high gradients) such as cracks where the standard finite

element approximation is likely to be the least accurate. To circumvent this difficulty, the
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use of domain integrals has become a standard post-processing tool for extracting SIFs in

finite element computations [42, 44]. In the domain integral approach, the contour integral is

converted to an equivalent domain form that is amenable to numerical computations [45]. In

the interaction integral method [45], auxiliary fields (plane strain and anti-plane deformations)

are introduced and superposed on the actual fields that arise from the solution of the boundary-

value problem. By judicious choice of the auxiliary fields, the interaction integral is directly

related to the mixed-mode stress intensity factors; a domain form of the contour interaction

integral is used in the extraction of the SIFs. The computation of the SIFs along non-planar

crack fronts in three dimensions is presented in Gosz and Moran [46]. In the X-FEM, domain

integrals have been adopted for SIF computations in three dimensions for planar mode I

cracks [3, 5, 9] as well as for non-planar cracks [7]. In this paper, we use the domain form of

the interaction integral presented by Moës et al. [7].

3.3. Coupled Extended Finite Element and Fast Marching Method

A tetrahedral finite element mesh is used for the extended finite element analysis, whereas a

regular hexahedral grid is used for the fast marching method. In the general coupled numerical

method, two signed distance functions are used to maintain the location of the crack front. The

signed distance functions from the FMM are used to populate the nodal values in the finite

element tetrahedral mesh. Hence, a field description of these functions becomes available (linear

interpolation), and the interpolated signed distance functions are used to identify which nodes

are required to be enriched and the enrichment functions associated with the crack interior

and the crack front are also evaluated using them. Since the crack surface is linear within

any tetrahedral element, partitioning the elements for the purpose of numerical integration
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is simplified [3, 8]. These steps are used in the extended finite element method to solve the

elastostatic boundary-value problem. From the extended finite element solution, the stress

intensity factors (KI , KII , and KIII) are extracted at different points s along the crack front,

and the maximum hoop stress criterion [47] is invoked to determine the growth direction, ns,

which lies in the tangent plane to the crack front. Assuming a fatigue crack growth law, the

crack velocity Fs = |G(s)|ns [8], where G(s) is the energy release rate. The time increment,

∆t = `/|Fmaxs |, where ` is taken to be of the order of the mesh spacing. Let tmax denote the

terminal time of the evolution. The crack front velocity and the time increment are fed back

to the fast marching method to update the location of the crack, and the above steps are

repeated. Note that since the finite element mesh and the fast marching grid are distinct, the

velocities obtained from X-FEM need to be appropriately mapped onto the fast marching grid

(see Section 3.1.2). A summary of the crack growth algorithm using the fast marching method

follows:

1. Step t = 0 (tmax is user-specified). Let φ1 and φ2 be the signed distance functions for the

crack surface and the crack front, respectively. The crack surface is contained in the set

φ−11 (0), and the the crack front is given by φ−11 (0)
⋂
φ−12 (0), such that ∇φ1 ·∇φ2 = 0.

2. Compute the distance function ρ using the FMM with G = 1 in Eq. (1).

3. Evaluate F on the front using the X-FEM, and extend the velocity using the FMM.

4. Modify φ1 in the set {φ2(x) > 0} so that it is parallel to F, and modify φ2 so that

φ−12 (0) is orthogonal to F.

5. Expand the crack using the algorithm described in Section 3.1.

6. if t < tmax, then increment t (t← t+∆t) and goto step 2.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–39

Prepared using nmeauth.cls



26 N. SUKUMAR ET AL.

4. NUMERICAL EXAMPLES

Numerical examples are presented to establish the accuracy of the fast marching algorithm and

to demonstrate the robustness of the X-FEM/FMM coupling for three-dimensional non-planar

crack growth simulations. For the purpose of comparison, our main reference is Lai et al. [23],

who developed asymptotic solutions for perturbation of planar and non-planar crack shapes.

In all the crack growth simulations, the problem domain Ω = [−0.5, 0.5]3. A 50 × 50 × 50

hexahedral fast marching grid is used, whereas the finite element mesh consists of tetrahedral

elements (14K, 17K, and 26K nodes) with nodes that are quasi-uniformally spaced. On average,

the time taken to compute a single crack growth step is between 30 to 45 minutes. Of this, on

the order of a minute is spent to update the signed distance functions using the fast marching

method. Since the number of evaluation points on the crack front ranges from 50 to over 200, a

significant fraction of the total time is spent in the computation of the stress intensity factors

(front velocity) along the crack front. Finite element mesh generation and post-processing is

carried out using the open-source free software Gmsh [48].

4.1. Planar Wavy Cracks

Gao and Rice [22] and Lai et al. [23] have presented first-order perturbation analysis for a

planar crack that departs from a penny-shaped configuration. Consider a planar crack that is

located on the x3 = 0 plane. The location of the crack front is a(θ) = a0(1 + ε cosnθ), where

ε is the magnitude of the perturbation and n is the wave number. Under uniaxial tension, the

mode I stress intensity factor (SIF) is given by [23]:

KI

K0
I (a(θ))

= 1− εn

2

a0
a(θ)

cosnθ, (34)
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Figure 9. Stress intensity factors for the planar wavy crack problem.

where K0
I (a) = 2σ0

√

a/π with σ0 the applied traction. The above is an asymptotic reference

solution, which we adopt; the asymptotic solution is within a percent or two of the reference

(boundary element) solution [23]. In the numerical computations, we use a0 = 0.25, n = 6,

and ε = 0.1. The analyses are carried out for two meshes with about 17K and 26K nodes.

The asymptotic solution and the X-FEM solution is compared in Fig. 9. Results are reported

for only one quadrant; the numerical results are proximal to the asymptotic solution for all

values of θ. From Fig. 9, we observe that KI(θ) varies such that it attains its maximum at

amin = a0(1 − ε) and its minimum at amax = a0(1 + ε). Hence, under quasi-static growth

conditions, the crack should attain a circular shape. The 17K node mesh is used in the crack

growth analysis, and ` = 0.015 is used to determine ∆t. In Fig. 10, the crack locations at three

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–39

Prepared using nmeauth.cls



28 N. SUKUMAR ET AL.

different steps (t = 0, 5∆t, 10∆t) are depicted. In accordance with theory, the wavy crack

grows to become circular in shape.

4.2. Testing the FMM Algorithm

To assess the robustness and accuracy of the fast marching algorithm, a manufactured solution

for an ordinary differential equation is used. In this test, a simple exponential growth/decay

ordinary differential equation is built to go in the radial direction with initial data x3 = 0 at

radius r =
√

x21 + x22 = 1. For this basic construction, the corresponding front velocity, V(x),

is given by

V(x) =
x1e1 + x2e2 + x1(1 + x3)e3

√

x21 + x22
, (35)

and the exact solution for the surface is given by

x3(x1, x2) = −1 + exp

(

x1

[

1− 1
√

x21 + x22

])

. (36)

A 100× 100× 100 fast marching grid is used, and simulations are performed for 10 time steps.

In Fig. 11, the exact and FMM solutions are compared, and the FMM solution is observed to

be in good agreement with the exact solution inside the computed crack surface. The deviation

outside the location of the crack front surface φ2 = 0 shows the difference between the exact

solution and the linear extrapolation used when constructing φ1 away from the crack surface.

Occasionally, points that are in region O or I as depicted in Fig. 6 may generate a sign error.

These errors always occur far from the crack surface and are a result of the long extrapolation

distances being calculated. These points are not of concern because they remain far from the

crack surface, φ1 = 0, and hence do not affect the location of the crack or the crack front

velocity.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Propagation of a planar wavy crack. (a),(b) t = 0; (c),(d) t = 5∆t; and (e),(f) t = 10∆t.
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Figure 11. Benchmarking the fast marching algorithm. (a),(b) Exact surface and surface obtained

using the FMM algorithm; and (c) Comparison of exact solution and FMM along a cross-section.
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(a) (b)

Figure 12. Axisymmetric non-planar cracks. (a) Regular perturbation; and (b) Singular (cap-shaped

crack) perturbation.

4.3. Non-Planar Axisymmetric Cracks

We consider two particular axisymmetric crack shapes. The cracks are defined by [23]

h

a
=

1

2

{

cos
(πr

a

)

+ 1
}

, (37a)

h

a
= 1−

( r

a

)2

, (37b)

where the first crack is a regular perturbation and the latter is a singular (cap-shaped crack)

perturbation. The initial level sets for these cracks are shown in Fig. 12. Crack propagation

simulations are conducted for the cap-shaped crack under uniaxial tension. A 14K node mesh

is used. In Fig. 13, the crack shapes at t = 0, 5∆t, 9∆t are shown. Even though the growth

is planar, it is noteworthy to observe that the wake of the crack is accurately captured. This

demonstrates that the signed distance functions are not changed in the wake of the crack, as

described in Section 3.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Propagation of a cap-shaped crack. (a) t = 0; (b) t = ∆t; (c) t = 3∆t; (d) t = 5∆t; (e)

t = 7∆t; and (f) t = 9∆t.
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4.4. Non-Planar Growth of an Inclined Penny Crack

As the last example, we consider an inclined penny crack (θ = 45◦) that is under uniaxial

tension. Since the loading at the crack front is mixed-mode, the crack kinks. For these

simulations, the 17K node mesh is used; ∆t is computed using ` = 0.015. Crack propagation

simulations are conducted, and the different stages (t = 0, 4∆t, 8∆t, 12∆t, 16∆t, 20∆t) in

the crack growth are depicted in Fig. 14. The simulations reveal the non-planar character of

the growth and the results evince that the fast marching algorithm is able to capture the

representation of the crack at each step.

5. CONCLUDING REMARKS

In this paper, a fast marching algorithm for crack propagation simulations was proposed.

Unlike a level set implementation for non-planar cracks [8], the new method is a single-pass

algorithm (no iterations are required) with no time step restrictions. The fast marching method

was coupled to the extended finite element for quasi-static three-dimensional crack growth

simulations. In the X-FEM, cracks are represented by enriching the standard finite element

displacement approximation through the framework of partition of unity. A discontinuous

function and the asymptotic crack-tip fields were used as enrichment functions to model a

crack. The fast marching method was coupled to the X-FEM to simulate crack propagation

without the need for remeshing. Two distinct meshes were used for the X-FEM and FMM.

An unstructured tetrahedral mesh with linear C0 finite elements was used for the extended

finite element analysis. A structured mesh with local C1 tricubic interpolation was adopted

for the fast marching method; development of a fast marching crack growth algorithm on
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Non-planar propagation of an inclined penny crack. (a) t = 0; (b) t = 4∆t; (c) t = 8∆t;

(d) t = 12∆t; (e) t = 16∆t; and (f) t = 20∆t.
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unstructured meshes is part of on-going research. Two signed distance functions, which were

used to represent the crack, were also used to compute the enrichment functions. The crack

front velocity was computed using the X-FEM and fed to the fast marching method. To extend

the crack, algorithms to update the signed distance functions were presented.

The principal advantages offered by coupling these methods are the geometric and

topological flexibility of the level set method, the speed of the fast marching method, and the

greater subgrid resolution and singularity capturing of the extended finite element method.

The resulting coupled method runs entirely on a fixed Eulerian mesh without the need for

conformity to the crack front, while achieving much greater accuracy in the neighborhood of

the front with minimal additional cost. In the analyses, benchmark planar and non-planar

crack solutions from Lai et al. [23] were considered. The numerical simulations that were

presented revealed the accuracy and robustness of the new fast marching algorithm, and its

efficient coupling to the X-FEM for planar and non-planar crack propagation problems.
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