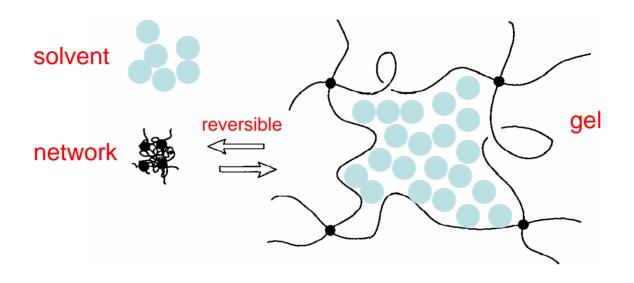
Large deformation and instability in swelling polymeric gels

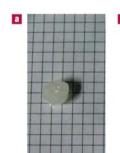
Zhigang Suo

School of engineering and Applied Sciences Harvard University

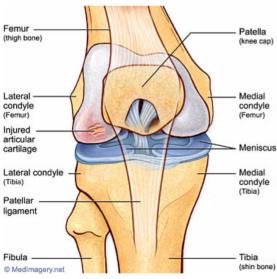
gel = network + solvent



Solid-like: long polymers crosslink by strong bonds. Retain shape Liquid like: polymers and solvent aggregate by weak bonds. Enable transport



Gels in daily life

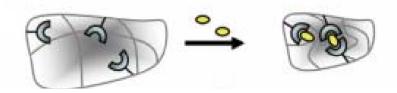


Tissues, natural or engineered



Contact lenses

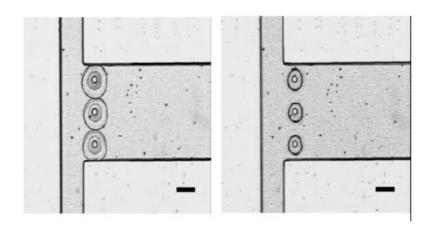
Wichterie, Lim, Nature 185, 117 (1960)



Drug delivery

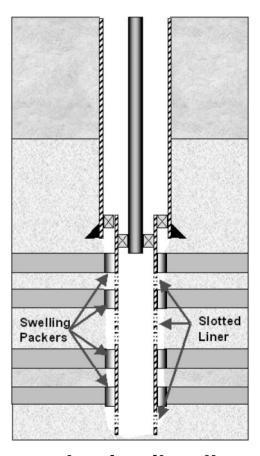
Ulijn et al. Materials Today 10, 40 (2007)

Gels in engineering



Valve in fluidics

Beebe, Moore, Bauer, Yu, Liu, Devadoss, Jo, Nature 404, 588 (2000)



packer in oil well

Shell, 2003

Two ways of doing work to a gel

 $\mu \delta M$ work done by the pump

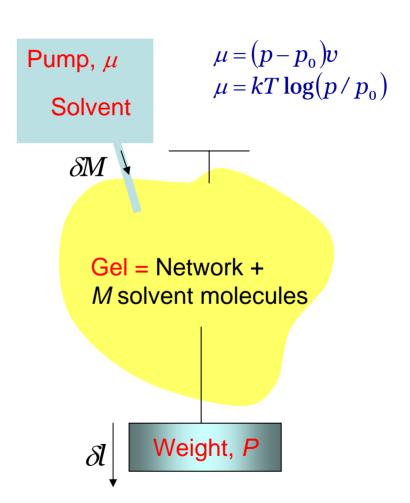
 $P\delta l$ work done by the weight

F(l, M) Helmholtz free energy of gel

Equilibrium condition

$$\delta F = P\delta l + \mu \delta M$$

$$P = \frac{\partial F(l, M)}{\partial l}$$
 $\mu = \frac{\partial F(l, M)}{\partial M}$



Field variables

Equilibrium condition

$$\delta F = P\delta l + \mu \delta M$$

$$\frac{\delta F}{AL} = \frac{P}{A} \frac{\delta l}{L} + \mu \frac{\delta M}{AL}$$

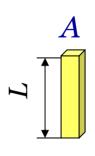
$$\delta W = s \delta \lambda + \mu \delta C$$

$$s = \frac{\partial W(\lambda, C)}{\partial \lambda} \qquad \mu = \frac{\partial W(\lambda, C)}{\partial C}$$

 $W(\lambda,C)$ Helmholtz free energy per volume

Reference state

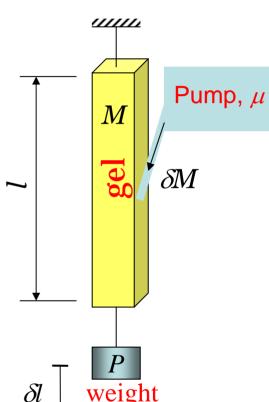
M=0



$$s = \frac{P}{A}$$

$$C = \frac{M}{AL}$$

Current state



3D inhomogeneous field

Deformation gradient

$$F_{iK} = \frac{\partial x_i(\mathbf{X}, t)}{\partial X_K}$$

Concentration

$$C(\mathbf{X},t)$$

Free-energy function

$$W(\mathbf{F},C)$$

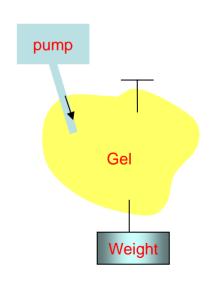
Equilibrium condition

$$\int \delta W dV = \int B_i \delta x_i dV + \int T_i \delta x_i dA + \mu \int \delta C dV$$

Equivalent equilibrium condition

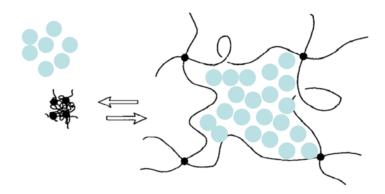
$$s_{iK} = \frac{\partial W(\mathbf{F}, C)}{\partial F_{iK}}$$
 $\mu = \frac{\partial W(\mathbf{F}, C)}{\partial C}$

$$\frac{\partial s_{iK}}{\partial X_K} + B_i = 0 \qquad s_{iK} N_K = T_i$$



Flory-Rehner free energy

Swelling increases entropy by mixing solvent and polymers, but decreases entropy by straightening polymers.



Free-energy function

$$W(\mathbf{F}, C) = W_s(\mathbf{F}) + W_m(C)$$

Free energy of stretching

$$W_s(\mathbf{F}) = \frac{1}{2} NkT [F_{iK} F_{iK} - 3 - 2 \log(\det \mathbf{F})]$$

Free energy of mixing

$$W_m(C) = -\frac{kT}{v} \left[vC \log \left(1 + \frac{1}{vC} \right) + \frac{\chi}{1 + vC} \right]$$

Molecular incompressibility

$$+$$
 V_{dry} $+$ V_{sol} $=$ V_{gel}

$$1 + vC = \det \mathbf{F}$$

v – volume per solvent molecule

Assumptions:

- Individual solvent molecule and polymer are incompressible.
- Neglect volumetric change due to physical association
- Gel has no voids. (a gel is different from a sponge.)

Equations of state

Enforce molecular incompressibility as a constraint by introducing a Lagrange multiplier Π

$$W = W(\mathbf{F}, C) + \Pi(1 + \nu C - \det \mathbf{F})$$

Equations of state

$$s_{iK} = \frac{\partial W(\mathbf{F}, C)}{\partial F_{iK}} - \Pi H_{iK} \det \mathbf{F}$$

$$\mu = \frac{\partial W(\mathbf{F}, C)}{\partial C} + \Pi v$$

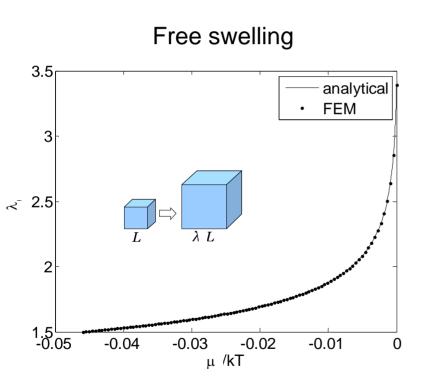
Use the Flory-Rehner free energy

$$s_{iK} = NkT(F_{iK} - H_{iK}) - \Pi H_{iK} \det \mathbf{F}$$

$$\mu = kT \left[log \frac{vC}{1+vC} + \frac{1}{1+vC} + \frac{\chi}{(1+vC)^2} \right] + \Pi v$$

$$s_1 = NkT\left(\lambda_1 - \lambda_1^{-1}\right) - \Pi\lambda_2\lambda_3 \qquad s_2 = NkT\left(\lambda_2 - \lambda_2^{-1}\right) - \Pi\lambda_3\lambda_1 \qquad s_3 = NkT\left(\lambda_3 - \lambda_3^{-1}\right) - \Pi\lambda_1\lambda_2$$

Anisotropic swelling

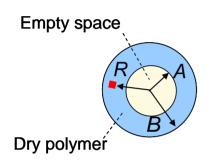


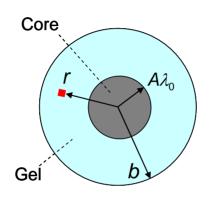


A gel imbibes different amount of solvent under constraint.

$$(\lambda_{\text{free}})^3 \neq \lambda_{\text{uni}}$$

Inhomogeneous swelling



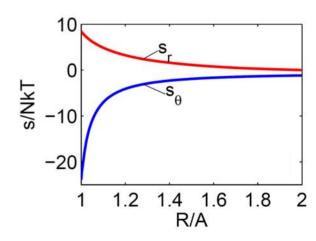


30
25 VC_{free} $VN=10^{-3}$ $\chi=0.2$ $\chi=1.077$ $\chi=0.10$ $\chi=0.2$ $\chi=0.10$ $\chi=0.2$ $\chi=0.10$ $\chi=0.2$ $\chi=0.10$ $\chi=0.2$ $\chi=0.2$

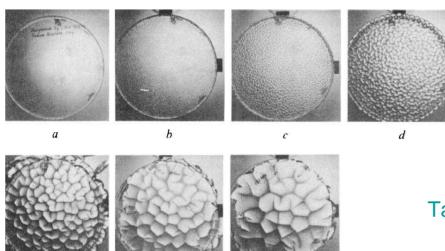
Reference State

Equilibrium State

- Concentration is inhomogeneous even in equilibrium.
- Stress is high near the interface (debond, cavitation, crease).



Crease



Tanaka *et al*, Nature 325, 796 (1987)

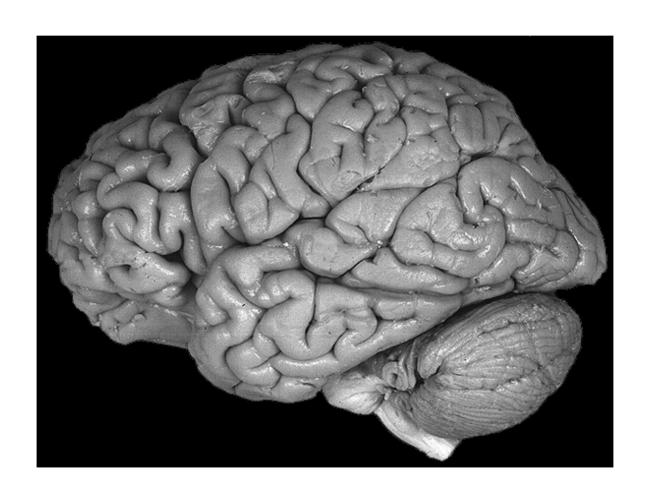
Denian

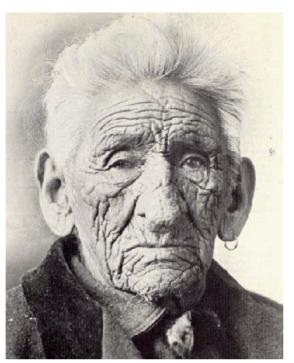
Rising bread dough

Zhigang, I was making bread this weekend, and realized that when the rising dough was constrained by the bowl it formed the creases that you were talking about in New Orleans.

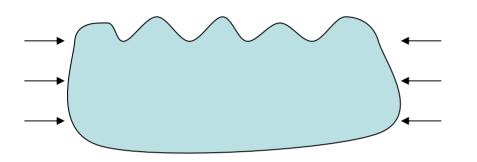
-- An email from Michael Thouless

The brain



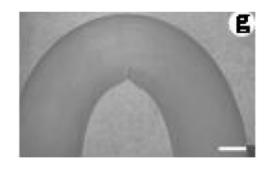


The science of crease: a linearized history



Biot, Appl. Sci. Res. A 12, 168 (1963). Theory: linear perturbation analysis

 $\varepsilon_{\rm biot} \approx 0.46$



Gent, Cho, Rubber Chemistry and Technology 72, 253 (1999) **Ghatak, Das**, PRL 99, 076101 (2007)

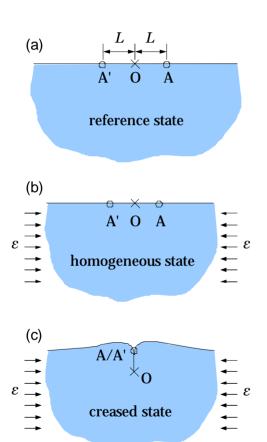
Experiments: bending rods of rubber and gels

 $\varepsilon_{\rm exp} \approx 0.35$

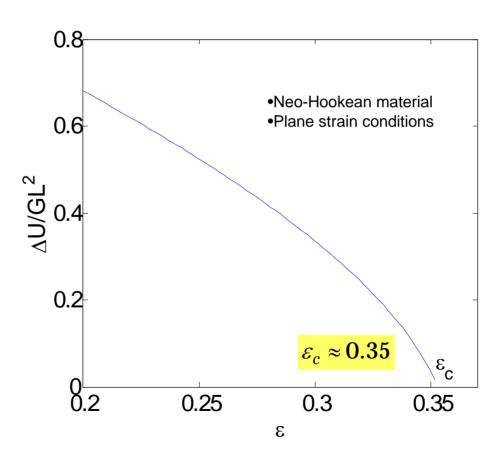
Hohlfeld, Mahadevan, manuscript in preparation (2008)

A new theory: crease is a distinct instability different from that analyzed by Biot.

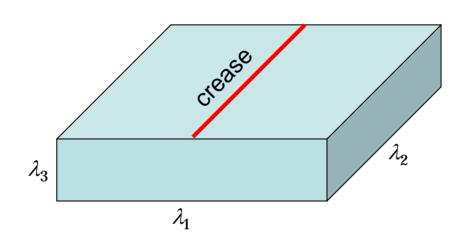
An energetic model



$$\Delta U = L^2 G f(\varepsilon)$$



Crease under general loading



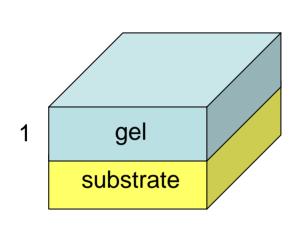
Incompressibility

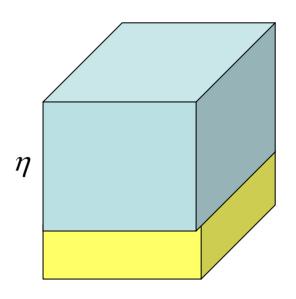
$$\lambda_1 \lambda_2 \lambda_3 = 1$$

Critical condition for crease
$$\lambda_3 / \lambda_1 = 2.4$$

Biot
$$\lambda_3 / \lambda_1 = 3.4$$

Crease of a swelling gel





Theories

$$\eta_c = 2.4$$

$$\eta_c = 2.4$$
 $\eta_{\mathrm{biot}} = 3.4$

Experimental data

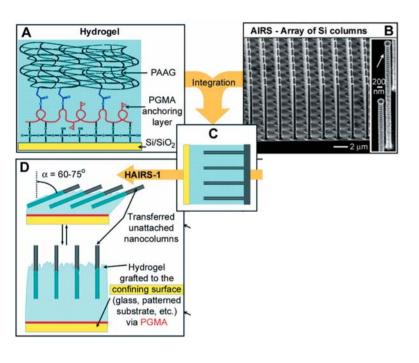
 $\eta_{\rm exp}=2.4$ Southern, Thomas, J. Polym. Sci., Part A, 3, 641 (1965)

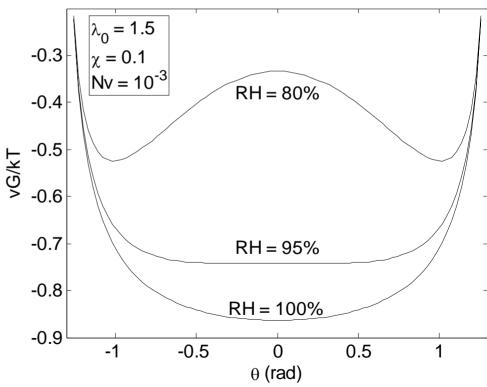
Tanaka, PRL 68, 2794 (1992) $\eta_{\rm exp} = 2.5 - 3.7$

Trujillo, Kim, Hayward, Soft Matter 4, 564 (2008) $\,\eta_{
m exp}=2.0\,$

20

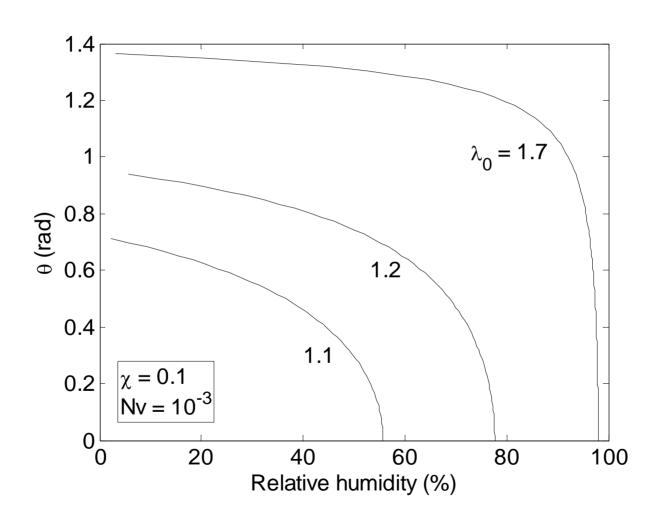
Hydrogel-actuated nanostructure





Experiment: Sidorenko, Krupenin, Taylor, Fratzl, Aizenberg, Science 315, 487 (2007).

Critical humidity can be tuned



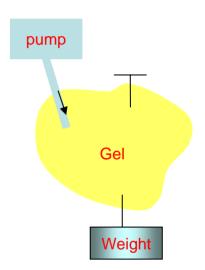
Finite element method

$$\int \delta W dV = \int B_i \delta x_i dV + \int T_i \delta x_i dA + \mu \int \delta C dV$$

Legendre transform

$$\hat{W}(\mathbf{F},\mu) = W - \mu C$$

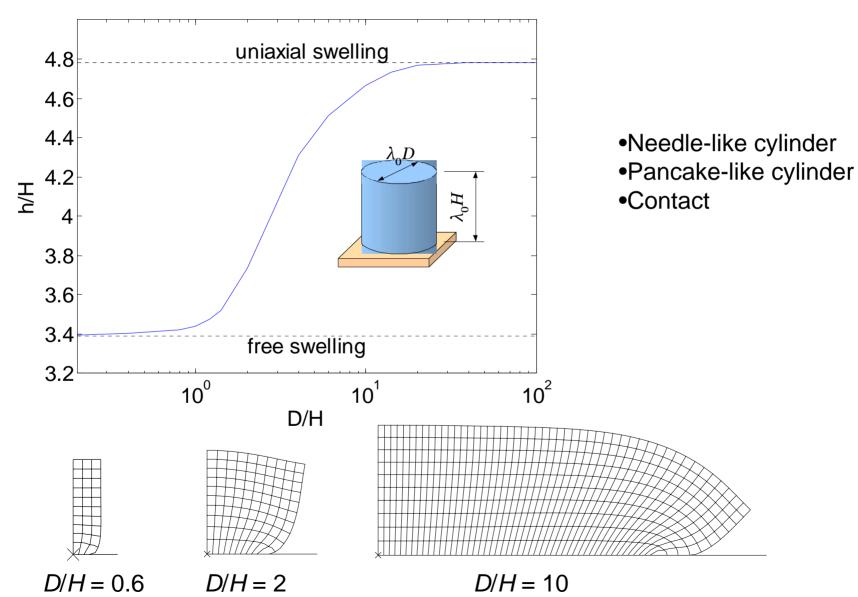
$$\int \delta \hat{W} dV = \int B_i \delta x_i dV + \int T_i \delta x_i dA$$



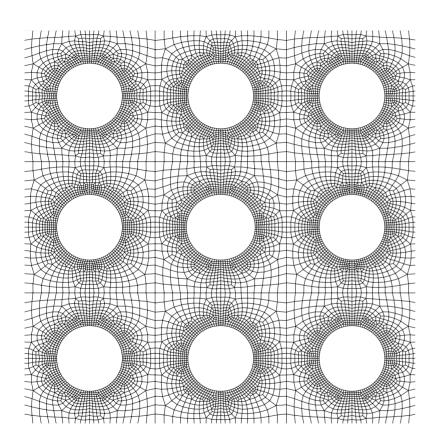
- A gel in equilibrium is analogous to elasticity
- Treat the chemical potential like temperature
- ABAQUS UMAT

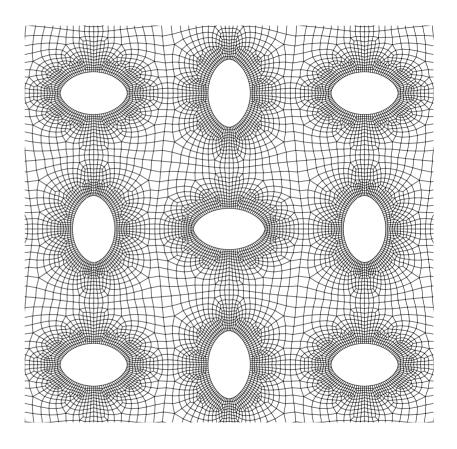
$$\hat{W}(\mathbf{F}, \mu) = W - \mu C = \frac{1}{2} NkT(I - 3 - 2\log J) - \frac{kT}{v} \left[(J - 1)\log \frac{J}{J - 1} + \frac{\chi}{J} \right] - \frac{\mu}{v} (J - 1)$$

Swelling-induced contact



Swelling-induced bifurcation





Experiment: Zhang, Matsumoto, Peter, Lin, Kamien, Yang, Nano Lett. 8, 1192 (2008).

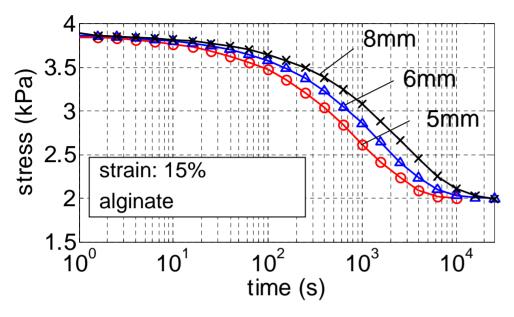
Simulation: Hong, Liu, Suo, http://imechanica.org/node/3163

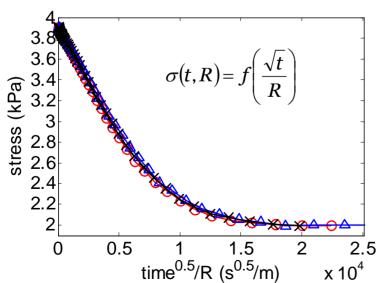
Time-dependent process

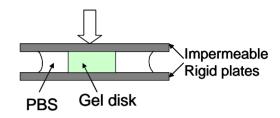


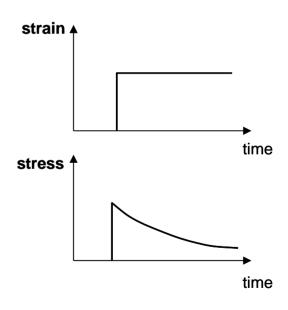
Shape change: short-range motion of solvent molecules, fast Volume change: long-range motion of solvent molecules, slow

Size-dependent stress relaxation









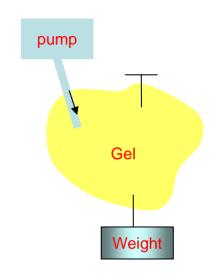
Coupled deformation and migration

Deformation of network

$$F_{iK} = \frac{\partial x_i(\mathbf{X}, t)}{\partial X_K}$$

Conservation of solvent molecules

$$\frac{\partial C(\mathbf{X},t)}{\partial t} + \frac{\partial J_{K}(\mathbf{X},t)}{\partial X_{K}} = \frac{\partial r(\mathbf{X},t)}{\partial t}$$
$$J_{K}N_{K} = \frac{\partial i(\mathbf{X},t)}{\partial t}$$



Nonequilibrium thermodynamics

$$\int \delta W dV \leq \int B_i \delta x_i dV + \int T_i \delta x_i dA + \int \mu \delta r dV + \int \mu \delta i dA$$

Local equilibrium

$$s_{iK} = \frac{\partial W(\mathbf{F}, C)}{\partial F_{iK}}$$
$$\mu = \frac{\partial W(\mathbf{F}, C)}{\partial G}$$

Mechanical equilibrium

$$\frac{\partial s_{iK}(\mathbf{X},t)}{\partial X_{K}} + B_{i} = \mathbf{0}$$

$$s_{iK}N_{K}=T_{i}$$

Rate process

$$J_{K} = -M_{KL} \frac{\partial \mu(\mathbf{X}, t)}{\partial X_{L}}$$

ideal kinetic model

Solvent molecules migrate in a gel by self-diffusion

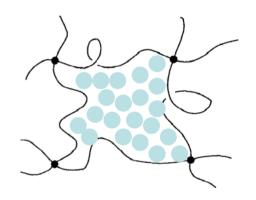
$$\boldsymbol{J}_{K} = -\boldsymbol{M}_{KL} \frac{\partial \mu}{\partial X_{L}}$$

Diffusion in true quantities
$$j_i = -\frac{cD}{kT} \frac{\partial \mu}{\partial x_i}$$

Conversion between true and nominal quantities

$$j_{i} = \frac{F_{iK}}{\det F} J_{K} \qquad \frac{\partial \mu}{\partial X_{K}} = \frac{\partial \mu}{\partial x_{i}} F_{iK}$$

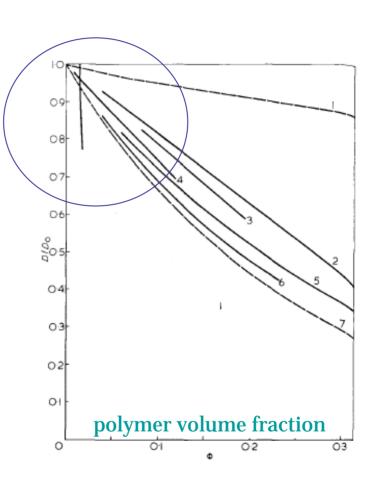
$$M_{KL} = \frac{D}{vkT} H_{iK} H_{iL} \left(\det F - 1 \right)$$



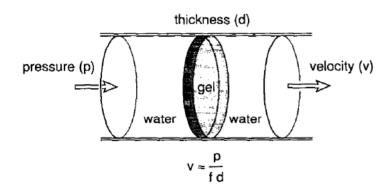
Diffusion of labeled water

Stokes-Einstein formula

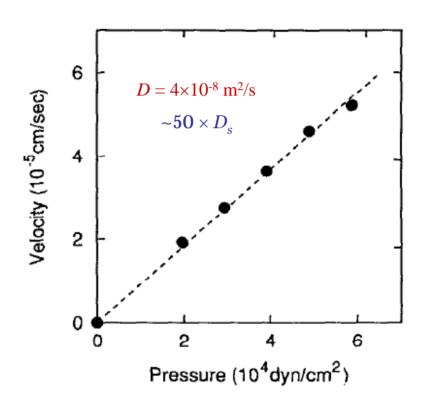
$$D_{\text{self}} = kT / (6\pi R \eta) \approx 8 \times 10^{-10} \,\text{m}^2/\text{s}$$



Diffusion or convection?

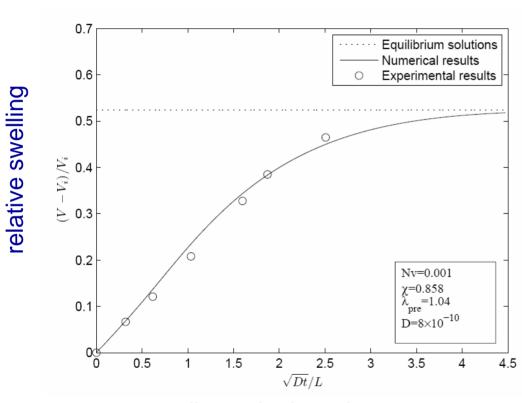


Tokita, Tanaka, J. Chem. Phys, 1991

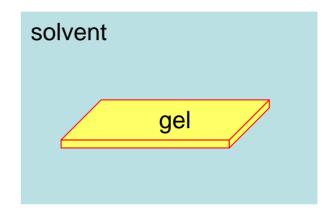


- Macroscopic pores?
- Convection?

Swelling of a thin layer



dimensionless time



Fitting swelling experiment is hard:

- Missing data
- Fick's law: Concentration is not the only driving force

Summary

- Gels have many uses (soft robots, drug delivery, tissue engineering, water treatment, packers in oil wells).
- Mechanics is interesting and challenging (large deformation, mass transport, multiple thermodynamic forces, many modes of instability).
- The field is wide open (microfabrication, computation, material models, experiments, bioinspiration, imagination).