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Abstract

In this paper, we formulate a geometric theory of the mechanics of arterial growth. An artery is modeled
as a finite-length thick shell that is made of an incompressible nonlinear anisotropic solid. An initial radially-
symmetric distribution of finite radial and circumferential eigenstrains is also considered. Bulk growth is
assumed to be isotropic. A novel framework is proposed to describe the time evolution of growth, governed by
a competition between the elastic energy and a growth energy. The governing equations are derived through
a two-potential approach and using the Lagrange-d’Alembert principle. An isotropic dissipation potential is
considered, which is assumed to be convex in the rate of growth function. Several numerical examples are
presented that demonstrate the effectiveness of the proposed model in predicting the evolution of arterial
growth and the intricate interplay among eigenstrains, residual stresses, elastic energy, growth energy, and
dissipation potential. A distinctive feature of the model is that the growth variable is not constrained by
an explicit upper bound; instead, growth naturally approaches a steady-state value as a consequence of the
intrinsic energetic competition. Several numerical examples illustrate the efficiency and robustness of the
proposed framework in modeling arterial growth.
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1 Introduction

The growth of arteries in response to changes in lumen pressure, which lead to thickening of the vessel wall,
is of significant interest in the biomechanics literature. Such a response falls under the general category of
mechanically influenced growth. Residual stresses and strains are generated in arterial walls during growth. It
has been known since the 1800s [Wolff, 1870; Woods, 1892; Thoma, 1893] that excess mechanical stimuli trigger
growth in biological tissues. However, the fundamental physics of this process remains poorly understood at
the tissue level.

Mechanics of bulk growth has been a subject of increasing interest in the past few decades. The first studies
of bulk growth inspired by applications in the field of biology appeared in the 1980s and 1990s [Skalak et al.,
1982; Fung, 1983; Kondaurov and Nikitin, 1987; Takamizawa and Matsuda, 1990; Takamizawa, 1991; Rodriguez
et al., 1994]. There are numerous theoretical and computational studies on the mechanics of bulk growth;
see [Takamizawa and Matsuda, 1990; Takamizawa, 1991; Rodriguez et al., 1994; Epstein and Maugin, 2000;
Lubarda and Hoger, 2002b; Garikipati et al., 2004; Ben Amar and Goriely, 2005; Himpel et al., 2005; Klarbring
et al., 2007; Yavari, 2010; Göktepe et al., 2010; Zöllner et al., 2012; Sáez et al., 2014b; Sadik et al., 2016] and
references therein. Traditionally, in the kinematics of bulk growth, in addition to the standard deformation
map, an independent field(s) describing bulk growth is introduced. A challenging ingredient of any growth
theory is the kinetic equation(s) governing the dynamics of bulk growth. Kinetic equations of bulk growth (or
“evolution laws” [Goriely, 2017]) are usually postulated based on certain symmetry assumptions. Examples
are: isotropic growth, orthotropic growth, transversely isotropic growth, etc. [Goriely, 2017]. Starting from a

multiplicative decomposition of deformation gradient into elastic and growth distortions F =
e

F
g

F,1 a growth

equation has the following form:
ġ

F = G(X,C♭,G), where X ∈ B is a material point in the body B and G is the

material metric. Note that
g

F : TXB → TXB, where TXB is the tangent space of B at X, is a material tensor,
and hence is automatically objective. It should also be noted that the material metric explicitly depends on
g

F: G =
g

F∗G̊ =
g

F⋆G̊
g

F, where G̊ is the flat metric of the Euclidean space, or more precisely, the metric of the
stress-free body (in the absence of growth) induced from the Euclidean ambient space.

It has been known for quite some time that arteries are residually stressed [Fung, 2013; Vaishnav and
Vossoughi, 1987]. Takamizawa [1991] proposed that the stress-free configuration of a residually-stressed artery
can be modeled by a Riemannian manifold. They pointed out that the Riemannian metric is closely related
to residual strain (or what is usually called eigenstrain2 in the literature). Takamizawa and Hayashi [1987]
assumed a uniform circumferential strain for arteries under physiological loading conditions. They showed
that this assumption leads to almost uniform stress distributions and non-vanishing residual stresses. Rachev
and Hayashi [1999] modeled an artery as a thick-walled tube made of an incompressible orthotropic elastic
solid [Patel et al., 1969]. In addition to elastic (passive) stresses determined constitutively (up to an unknown
pressure field), they assumed an active circumferential stress due to muscle contraction and relaxation. In their
numerical examples, they observed that eigenstrains (referred to as “residual strains”) are highly sensitive to
muscle contraction and relaxation. There have been several other studies of the mechanics of arterial growth
and remodeling in the literature, see [Holzapfel et al., 2002; Rodŕıguez et al., 2007; Cardamone et al., 2009b]
and references therein.

1For a detailed history of this decomposition see [Sadik and Yavari, 2017; Yavari and Sozio, 2023].
2The hybrid German-English term eigenstrain originates in the pioneering work of Hans Reissner [Reissner, 1931], where

Eigenspannung denotes a proper or self strain, and was subsequently popularized by Mura [Kinoshita and Mura, 1971; Mura,
1982]. In the literature, several equivalent notions appear under different names, including initial strain [Kondo, 1949], nuclei of
strain [Mindlin and Cheng, 1950], transformation strain [Eshelby, 1957], inherent strain [Ueda et al., 1975], and residual strain
[Ambrosi et al., 2019] (see also [Jun and Korsunsky, 2010; Zhou et al., 2013]).
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Sáez et al. [2014a] presented a computational framework for modeling hypertensive growth in the human
carotid artery, focusing on the thickening of the arterial wall due to smooth muscle cell hypertrophy. Using
a finite element implementation of finite growth based on a multiplicative decomposition of the deformation
gradient, they investigated how mechanical stimuli, particularly stretch, influence growth over time. This study
involves several important modeling assumptions, including the choice of growth kinematics, the definition of
mechanical homoestasis (based on stress or strain), and the layer-specific growth behavior of arterial tissues.
The model is applied to both idealized cylindrical geometries and patient-specific carotid artery reconstructions,
showing good agreement with experimental observations.

Recently, Erlich and Zurlo [2025] presented a geometric reformulation of biological growth in which the
evolution of growth is driven not only by the conventional homeostatic-stress mechanism but also by deviations
of the material manifold’s Ricci curvature from a prescribed target. They proposed that growth and remodeling
in living tissues aim to reach a homeostatic state characterized by a physiological level of geometric frustration
quantified through the Ricci curvature of the material manifold. In this framework, incompatibility—measured
by the Ricci tensor—emerges as the fundamental geometric quantity linking curvature, growth, and residual
stress. To formalize this idea, they introduced a “growth action” functional analogous to the Einstein–Hilbert
action of General Relativity, which penalizes deviations from a target curvature and yields a corresponding
expression for the homeostatic Eshelby stress tensor. The growth equation governing the rate of change of the
growth tensor is then postulated to depend on the difference between the actual and target Eshelby stresses,
rather than being derived from thermodynamic principles.

It remains unclear what it means for a living system to have mechanical homeostasis. As discussed above,
the dominant view of mechanical homeostasis is that the body grows and remodels to maintain a homeostatic
value of stress or strain [Lubarda and Hoger, 2002a; Kuhl, 2014]. This view has been developed by drawing
inspiration from homeostatic physiological values of temperature and pH in the body. While this could be a
reasonable approach for biological structures in which a nearly uniform and largely uniaxial state of stress and
strain exists, for instance, in the muscle tissue, in general, biological structures have a triaxial non-uniform
stress state. Arteries are an example of such a structure. Under such non-uniform stress and strain states, the
very notion of mechanical homeostasis becomes ambiguous.

Our motivation in this paper is to develop a systematic and self-consistent framework for modeling the
evolution of growth in living tissues. A central question is whether experimentally observed phenomena, such
as changes in arterial wall diameter and thickness under altered physiological conditions, can be quantitatively
described within a rigorous mechanical and mathematical theory of growth and remodeling. In this paper, we
formulate the mechanics of arterial growth within a two-potential framework based on the Lagrange–d’Alembert
principle, which naturally incorporates both energetic and dissipative effects associated with growth-induced
deformation. A key feature of our model is that the growth variable is not restricted by an explicit upper bound
but instead evolves toward a steady-state value as a result of the intrinsic energetic competition.

In an earlier work, we developed a similar framework to investigate the remodeling of collagen fibers in
soft tissues, including arterial walls [Kumar and Yavari, 2023]. We showed that such a framework can explain
why collagen fibers do not always remodel to align with the principal stress or stretch direction. The model
suggested that the alignment of collagen fibers is influenced by factors such as the amount of axial stretch and
the tissue (fiber) stiffness. We also note the recent work of Chockalingam and Cohen [2024], who have proposed
a coupled swelling-growth theory to describe growth in biological systems containing a mixture of fluid and solid
components. The interaction between fluid and solid components leads to a natural definition of homeostasis
in their system, which parallels our prior findings on remodeling and the current work on arterial growth.

This paper is organized as follows. In §2, we develop a general variational formulation for bulk growth in
anisotropic solids based on the Lagrange–d’Alembert principle and introduce a notion of growth energy which,
together with the elastic energy and the dissipation potential, governs the dynamics of bulk growth. The theory
is then specialized in §3 to model isotropic arterial growth, where we derive the governing equations and examine
their structure. In §4, we present numerical results that illustrate the coupled evolution of deformation, growth,
and residual stress under both physiological and pathological loading conditions. Finally, in §5, we summarize
the main results and discuss possible extensions of the framework.
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2 Bulk Growth

In this section we formulate a general geometric variational theory of bulk growth. The framework will then be
specialized to the case of arterial growth in §3.

2.1 Kinematics

Motion, reference, and current configurations. Let us consider a growing body B that while moves in
the Euclidean ambient space S undergoes bulk growth. The Euclidean metric in the ambient space is denoted
by g. In a local coordinate chart {xa} for S, g has components gab = gba. The components of inverse metric
g♯ = g−1 are denoted as gab such that gacgcb = δab . The body is an embedded 3-submanifold of the Euclidean
ambient space S. The initial embedding of the body into the Euclidean ambient space induces a flat metric
G̊ = g

∣∣
B on the body. This is the natural metric of the elastic body before the body experiences any growth.

With respect to a local coordinate chart {XA} for B, G̊ has components G̊AB = G̊BA. Motion of the growing
body is a one-parameter family of mappings φt : B → Ct ⊂ S, where Ct = φt(B) is the current configuration of
the growing body (more precisely, motion is a curve t 7→ φt in the space of all configurations of B). A material

point X ∈ B is mapped to xt = x(X, t) = φt(X) ∈ Ct. The Riemannian manifolds (B, G̊) and (S,g) are the
initial material manifold and the ambient space manifold, respectively.

The derivative of the deformation map is usually called deformation gradient and is denoted by F(X, t) =
Tφt(X) : TXB → TxCt, where TXB and TxCt are the tangent spaces of B at X and Ct at xt, respectively. Let us
consider the local coordinate charts {XA} and {xa} for B and C, respectively. F has the following coordinate
representation

F(X, t) =
∂φa(X, t)

∂XA

∂

∂xa
⊗ dXA . (2.1)

Its adjoint F⋆(X, t) : T ∗
xCt → T ∗

XB, where T ∗
XB and T ∗

xCt are the co-tangent spaces of B and X and Ct at x,
respectively, has the following coordinate representation

F⋆(X, t) =
∂φa(X, t)

∂XA
dXA ⊗ ∂

∂xa
. (2.2)

The transpose of the deformation gradient FT(X, t) : TxCt → TXB is metric dependent and has components(
FT
)A

a = GABF b
B gba, or F

T = G♯F⋆g. The right Cauchy-Green strain is defined asC♭ = φ∗g = F∗g = F⋆gF.
In components, CAB = F a

A gabF
b
B . Also, notice that

CA
B = GAMCMB = (GAMF a

M gab)F
b
B =

(
FT
)A

b F
b
B , (2.3)

i.e., C = FTF.3 The spatial analogue of the right Cauchy-Green strain is defined as c♭ = F∗G = F−⋆GF−1.
It has components, cab = F−A

a GAB F−B
b, where F−A

a are components of F−1. The left Cauchy-Green
strain is defined as B♯ = φ∗g♯, with components BAB = F−A

a F
−B

b g
ab. Its spatial analogue is defined as

b♯ = φ∗G
♯ = FG♯F⋆, which has components, bab = F a

AF
b
B GAB . It is straightforward to show that B = C−1

and b = c−1.
We assume a multiplicative decomposition of the deformation gradient F(X, t) =

e

F(X, t)
g

F(X, t), where
g

F(X, t) : TXB → TXB is a material tensor while
e

F(X, t) : TXB → TxC is a two-point tensor. The natural

distances in the growing body are measured using the material metric G =
g

F∗G̊ =
g

F⋆G̊
g

F.4 In components,

GAB =
g

FM
A G̊MN

g

FN
B . The natural volume element of the Riemannian manifold (B,G) at X ∈ B is denoted

by dV (X). The corresponding volume element in the current configuration at x = φ(X) ∈ C is denoted by
dv(x). The Jacobian of the deformation relates the deformed and undeformed Riemannian volume elements as
dv(x) = JdV (X), where5

J =

…
detg

detG
detF . (2.4)

3It is important to note that the adjoint of a tensor is independent of any metric, while the transpose is a metric-dependent
operation.

4See [Sadik and Yavari, 2017] and [Yavari and Sozio, 2023] for detailed discussions and literature review of the multiplicative
decomposition in anelasticity.

5In the classical continuum-mechanics literature the Jacobian is often written as J = detF, which is only correct when Cartesian
coordinates are used in both the reference and current configurations. More generally, this identity holds only when the deformation
gradient is expressed in terms of its physical components, which is implicitly assumed in the classical literature.
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Let us denote the Levi-Civita connections associated with the metrics G and g by ∇G and ∇g, respectively.

2.2 Constitutive equations of a growing anisotropic body

In this section the constitutive equations of an isotropic growing solid are briefly reviewed. More specifically,
the elastic energy function and dissipation potential are discussed. Next a growth energy is introduced.

2.2.1 Energy function of an anisotropic growing body

It is assumed that the growing body is made of a hyper-anelastic material, i.e., it has an elastic energy function

density per unit volume that explicitly depends on the elastic distortion:
e

W =
e

W (X,
e

F, Λ̊, G̊,g), where Λ̊ is
a set of structural tensors that explicitly depends on the symmetry group of the material [Liu, 1982; Boehler,

1987; Zheng and Spencer, 1993; Zheng, 1994; Lu and Papadopoulos, 2000]. Recall that
e

F =
g

F∗F. When
the structural tensors are included as arguments of the energy function, the elastic energy becomes materially
covariant. In particular, this implies that6

e

W (X,
e

F, Λ̊, G̊,g) =
e

W (X,
g

F∗F, Λ̊, G̊,g) =
e

W (X,
g

F∗ g

F∗F,
g

F∗Λ̊,
g

F∗G̊,g) =
e

W (X,F,Λ,G,g) , (2.5)

where
G =

g

F∗G̊ =
g

F⋆G̊
g

F , (2.6)

is the material metric and Λ =
g

F∗Λ̊ [Yavari and Sozio, 2023]. Objectivity implies that W = Ŵ (X,C♭,Λ,G),
where C♭ = F∗g = F⋆gF. Thus, one concludes that the elastic energy function of an anisotropic growing body
is identical to its initial elastic energy function if one replaces the flat initial material metric G̊ by the (evolving)

material metric G and the structural tensors Λ̊ by the anelastic structural tensors Λ [Yavari and Sozio, 2023].

Remark 2.1. We emphasize that G̊ is a flat (Euclidean) metric on B. Physically, this is the natural metric

of the body in the absence of growth. On the other hand, G =
g

F∗G̊ =
g

F⋆G̊
g

F is the material metric in the
presence of growth and, in general, is non-flat. A generic tensor defined with respect to the Euclidean manifold
(B, G̊) is denoted by Å, while the corresponding tensor defined with respect to the Riemannian manifold (B,G)

is denoted by A. For example, we know that the deformation gradient is metric independent, and hence, F̊ = F.
We just saw that when one starts with a solid with a symmetry group described by a collection of structural

tensors Λ̊, after growth its symmetry group is described by a new set of structural tensors Λ =
g

F∗Λ̊.

Measures of stress. In nonlinear anelasticity, several distinct tensorial measures of stress are used to describe
the same physical quantity. Among the infinitely many admissible definitions, three are particularly useful
because of their geometric clarity and their convenience in constitutive modeling. Consider an oriented surface
element with area da in the deformed configuration C and g-unit normal n. The traction acting on this element
is given by t = σn♭, where σ denotes the Cauchy stress tensor, n♭ = gn (the 1-form corresponding to n)
and the corresponding elemental force is f = t da. In components, this gives ta = σabnb, with nb = gbcn

c.
The corresponding area element in the reference configuration B has area dA and G-unit normal N. The first
Piola–Kirchhoff stress tensor P is defined by relating forces in the deformed and reference configurations as

t da = PN♭ dA , N♭ = GN . (2.7)

Using Nanson’s formula n♭ da = J F−⋆ N♭ dA (nada = J F−A
a NAdA), one obtains the classical relation

P = J σF−⋆ , (2.8)

where the Jacobian is given in (2.4).7 In component form, P aA = J σab F−A
b. Pulling the force f back to the

reference configuration defines the second Piola–Kirchhoff stress tensor S through F−1t da = SN♭ dA. It then
follows that

S = F−1P = J F−1 σF−⋆ , (2.9)

6It is worth emphasizing that the left-hand side of (2.5) corresponds to the classical representation of the energy function,
whereas the rightmost expression can be interpreted as its geometric representation.

7For isotropic growth, one has
√
I3 = J = g−3

√
det g

det G̊
detF = g−3 J̊ , where J̊ denotes the Jacobian in the absence of growth.
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or, equivalently in components, SAB = F−A
a P

aB = J F−A
a σ

ab F−B
b. For a hyper-anelastic body, the first

Piola–Kirchhoff stress tensor is obtained from the deformation through the energy function as

P = g♯ ∂
e

W

∂F
. (2.10)

Equivalently,

σ = J−1g♯ ∂
e

W

∂F
F⋆ . (2.11)

Remark 2.2. In the classical approach to growth mechanics, elastic energy is defined with respect to the
“intermediate configuration”. The volume element of the intermediate configuration dV̊ and that of the material

manifold dV are related as dV̊ =
g

JdV , where
g

J = det
g

F. Let us denote the classical elastic energy by
e

W0. Thus,
e

W0 dV̊ =
e

WdV , and hence,
e

W0 =
g

J−1
e

W . In classical growth mechanics the Cauchy stress is written as

σ =
e

J−1g♯ ∂
e

W0

∂
e

F

e

F⋆ . (2.12)

Therefore,

σ =
e

J−1g♯
g

J−1 ∂
e

W

∂
e

F

e

F⋆ = J−1g♯ ∂
e

W

∂
e

F

e

F⋆ . (2.13)

From (2.5), one can write

∂
e

W

∂
e

F
=

∂
e

W

∂F

∂F

∂
e

F
=

∂
e

W

∂F

g

F⋆ . (2.14)

Thus,

∂W

∂
e

F

e

F⋆ =
∂

e

W

∂F

g

F⋆
e

F⋆ =
∂

e

W

∂F
(

e

F
g

F)⋆ =
∂

e

W

∂F
F⋆ . (2.15)

Therefore, from (2.13) we have

σ = J−1g♯ ∂
e

W

∂
e

F

e

F⋆ = J−1g♯ ∂
e

W

∂F
F⋆ . (2.16)

This implies that the Cauchy stresses calculated using the two approaches are identical.

Arteries are effectively monoclinic solids. A monoclinic solid in its initial state has three material preferred
directions N̊1(X), N̊2(X), and N̊3(X) such that N̊1 · N̊2 ̸= 0 and N̊3 is normal to the plane of N̊1 and N̊2

[Merodio and Ogden, 2020]. In the material manifold the three vectors representing the material preferred

directions are N =
g

F∗N̊i =
g

F−1N̊i, i = 1, 2, 3. A monoclinic solid has an integrity basis {I1, . . . , I9}, where
[Spencer, 1986]

I1 = trC = CA
A , I2 = detC trGC−1 = det(CA

B)(C
−1)DD , I3 = detC = det(CA

B) ,

I4 = N ·C ·N1 = NA
1 NB

1 CAB , I5 = N1 ·C2 ·N1 = N1 ·C♭G♯C♭ ·N1 = NA
1 NB

1 CBM CM
A ,

I6 = N2 ·C ·N2 = NA
2 NB

2 CAB , I7 = N2 ·C2 ·N2 = N2 ·C♭G♯C♭ ·N2 = NA
2 NB

2 CBM CM
A ,

I8 = IN1 ·C ·N2 , I9 = I2 , I = N1 ·N2 .
(2.17)

The elastic energy function of a monoclinic solid depends on these nine invariants, i.e.,

e

W =
e

W (X, I1, I2, I3, I4, I5, I6, I7, I8, I9) . (2.18)

In terms of the integrity basis, the Cauchy stress has the following representation

σ =
2√
I3

{
(I2 W2 + I3 W3)g

♯ +W1 b
♯ − I3 W2 c

♯ +W4 n1 ⊗ n1 +W5

[
n1 ⊗ (b♯gn1) + (b♯gn1)⊗ n1

]
+W6 n2 ⊗ n2 +W7

[
n2 ⊗ (b♯gn2) + (b♯gn2)⊗ n2

]
+ IW8 (n1 ⊗ n2 + n2 ⊗ n1)

}
,

(2.19)
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where nj = FNj (j = 1, 2), Wi =
∂W

∂Ii
, i = 1, . . . , 9, and W is the total energy, which may have non-elastic

contributions, e.g., when a growth energy
g

W is considered W =
e

W +
g

W .
For an incompressible solid I3 = 1, W3 = 0, and the Cauchy stress includes an indeterminate part −pg♯. In

this case, the Cauchy stress admits the following representation:

σ = (−p+ 2I2 W2)g
♯ + 2W1 b

♯ − 2W2 c
♯ + 2W4 n1 ⊗ n1 + 2W5

[
n1 ⊗ (b♯gn1) + (b♯gn1)⊗ n1

]
+ 2W6 n2 ⊗ n2 + 2W7

[
n2 ⊗ (b♯gn2) + (b♯gn2)⊗ n2

]
+ 2IW8 (n1 ⊗ n2 + n2 ⊗ n1) .

(2.20)

Remark 2.3. In a pure elasticity problem, one can replace −p + 2I2W2 with −p, since p is an unknown
determined as part of the solution. However, in a growth mechanics problem, we will show that p appears
explicitly in the growth equation (2.48), and one must either retain the full expression −p + 2I2W2 or replace
−p in the growth equation with −p− 2I2W2.

2.2.2 Dissipation potential

Bulk growth is a dissipative process. This means that in any mechanical formulation of growth, dissipation
due to the evolution of the growth tensor must be taken into account. Let us assume the existence of a

dissipation potential (or Rayleigh dissipation function) ϕ = ϕ(X,F,
g

F,
ġ

F,G, g). Objectivity implies that ϕ =

ϕ̂(X,C♭,
g

F,
ġ

F,G). Let us assume that ϕ is a convex function of
ġ

F [Ziegler, 1958; Ziegler and Wehrli, 1987;
Germain et al., 1983; Goldstein et al., 2002; Kumar and Lopez-Pamies, 2016]. A part of the generalized force
that corresponds to the evolution of growth tensor is related to the dissipation potential as

Bd
g = − ∂ϕ

∂
ġ

F
. (2.21)

2.2.3 Growth energy

Drawing on the variational framework introduced by Francfort and Marigo [1998] to model crack evolution, Ku-
mar and Yavari [2023] proposed a class of evolution energies that represent the energetic expenditure associated
with cellular growth and remodeling. These evolution energies are postulated to compete with the elastic strain
energy, and this competition is assumed to govern the overall remodeling process. They applied this approach
in the previous work to the case of remodeling of fiber-reinforced materials. Motivated by this study, we propose
to introduce a growth energy which controls the tendency of the material to grow in response to changes in

mechanical loading. We denote it as
g

W with the following functional form

g

W =
g

W (X,C♭,S,∇G
g

F,G) , (2.22)

where ∇G
g

F is the covariant derivative of the growth tensor in the reference configuration and has the following
components

g

FA
B|C =

∂
g

FA
B

∂XC
+ ΓA

CD

g

FD
B − ΓD

BC

g

FA
D . (2.23)

It should be noted that there is no reason to expect that growth energy explicitly depends only on strain; it may
depend on stress as well as emphasized in (2.22). Instead of postulating a growth equation (or an evolution law)
[Goriely, 2017], our idea is to derive all the governing equations, including a growth equation, using a single
variational principle.

Remark 2.4. It should be emphasized that (2.22) is a constitutive choice. Another choice is the following

g

W = Wg(X,C♭,
g

F,∇G̊
g

F, G̊) = Wg(X,C♭,
g

F∗ g

F,
g

F∗∇G̊
g

F,
g

F∗G̊) =
g

W (X,C♭,
g

F∗∇G̊
g

F,G) . (2.24)

2.3 Balance Laws

In this section, the governing equations of growing bodies are derived in a variational setting. In addition to
the standard governing equations of nonlinear elasticity, a growth equation is also derived.
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2.3.1 Balance of mass

The mass density at the material point X ∈ B at time t is denoted by ρ0(X, t). The balance of mass for a
growing body in integral form for any subbody U ⊂ B is written as

d

dt

∫
U
ρ0 dV =

∫
U
Sm dV , (2.25)

where Sm = Sm(X, t) is the material rate of change of mass per unit (stress-free) volume. Knowing that

dV =
√
detG dX1 ∧ dX2 ∧ dX3 and G =

g

F∗G̊ , from (2.25) one concludes that ρ0 = ρ0(X,
g

Ft(X), G̊(X), t).

Using the identity
d

dt
detG = G−1 :Ġ (detG), we have

d

dt
dV = 1

2G
−1 :Ġ dV . Thus

d

dt

∫
U
ρ0 dV =

∫
U

Å
ρ̇0 + ρ0

1

2
G−1 :Ġ

ã
dV =

∫
U
Sm dV . (2.26)

Therefore, the local form of the balance of mass is written as

ρ̇0 +
1

2
ρ0 tr Ġ = Sm . (2.27)

In order to make a connection with the classical formulation of growth mechanics, we next rewrite the balance

of mass in terms of the growth distortion
g

F. From G =
g

F⋆ G̊
g

F with G̊ time-independent, we get Ġ =
ġ

F⋆ G̊
g

F +
g

F⋆ G̊
ġ

F. Note that tr Ġ = Ġ : G−1 = tr(ĠG−1). In components, GAB = G̊MN

g

FM
A

g

FN
B , and

hence ĠAB = G̊MN

( ġ

FM
A

g

FN
B +

g

FM
A

ġ

FN
B

)
. Thus, ĠAB GBA = 2

ġ

FM
A

g

F −A
M = 2 tr(

ġ

F
g

F−1). Therefore,

tr Ġ = 2 tr(
ġ

F
g

F−1). Now the balance of mass is rewritten as

ρ̇0 + ρ0 tr(
ġ

F
g

F−1) = Sm . (2.28)

From dV =
√
detG dX1 ∧ dX2 ∧ dX3 and G =

g

F⋆G̊
g

F, one can see that dV = det
g

F
√
det G̊ dX1 ∧ dX2 ∧

dX3 = (det
g

F) dV̊ . The growth Jacobian is defined such that dV =
g

J dV̊ . Thus,
g

J = det
g

F, and hence,
ġ

J = (det
g

F)
g

F−1 :
ġ

F =
g

J
g

F−1 :
ġ

F. Therefore, the balance of mass is rewritten as:

ρ̇0 + ρ0

ġ

J
g

J
= Sm . (2.29)

2.3.2 The Lagrange-d’Alembert principle

In this section we derive the governing equations of a body undergoing finite deformations while growing using

the Lagrange-d’Alembert principle. For bulk growth, one has the two independent variations (δφ, δ
g

F). The
Lagrangian density is defined as L = T −ρ0W , where T = 1

2ρ0∥V ∥2g = 1
2ρ0⟨⟨V,V⟩⟩g is the kinetic energy density,

and W =
e

W +
g

W with
e

W and
g

W being the elastic and growth energies, respectively. The Lagrange-d’Alembert
variational principle states that the physical configuration of the growing body satisfies the following identity
[Lanczos, 1962; Marsden and Ratiu, 2013]:

δ

∫ t2

t1

∫
B
L dV dt+

∫ t2

t1

∫
B
Bg :δ

g

F dV dt+

∫ t2

t1

∫
B
ρ0⟨⟨B, δφ⟩⟩g dV dt+

∫ t1

t0

∫
B
⟨⟨SmV, δφ⟩⟩g dV dt

+

∫ t2

t1

∫
∂B

⟨⟨T , δφ⟩⟩g dAdt = 0 ,

(2.30)

for any variation fields δφ and δ
g

F,8 where B and T are, respectively, the body force per unit mass and the
boundary traction per unit undeformed area. Note that SmV is the rate of momentum corresponding to mass

8It is assumed that δφ(X, t1) = δφ(X, t2) = 0, and δ
g

F(X, t1) = δ
g

F(X, t2) = 0.
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growth (resorption). The growth generalized force Bg is assumed to be the sum of a dissipative force Bd
g

(corresponding to a dissipation potential) and a non-dissipative force B̂g (a growth configurational body force
[Kumar et al., 2018]) that depends on both stress and growth distortion:

Bg = − ∂ϕ

∂
ġ

F
+ B̂g(

g

F,S,G) . (2.31)

Next, we carry out the variations.

• δφ variations: It is straightforward to show that this variation yields the balance of linear momentum along
with Neumann boundary conditions [Kumar and Yavari, 2023]:

Div

Å
ρ0g

♯ ∂W

∂F

ã
+ ρ0B = ρ0A , in B ,

ρ0g
♯ ∂W

∂F
N̂ = T , on ∂NB .

(2.32)

We assume that the boundary of the body is the disjoint union of the Neumann ∂NB and Dirichlet ∂DB parts,
∂B = ∂NB ⊔ ∂DB. If the growing material is incompressible, a term p(J − 1) is added to the Lagrangian
density. Thus, δL = δT − δ(ρ0W ) + p δJ = δT − δ(ρ0W ) + pJ F−1 : δF. The Euler-Lagrange equations and
the natural boundary conditions are written as

Div

ï
−pJ F−1 + ρ0g

♯ ∂W

∂F

ò
+ ρ0B = ρ0A , in B ,ï

−pJ F−1 + ρ0g
♯ ∂W

∂F

ò
N̂ = T , on ∂NB .

(2.33)

• δ
g

F variations: Recall that T = 1
2ρ0⟨⟨V,V⟩⟩g, and hence δT = 1

2δρ0⟨⟨V,V⟩⟩g. By definition of the mass
source Sm, we have

d

dt

∫
U
ρ0(X, t) dV =

∫
U
Sm(X, t) dV =

∫
U
S̊m(X, t) dV̊ , (2.34)

where S̊m is the prescribed mass source in the initial material manifold. Hence, the integral mass balance
may be written as ∫

U
ρ0(X, t) dV =

∫
U
ρ0(X, t0) dV +

∫ t

t0

∫
U
S̊m(X, τ)dV̊ dτ . (2.35)

For a fixed S̊m, we consider variations ρ0(X, t; ϵ) and G(X, t; ϵ), so that for arbitrary ϵ:∫
U
ρ0(X, t; ϵ) dVϵ =

∫
U
ρ0(X, t0; ϵ) dVϵ +

∫ t

t0

∫
U
S̊m(X, τ) dV̊ dτ . (2.36)

Differentiating with respect to ϵ, evaluating at ϵ = 0, and knowing that all variations vanish at t = t0, we
obtain ∫

U

Å
δρ0 +

1

2
ρ0 tr(δG)

ã
dV = 0 . (2.37)

Since U is arbitrary, this yields the pointwise constraint δρ0+
1
2ρ0 tr(δG) = 0, and hence δρ0 = − 1

2ρ0 tr(δG) =
− 1

2ρ0G
−1 :δG [Yavari, 2010]. Thus

δ(T dV ) = −1

4
ρ0⟨⟨V,V⟩⟩g G

−1 :δG dV +
1

2
ρ0⟨⟨V,V⟩⟩g

Å
1

2
tr(δG)dV

ã
= 0 , (2.38)

where use was made of the identity δdV = 1
2 tr(δG) dV . Variation of the total energy is written as

δ(ρ0WdV ) = ρ0
∂W

∂G
:δG , (2.39)
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where W =
e

W +
g

W and use was made of the fact that δ(ρ0dV ) = 0. Thus

δ(ρ0W ) = ρ0
∂W

∂G
:δG dV . (2.40)

For anisotropic solids structural tensors are included in the arguments of the energy and the above variation
should be modified to read

δW =

[
∂

e

W

∂G
+

∂
g

W

∂G

]
:δG+

[
∂

e

W

∂Λ
+

∂
g

W

∂Λ

]
:δΛ , (2.41)

where Λ is a collection of structural tensors that explicitly depends on the symmetry group. For now, let us

ignore the structural tensors. From (2.6), one writes δG = δ(
g

F⋆G̊
g

F) = (δ
g

F)⋆G̊
g

F+
g

F⋆G̊δ
g

F. Thus[
∂

e

W

∂G
+

∂
g

W

∂G

]
:
[
(δ

g

F)⋆G̊
g

F+
g

F⋆G̊δ
g

F
]
= 2G̊

g

F⋆

[
∂

e

W

∂G
+

∂
g

W

∂G

]
:δ

g

F = 2
g

F−⋆G

[
∂

e

W

∂G
+

∂
g

W

∂G

]
:δ

g

F . (2.42)

Therefore, the variational principle (2.30) is simplified to read∫ t2

t1

∫
B

{
−2ρ0

g

F−⋆G

[
∂

e

W

∂G
+

∂
g

W

∂G

]
− ∂ϕ

∂
ġ

F
+ B̂g

}
: δ

g

F dV dt = 0 , (2.43)

where the identity G−1 : δG = 2
g

F−1 : δ
g

F was used in the second term on the right-hand side. This implies
that the growth equation for isotropic solids reads

∂ϕ

∂
ġ

F
= −2ρ0

g

F−⋆G

[
∂

e

W

∂G
+

∂
g

W

∂G

]
+ B̂g . (2.44)

Remark 2.5. When gradient effects are considered in the growth energy, one can show that 9 an extra term
will appear in the growth equation:

∂ϕ

∂
ġ

F
= −2ρ0

g

F−⋆G

[
∂

e

W

∂G
+

∂
g

W

∂G

]
−Div

(
∂

g

W

∂∇G
g

F

)
+ B̂g . (2.46)

There is also a new natural boundary condition:

∂
g

W

∂∇G
g

F
·N = 0 , on ∂B . (2.47)

Remark 2.6. When the material is incompressible, one adds a term p(J −1) to the Lagrangian density. When
φ varies, the Lagrangian variation is calculated as δL = δT − δ(ρ0W ) + p δJ = δT − δ(ρ0W ) + pJ F−1 : δF.

Recall that J = (detg)
1
2 (detG)−

1
2 detF, and hence when

g

F varies, there is a corresponding variation δJ =

− 1
2J (detG)−1 δ(detG) = − 1

2J G−1 : δG = −J
g

F−1 : δ
g

F. Thus, for
g

F-variations: δL = −δ(ρ0W ) + p δJ =

−δ(ρ0W )− pJ
g

F−1 :δ
g

F. In this case the growth equation is modified to read

∂ϕ

∂
ġ

F
= −2ρ0

g

F−⋆G

[
∂

e

W

∂G
+

∂
g

W

∂G

]
− pJ

g

F−1 . (2.48)

9In this case, the variation of the energy contains the following additional term:

∂
g

W

∂∇G
g

F
:δ∇G

g

F =
∂

g

W

∂∇G
g

F
:∇Gδ

g

F = Div

(
∂

g

W

∂∇G
g

F
:δ

g

F

)
−Div

(
∂

g

W

∂∇G
g

F

)
:δ

g

F . (2.45)

Within the action principle, the first term on the right-hand side yields the natural boundary condition (2.47), while the second

term gives the additional contribution −Div

Å
∂

g
W

∂∇G
g
F

ã
in the growth equation (2.46).
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Remark 2.7. Our formulation is closely related to the gradient flow models recently proposed for morphoe-
lasticity [Ouzeri, 2026]. In particular, the evolution equation for the growth tensor may be interpreted as a
dissipative evolution of the material metric G driven by an Eshelby-type configurational stress. In this in-
terpretation, growth and remodeling correspond to a gradient flow of the energy functional with respect to
a prescribed dissipation potential defined on variations of G. This is consistent with the viewpoint that, for
isotropic morphoelastic bodies, growth evolves as a steepest-descent process governed by energetic driving forces
and constitutive dissipation.

2.3.3 Isotropic growth: Material metric and the growth equation

Let us consider cylindrical coordinates (R,Θ, Z) in the reference configuration of an artery. In its reference
configuration, the artery is assumed to have inner and outer radii Ri and Ro, respectively. The artery is
assumed to be made of an incompressible isotropic solid reinforced by two families of helical fibers. In the
reference configuration the unit tangent vector to the two fibers at X = (R,Θ, Z) ∈ B are denoted by N1(X)
and N2(X), which are G-unit vectors. For helical fibers N1(X) = N1(R) and N2(X) = N2(R). The distributed
fibers make the artery effectively a monoclinic solid. The tangent vectors to the deformed fibers in the current

configuration are denoted as n1 = FN1 and n2 = FN2. We assume isotropic growth, i.e.,
g

F = g I, where I is
the identity of TXB.

We consider a dissipation potential ϕ = ϕ(g, ġ, I1, . . . , I9), which is convex in the rate of growth factors. For
our numerical examples we use a quadratic dissipation potential of the following form

ϕ =
1

2
K ġ2 , (2.49)

where K = K(I1, . . . , I9) > 0. The generalized force corresponding to the evolution of the growth factor is
related to the dissipation potential as

Bg = − ∂ϕ

∂ġR
+ B̂g = −K ġ+ B̂g . (2.50)

For our numerical examples, we consider a growth energy that has the following form

g

W (g, , I1, . . . , I9) =
1

2
κg (g− 1)2 +

1

2
κ̂g ∥∇g∥2 , (2.51)

where κg = κg(I1, . . . , I9) > 0.

2.4 The first law of thermodynamics

The first law of thermodynamics (the balance of energy) is expressed as [Epstein and Maugin, 2000; Lubarda
and Hoger, 2002b]:10

d

dt

∫
U
ρ0

Å
W +

1

2
⟨⟨V,V⟩⟩g

ã
dV =

∫
U
ρ0
Ä
⟨⟨B,V⟩⟩g +R

ä
dV +

∫
∂U

Ä
⟨⟨T,V⟩⟩g +H

ä
dA

+

∫
U
B̂g :

ġ

FdV +

∫
U
Sm

Å
W +

1

2
⟨⟨V,V⟩⟩g

ã
dV .

(2.52)

Here, U ⊂ B is an arbitrary sub-body, W denotes the energy function or internal energy density per unit mass in
the reference configuration, R = R(X, t) is the heat supply per unit mass, H = −⟨⟨Q, N̂⟩⟩G represents the heat

flux, Q = Q(X,T,dT,C,G) is the external heat flux per unit area, N̂ is the G-unit normal to the boundary
∂B, T = T (X, t) is the absolute temperature field, dT is the exterior derivative of temperature (a 1-form), and
Sm = Sm(X, t) is the material rate of change of mass per unit (stress-free) volume. Note that Sm is identically
zero in the absence of bulk growth.

10Note that the last term in (2.52) is included to account for changes in the internal and kinetic energies of the system resulting
from bulk growth characterized by the material rate of change of mass Sm. In other words, a growing body is an open system, and
the last term on the right-hand side explicitly accounts for this. We should also note that the material volume element is explicitly
time dependent. One can still use an energy per unit volume. In that case instead of SmW on the right-hand side one would have
1
2
G−1 :ĠW instead.
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The local form of the balance of energy is written as

ρ0Ẇ = ρ0R+P :∇V −DivQ+ ⟨⟨DivP+ ρ0(B−A),V⟩⟩g + B̂g :
ġ

F

+

Å
Sm − ρ̇0 −

1

2
ρ0 Ġ :G−1

ãÅ
W +

1

2
⟨⟨V,V⟩⟩g

ã
.

(2.53)

At this stage, we have not yet established that the first Piola-Kirchhoff stress is expressed as P = g♯ ∂W

∂F
, as

this relationship is derived after using the second law of thermodynamics (see Sadik and Yavari [2025] for more
details). However, to facilitate the calculations, we will assume it for now. We also use the local balance of mass
(2.27). It can be readily shown that P :∇V = 1

2S : Ċ♭.11 Consequently, the local form of the energy balance
becomes:

ρ0Ẇ = ρ0R+
1

2
S :Ċ♭ −DivQ+ B̂g :

ġ

F . (2.54)

2.5 The second law of thermodynamics

The second law of thermodynamics can be expressed in the form of the material Clausius-Duhem inequality
[Marsden and Hughes, 1983; Epstein and Maugin, 2000; Lubarda and Hoger, 2002b], which is written as:12

d

dt

∫
U
ρ0 NdV ≥

∫
U
ρ0

R

T
dV +

∫
∂U

H

T
dA+

∫
U
Sm NdV , (2.55)

whereN = N̂ (X,T,C♭,G) is the material entropy density (per unit mas). The local form of the Clausius-Duhem
inequality is expressed as:

η̇ = ρ0T Ṅ − ρ0R+ T Div

Å
Q

T

ã
−
Å
Sm − ρ̇0 −

1

2
ρ0 Ġ :G−1

ã
TN ≥ 0 , (2.56)

where η̇ is the rate of energy dissipation. Using the local balance of mass (2.27), this is further reduced to read

η̇ = ρ0T Ṅ − ρ0R+ T Div

Å
Q

T

ã
≥ 0 . (2.57)

The free energy density is defined as Ψ = W − TN , which can be expressed as Ψ = Ψ̂(X,T,C♭,G). Observe
that T Ṅ = Ẇ − Ψ̇− ṪN , and consequently

η̇ = ρ0Ẇ − ρ0Ψ̇− ρ0ṪN +DivQ− 1

T
⟨dT,Q⟩ − ρ0R ≥ 0 . (2.58)

Substituting (2.54) into the above inequality, one obtains

η̇ =
1

2
S :Ċ♭ + B̂g :

ġ

F− ρ0Ψ̇− ρ0ṪN − 1

T
⟨dT,Q⟩ ≥ 0 . (2.59)

The total time derivative of the free energy is written as

Ψ̇ =
∂Ψ̂

∂T
Ṫ +

∂Ψ̂

∂C♭
:Ċ♭ +

∂Ψ̂

∂G
:Ġ =

∂Ψ̂

∂T
Ṫ +

∂Ψ̂

∂C♭
:Ċ♭ + 2

g

F−⋆G
∂Ψ

∂G
:

ġ

F . (2.60)

Thus, (2.59) is simplifies as

η̇ = −ρ0

Ç
N +

∂Ψ̂

∂T

å
Ṫ +

1

2

Ç
S− 2ρ0

∂Ψ̂

∂C♭

å
:Ċ♭ − 1

T
⟨dT,Q⟩+

Å
B̂g − 2ρ0

g

F−⋆G
∂Ψ

∂G

ã
:

ġ

F ≥ 0 . (2.61)

11This is readily seen in components: 1
2
S :Ċ♭ = 1

2
SAB d

dt
(Fa

A F b
B gab) =

1
2
SAB(2V a

|A F b
B gab) = P bAV a

|A gab = P :∇V.
12Note that the last term is included to account for changes in the entropy of the system due to bulk growth.
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The above inequality must hold for arbitrary Ṫ , and Ċ♭, and therefore

N = −∂Ψ̂

∂T
, S = 2ρ0

∂Ψ̂

∂C♭
, η̇ = − 1

T
⟨dT,Q⟩+

Å
B̂g − 2ρ0

g

F−⋆G
∂Ψ

∂G

ã
:

ġ

F ≥ 0 . (2.62)

Notice that
∂W

∂G
=

∂W

∂G

∣∣∣∣∣
N ,C♭

=

ï
∂Ψ

∂G
+

∂Ψ

∂T

∂T

∂G

ò
+

∂T

∂G
N =

∂Ψ

∂G
, (2.63)

where the second equality follows from (2.62)1. Using the above identity and the growth equation (2.44) in
(2.62)3, one obtains13

η̇ = − 1

T
⟨dT,Q⟩+ ∂ϕ

∂
ġ

F
:

ġ

F ≥ 0 . (2.64)

If an isothermal process is assumed, i.e., dT = 0, the entropy production is simplified to read

η̇ =
∂ϕ

∂
ġ

F
:

ġ

F ≥ 0 . (2.65)

This is automatically satisfied when ϕ is a convex function of
ġ

F

3 Isotropic Bulk Growth of Arteries

Arteries comprise three layers—intima, media, and adventitia—with the latter two exerting the dominant influ-
ence on their mechanical response. In the literature, arteries are often modeled as double-layer shells, ignoring

the intima. We assume that an artery is radially inhomogeneous, i.e.,
e

W =
e

W (R). However, in our numerical
examples, we will work with a piecewise uniform elastic energy. The following features have been well estab-
lished through the analysis of experimental observations for the passive mechanical response and active response
through bulk growth in arterial walls:

• The inner and outer layers are well represented as a monoclinic solid with two preferred fiber directions or a
transversely isotropic solid with one preferred fiber direction [Holzapfel, 2004].

• The contribution of collagen fibers to the elasticity of arterial wall has been observed to be small for low
pressures, thus, it is common to describe the elastic response of each layer through an additive decomposition
of the strain energy function in the following form: W = Ŵ (I1) + W̃ (I4, I6).

• The artery operates under an oscillating state of stress. Viewing it as a cylindrical shell, it is subjected to
internal pressure and longitudinal traction from adjacent tissues.

• Observations suggest that close to a ‘homeostatic’ axial stretch, no further axial stretch is observed as internal
pressure is varied. This observation has been shown to be strongly related to the significant strain stiffening
of fibers [Goriely, 2017]. Use of a Fung-type hyperelastic model allows to capture this behavior.

• Bulk growth is associated with smooth muscle cell activation in the inner layer, resulting in an increase in
wall thickness and a change in the lumen diameter.

Let us consider a hollow circular cylindrical bar of initial length L and inner and outer radii Ri and Ro,
respectively. We assume that the outer cylindrical boundary is traction-free while the inner boundary is under
a time-dependent pressure pi(t).

14 We also assume that the bar has a fixed cylindrically-symmetric distribution
of radial and circumferential finite eigenstrains. The cylindrical coordinates (R,Θ, Z) are used for the reference
configurations.

13It turns out that this inequality holds for anisotropic solids as well.
14In our analysis, we start with an undeformed artery at time t = 0. The artery is then loaded by an internal pressure pi(t) until

pressure reaches a value p̊i at time ti and for this pressure the deformed artery has internal radius r̊i. We assume that in the time
interval [0, ti) there is no growth. Growth starts right at time ti. It is well known that arterial growth is accompanied by changes
in blood pressure. Depending on the stage of hypertension, systolic blood pressure can increase by approximately 10% to 50%
relative to normal levels. For modeling purposes, one may assume that for t > ti, pi(t) explicitly depends on the deformed inner
radius of the artery, i.e., pi = pi(r(Ri, t)) = pi(ri(t)). A typical nonlinear relationship between the transmural pressure and the
deformed inner radius of the artery is given by pi(t) = p̊i e

α(ri(t)−r̊i), where α is a material parameter. This form has been used
in several arterial wall models; see, e.g., [Langewouters et al., 1985; Olufsen et al., 2000]. In our numerical examples, we prescribe
the internal pressure as a known function of time.
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3.1 Kinematics

We assume that initially and before the growth process starts the bar has an axisymmetric distribution of radial
and circumferential eigenstrains. Thus, the material metric is assumed to have the following form [Yavari and
Goriely, 2013]

G̊(R) =

e2ω1(R) 0 0
0 R2e2ω2(R) 0
0 0 1

 , (3.1)

where ω1(R) and ω2(R) are some given functions that quantify the radial and circumferential eigestrains,15

respectively. Note that G̊ is non-flat, in general. We assume that the hollow circular cylindrical bar is reinforced
by two families of helical fibers. This makes the artery effectively monoclinic. The unit tangent vectors of the
two fiber families before growth are denoted by N̊1 = N̊1(R,Θ), and N̊2 = N̊2(R,Θ). These being unit vectors

means that ⟨⟨N̊1, N̊1⟩⟩G̊ = ⟨⟨N̊2, N̊2⟩⟩G̊ = 1. Let γ1(R) and γ2(R) be the angles that N̊1(R,Θ) and N̊2(R,Θ)

make with EΘ = ∂
∂Θ . Thus

N̊1(R,Θ) =
cos γ1(R)

Reω2(R)
EΘ(Θ) + sin γ1(R)EZ , N̊2(R,Θ) =

cos γ2(R)

Reω2(R)
EΘ(Θ) + sin γ2(R)EZ . (3.2)

Let us assume an isotropic growth for which

g

F =

g 0 0
0 g 0
0 0 g

 , (3.3)

where g = g(R, t) is an unknown function to be determined. The initial condition is: g(R, 0) = 1. Recall that

G =
g

F∗G̊ =
g

F⋆G̊
g

F, and hence

G(R, t) = g2(R, t)

e2ω1(R) 0 0
0 R2 e2ω2(R) 0
0 0 1

 . (3.4)

In the growing body the unit tangent vectors of the two fiber families are denoted by N1 = N1(R,Θ), and
N2 = N2(R,Θ) and are represented as follows

N1(R,Θ) =
cos γ1(R)

R g(R, t) eω2(R)
EΘ(Θ) +

sin γ1(R)

g(R, t)
EZ ,

N2(R,Θ) =
cos γ2(R)

R g(R, t) eω2(R)
EΘ(Θ) +

sin γ2(R)

g(R, t)
EZ .

(3.5)

For the Euclidean ambient space the cylindrical coordinates (r, θ, z) are used. The metric of the Euclidean
ambient space has the following representation

g =

1 0 0
0 r2 0
0 0 1

 . (3.6)

The following deformations are assumed: (r, θ, z) = (r(R, t),Θ, λ(t)Z).16 We consider two cases: i) Displacement-
control loadings in which λ(t) is a given function, and ii) force-control loadings in which λ(t) is a function to be
determined. Deformation gradient is written as

F =

r,R(R, t) 0 0
0 1 0
0 0 λ(t)

 . (3.7)

15These eigenstrains can have different sources, e.g., defects, temperature changes, swelling, etc.
16These deformations are subsets of Family 3 universal deformations—deformations that can be maintained in the absence of

body forces for any member of a given class of materials [Ericksen, 1954, 1955]. See Yavari and Goriely [2021, 2022] for generalization
to anisotropic solids, and specifically, fiber-reinforced solids.
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For an incompressible solid, one has

J =

…
detg

detG
detF =

λ(t)

R g3(R, t) eω1(R)+ω2(R)
r(R, t) r,R(R, t) = 1. (3.8)

Thus

r2(R, t) = r2i (t) +
2

λ(t)

∫ R

Ri

ξ g3(ξ, t) eω1(ξ)+ω2(ξ)dξ , (3.9)

where ri(t) = r(Ri, t) is an unknown function a priori.

3.2 Stress

The eight invariants (recall that I3 = 1) are written as

I1 =
r2e−2ω2(R)

R2g2(R, t)
+

R2g4(R, t) e2ω2(R)

λ2r2
+

λ2

g2(R, t)
,

I2 =
R2g2(R, t) e2ω2(R)

r2
+

λ2r2e−2ω2(R)

R2g4(R, t)
+

g2(R, t)

λ2
,

I4 =
r2 cos2 γ1 e

−2ω2(R)

R2g2(R, t)
+

λ2 sin2 γ1
g2(R, t)

,

I5 =
r4 cos4 γ1 e

−4ω2(R)

R4g4(R, t)
+

λ4 sin2 γ1
g4(R, t)

,

I6 =
r2 cos2 γ2 e

−2ω2(R)

R2g2(R, t)
+

λ2 sin2 γ2
g2(R, t)

,

I7 =
r4 cos4 γ2 e

−4ω2(R)

R4g4(R, t)
+

λ4 sin2 γ2
g4(R, t)

,

I8 = cos(γ1 − γ2)

ñ
r2 cos γ1 cos γ2 e

−2ω2(R)

R2 g2(R, t)
+

λ2 sin γ1 sin γ2
g2(R, t)

ô
,

I9 = cos2(γ1 − γ2) .

(3.10)

For an incompressible monoclinic solid, the Cauchy stress is given in (2.20), where

Wi =
∂W

∂Ii
=

∂
e

W

∂Ii
+

∂
g

W

∂Ii
, i = 1, 2, 4, 5, . . . 9 . (3.11)
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The non-zero Cauchy stress components are

σrr(R, t) = − p(R, t) +
2R2e2ω2(R) g4(R, t)

λ2 r2(R, t)
W1 +

ï
2 g2(R, t)

r2(R, t)λ2

(
r2(R, t) + e2ω2(R)R2λ2

)ò
W2 ,

σθθ(R, t) = − p(R, t)

r2(R, t)
+

e−2ω2(R)

R2 g2(R, t)
W1 +

Å
1

R2 g4(R, t)

[
e−2ω2(R)λ2 +

R2 g6(R, t)

r2(R, t)λ2

]ã
W2

+
e−2ω2(R) cos2 γ1

R2 g2(R, t)
W4 +

2e−4ω2(R) r2(R, t) cos2 γ1
R4 g4(R, t)

W5

+
e−2ω2(R) cos2 γ2

R2 g2(R, t)
W6 +

2e−4ω2(R) r2(R, t) cos2 γ2
R4 g4(R, t)

W7

+
2e−2ω2(R) cos γ1 cos(γ1 − γ2) cos γ2

R2 g2(R, t)
W8 ,

σθz(R, t) =
λe−ω2(R) sin(2γ1)

R g2(R, t)
W4 +

λe−3ω2(R) sin(2γ1)
[
r2(R, t) + e2ω2(R)R2λ2

]
R3 g4(R, t)

W5

+
λe−ω2(R) sin(2γ2)

R g2(R, t)
W6 +

λe−3ω2(R)
[
r2(R, t) + e2ω2(R)R2λ2

]
sin(2γ2)

R3 g4(R, t)
W7

+
λe−ω2(R) [sin(2γ1) + sin(2γ2)]

R g2(R, t)
W8 ,

σzz(R, t) = − p(R, t) +
λ2

g2(R, t)
W1 +

Ç
e−2ω2(R) λ2r2(R, t)

R2 g4(R, t)
+

e2ω2(R) R2 g2(R, t)

r2(R, t)

å
W2

+
λ2 sin2 γ1
g2(R, t)

W4 +
2λ4 sin2 γ1
g4(R, t)

W5 +
λ2 sin2 γ2
g2(R, t)

W6 +
2λ4 sin2 γ2
g4(R, t)

W7

+
2λ2 sin γ1 sin γ2 cos(γ1 − γ2)

g2(R, t)
W8 .

(3.12)

The only nontrivial equilibrium equation σrr
,r +

1

r
σrr − rσθθ = 0 is simplified to read

∂

∂R
σrr(R, t) = f(R, t) , (3.13)

where

f(R, t) =

Ç
2λ2eω1(R)−ω2(R) g(R, t)

λ3R
− 2R3eω1(R)+3ω2(R) g7(R, t)

λ3r4(R, t)

å
W1

+

Ç
2λeω1(R)−ω2(R)

R g(R, t)
− 2R3eω1(R)+3ω2(R) g5(R, t)

λ r4(R, t)

å
W2

+
2 cos2 γ1 g(R, t) eω1(R)−ω2(R)

λR
W4 +

4r2(R, t) cos2 γ1 e
ω1(R)−3ω2(R)

λR3 g(R, t)
W5

+
2 cos2 γ2 g(R, t) eω1(R)−ω2(R)

λR
W6 +

4r2(R, t) cos2 γ2 e
ω1(R)−3ω2(R)

λR3 g(R, t)
W7

+
4 cos γ1 cos γ2 cos(γ1 − γ2) g(R, t) eω1(R)−ω2(R)

λR
W8 .

(3.14)

Integrating the above ODE from Ri to R, recalling that σrr(Ri, t) = −pi(t), and using (3.12)1, one obtains

−p(R, t) = −pi(t)−
2R2e2ω2(R) g4(R, t)

λ2 r2(R, t)
W1 −

ï
2 g2(R, t)

r2(R, t)λ2

(
r2(R, t) + e2ω2(R)R2λ2

)ò
W2 +

∫ R

Ri

f(ξ, t)dξ .

(3.15)
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Therefore, the physical circumferential stress σ̂θθ = r2σθθ, axial stress σ̂zz = σzz, and shear stress σ̂θz = rσθz

can be obtained. The boundary condition σrr(Ro, t) = 0 implies that∫ R

Ri

f(ξ, t)dξ = −pi(t) . (3.16)

Remark 3.1. In modeling arterial growth, we consider a thick cylindrical shell that, in the absence of external
forces, carries a distribution of eigenstrains. The artery is quasistatically loaded over the time interval t ∈ [0, ti]
without bulk growth. Bulk growth starts at t = ti. For t < ti, there is no growth and we have

−p̊(R, t) = −pi(t)−
2R2e2ω2(R)

λ2r2(R, t)
W1 +

2λ2r2(R, t) e−2ω2(R)

R2
W2

−
∫ R

Ri

2eω1(ξ)−3ω2(ξ)
(
λ2 r4(ξ, t) ξ2 e2ω2(ξ) − ξ6 e6ω2(ξ)

)
λ3 r4(ξ, t) ξ3

W1 dξ

−
∫ R

Ri

2eω1(ξ)−3ω2(ξ)
(
λ4 r4(ξ, t) ξ2 e2ω2(ξ) − λ2 ξ6 e6ω2(ξ)

)
λ3 r4(ξ, t) ξ3

W2 dξ

−
∫ R

Ri

2 cos2 γ1 e
ω1(ξ)−ω2(ξ)

λ ξ
W4 dξ −

∫ R

Ri

4r2(ξ, t) cos2 γ1 e
ω1(ξ)−3ω2(ξ)

λ ξ3
W5 dξ

−
∫ R

Ri

2 cos2 γ2 e
ω1(ξ)−ω2(ξ)

λ ξ
W6 dξ −

∫ R

Ri

4r2(ξ, t) cos2 γ2 e
ω1(ξ)−3ω2(ξ)

λ ξ3
W7 dξ

−
∫ R

Ri

4 cos γ1 cos γ2 cos(γ1 − γ2) e
ω1(ξ)−ω2(ξ)

λ ξ
W8 dξ .

(3.17)

3.3 Growth equations

We write the total energy as W =
e

W +
g

W , where
e

W =
e

W (X, I1, I2, I4, . . . , I9) is the elastic energy and
g

W is a
growth energy that has the form given in (2.51). Note that, in general, W1,W2,W4, . . . ,W9 contain contributions
from both the elastic and growth energies. For the growth energy specified in (2.51), we have

g

Wj :=
∂

g

W

∂Ij
=

1

2
(g− 1)2

∂κg

∂Ij
+

1

2

∂κ̂g

∂Ij
∥∇g∥2 , j = 1, 2, 4, . . . , 9 . (3.18)

We assume the dissipation potential given in (2.49) with its corresponding growth generalized force given in
(2.50). The variational principle (2.30) tells us that

−δ
e

W − δ
g

W + p δJ +Bg δg = 0 . (3.19)

Recall that J =
»

det g
detG detF, and hence δJ = − 1

2J δ(detG) = − 1
2J G−1 : δG. From G =

g

F⋆G̊
g

F, one obtains

δG = δ
g

F⋆G̊
g

F +
g

F⋆G̊δ
g

F. Thus, G−1 : δG =
g

F−1G̊−1
g

F−⋆ :
(
δ

g

F⋆G̊
g

F+
g

F⋆G̊δ
g

F
)
= 2

g

F−1G̊−1
g

F−⋆ :
g

F⋆G̊δ
g

F =

2
g

F−1 : δ
g

F. Therefore
δJ = −J

g

F−1 : δ
g

F = −
g

F−1 : δ
g

F = −3 g−1 δg . (3.20)

Thus, (3.19) is simplified to read (
K ġ+ 3p g−1

)
δg = −δ

e

W − δ
g

W + B̂g δg . (3.21)

Remark 3.2. When a Lagrange multiplier p is introduced to enforce J = 1, the variations δr and δg are
treated as independent when taking variations of the invariants. Consider I1 = CAB GAB . If only g varies, then
δI1 = δCAB GAB + CAB δGAB . Thus, even though CAB depends on r,R as in (3.8), the variations δr and δg
remain independent at this stage. In particular, this implies that for calculating variations of the invariants,
(3.10) cannot be used unless r and g are treated as independent fields. In summary, for the purpose of taking
variations of the invariants (3.10), the fields r and g are treated as independent, while the relation (3.8) is used
only when evaluating the resulting expressions.
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The variation of the invariants (3.10) are written as

δI1 =

ñ
−2r2(R, t)e−2ω2(R)

R2g3(R, t)
− 2λ2

g3(R, t)
− 2R2e2ω2(R) g3(R, t)

r2(R, t)λ2

ô
δg(R, t) =: I1δg(R, t) ,

δI2 =

ñ
−4λ2r2(R, t)e−2ω2(R)

R2g5(R, t)
−

4
(
r2(R, t) + λ2R2e2ω2(R)

)
g(R, t)

r2(R, t)λ2

ô
δg(R, t) =: I2δg(R, t) ,

δI4 = −
2
(
r2(R, t)e−2ω2(R) cos2 γ1 + λ2R2 sin2 γ1

)
R2g3(R, t)

δg(R, t) =: I4δg(R, t) ,

δI5 = −
4
(
r4(R, t)e−4ω2(R) cos2 γ1 + λ4R4 sin2 γ1

)
R4g5(R, t)

δg(R, t) =: I5δg(R, t) ,

δI6 = −
2
(
r2(R, t)e−2ω2(R) cos2 γ2 + λ2R2 sin2 γ2

)
R2g3(R, t)

δg(R, t) =: I6δg(R, t) ,

δI7 = −
4
(
r4(R, t)e−4ω2(R) cos2 γ2 + λ4R4 sin2 γ2

)
R4g5(R, t)

δg(R, t) =: I7δg(R, t) ,

δI8 =

ñ
−
2e−2ω2(R) cos(γ1 − γ2)

(
r2(R, t) cos γ1 cos γ2 + λ2R2e2ω2(R) sin γ1 sin γ2

)
R2g3(R, t)

ô
δg(R, t) =: I8δg(R, t) .

(3.22)
Note that

δ
g

W =
∂

g

W

∂g
δg+

∂
g

W

∂∇g
· ∇δg+

g

W1 δI1 +
g

W2 δI2 +
g

W4 δI4 + . . .+
g

W2 δI9

= κg (g− 1)δg+ κ̂g ∇g · δ∇g+
g

W1 δI1 +
g

W2 δI2 +
g

W4 δI4 + . . .+
g

W9 δI9 ,

(3.23)

where
g

Wi :=
∂

g

W

∂Ii
=

1

2
(g− 1)2

∂κg

∂Ii
+

1

2

κ̂g

∂Ii
∥∇g∥2 , i = 1, 2, 4, . . . , 9 . (3.24)

Recall that for an incompressible monoclinic solid
e

W =
e

W (X, I1, I2, I4, . . . , I9). Thus

δ
e

W =
e

W1 δI1 +
e

W2 δI2 +
e

W4 δI4 + . . .+
e

W9 δI9 . (3.25)

Therefore

δ
e

W + δ
g

W = κg (g− 1)δg+ κ̂g ∇g · δ∇g

+ (
e

W1 +
g

W1) δI1 + (
e

W2 +
g

W2) δI2 + (
e

W4 +
g

W4) δI4 + . . .+ (
e

W9 +
g

W9) δI9 .
(3.26)

Simplifying (3.21) and using the variational principle (2.30) gives us the following growth equation

K ġ+ 3p g−1 = κ̂g ∆g− κg(g− 1) + B̂g

+ (
e

W1 +
g

W1)I1 + (
e

W2 +
g

W2)I2 + (
e

W4 +
g

W4)I4 + (
e

W5 +
g

W5)I5 + (
e

W6 +
g

W6)I6

+ (
e

W7 +
g

W7)I7 + (
e

W8 +
g

W8)I8 ,

(3.27)

along with the boundary condition g′(R0, t) = 0.
We would like to make sure that g(R, t) = 1 for t < ti. It should be noted that a configurational force

is required to control the growth equation at the onset of the growth process. More precisely, we start from
an undeformed artery and quasi-statically load it until the normal physiological lumen pressure is reached, at
which point the growth process begins. The growth equation above can then be obtained from (3.27) by the
following choice of the configurational force B̂g:

B̂g = 3 p̊ g−1

− (
e

W1 +
g

W1)̊I1 − (
e

W2 +
g

W2)̊I2 − (
e

W4 +
g

W4)̊I4 − (
e

W5 +
g

W5)̊I5 − (
e

W6 +
g

W6)̊I6

− (
e

W7 +
g

W7)̊I7 − (
e

W8 +
g

W8)̊I8 ,

(3.28)
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where I̊i (i=1,2,4,5,6,7,8) stand for the functions Ii for g = 1. Then the growth equations take the following
final form

K ġ+ 3(p− p̊) g−1 = κ̂g ∆g− κg(g− 1)

+ (
e

W1 +
g

W1)(I1 − I̊1) + (
e

W2 +
g

W2)(I2 − I̊2) + (
e

W4 +
g

W4)(I4 − I̊4) + (
e

W5 +
g

W5)(I5 − I̊5)

+ (
e

W6 +
g

W6)(I6 − I̊6) + (
e

W7 +
g

W7)(I7 − I̊7) + (
e

W8 +
g

W8)(I8 − I̊8) ,

(3.29)

where p̊ is given in (3.17). It can be observed from the numerical results in §4 that for t < ti, g(R, t) = 1.

3.4 The bulk growth initial-boundary value problem

For the artery, the force F (t) at the two ends of the bar (Z = 0, L) and the internal pressure are known. Thus
the unknown fields are ri(t), λ(t) and g(R, t). They are obtained from solving the initial-value problem that
consists of the growth equation (3.29), the equilibrium equation (3.16), the axial equilibrium equation

F (t) = 2π

∫ ro(t)

ri(t)

σzz(r, t)r dr =
2π

λ(t)

∫ Ro

Ri

σzz(R, t) , (3.30)

along with the initial conditions g(R, 0) = 1 and ri(0) = Ri.

Remark 3.3. The local balance of mass (2.27) is simplified to read

ρ̇0(R, t) + 3g−1(R, t) ġ(R, t) ρ0(R, t) = Sm(R, t) . (3.31)

This ODE determines the material mass density ρ0(R, t).

4 Numerical Results

The system of nonlinear integro-differential equations derived in the preceding section is solved numerically by
employing the finite difference method. In the present analysis, we consider a rabbit carotid artery, whose elastic
response has been experimentally characterized in previous studies. The experimental data are well represented
by the Fung-type, specifically the Holzapfel–Gasser–Ogden (HGO) [Holzapfel et al., 2004; Gasser et al., 2006],
hyperelastic constitutive model, for which

e

W =
µ1

2
(I1 − 3) +

k1
2k2

Ä
e k2(I4−1)2 − 1

ä
+

k1
2k2

Ä
e k2(I6−1)2 − 1

ä
, (4.1)

where µ1, k1, and k2 are positive material constants. The material constants are specified as follows. For the
inner medial layer of the artery, they take the values µ1 = 3 kPa and k1 = 2.36 kPa. For the outer adventitial
layer, the corresponding values are µ1 = 0.3 kPa and k1 = 0.56 kPa [Holzapfel, 2004]. We will vary the values
of constant k2 for the two layers. The geometric dimensions of the arterial wall are defined by an inner radius
of the media Ri = 0.71 mm, an outer radius of the media Rm = 0.97 mm, and an outer radius of the adventitia
Ro = 1.10 mm. The collagen fiber orientations in the medial layer are taken as γ1 = 29◦ and γ2 = −29◦,
whereas in the adventitial layer they are γ1 = 62◦ and γ2 = −62◦, but will also be varied. To examine the role
of anisotropy, results for isotropic elasticity are also considered by setting k1 = 0. The normotensive internal
pressure is prescribed as p0 = µ1+k1, while the hypertensive pressure increment is given by ∆p0 = 0.25(µ1+k1).
In the isotropic elasticity case, pressures of p0 = 0.4µ1 and ∆p0 = 0.1µ1 are adopted such that the inner radius
under normotensive and hypertensive conditions closely matches that obtained for the anisotropic case. The
parameter K, which appears in the dissipation potential and governs the characteristic time scale associated
with the growth process, is assigned a value of K = 0.03.

19



Figure 1: Isotropic growth evolution in a single layer artery. The growth parameter g is plotted at the inner (R = Ri) and outer
(R = Ro) radii as a function of time t. Results are shown for two values of the growth energy parameter, kg = 0.1 and 0.001, and
for both isotropic and anisotropic elastic responses.

4.1 Growth in a single-layer artery

Since the medial layer constitutes the primary load-bearing component of the arterial wall and exhibits the
most pronounced growth response, we first analyze a simplified single-layer model of the artery, neglecting the
adventitial layer [Rodŕıguez et al., 2007]. This assumption also facilitates a clearer illustration of the fundamental
behavior of the proposed model. Figure 1 presents the temporal evolution of the isotropic growth parameter g as
a function of the nondimensional time variable t for two representative values of the growth energy parameter,
kg = 0.1 and kg = 0.001. In addition to the results obtained for the anisotropic elastic response of the arterial
wall, those corresponding to an isotropic elasticity assumption (k1 = 0) are also shown for comparison. The
results reveal that the magnitude of growth is governed by the competition between the growth energy and the
strain energy stored in the tissue. In contrast to conventional models of volumetric growth [Lubarda and Hoger,
2002a], no explicit upper bound on the growth variable is prescribed. Instead, growth naturally approaches an
asymptotic steady-state value as a result of this intrinsic energetic competition. Notably, the asymptotic growth
value is found to be independent of the dissipation parameter K.

Variations in the growth energy constant kg significantly influence the asymptotic magnitude of growth. For
smaller values of kg, the energetic cost associated with growth decreases, thereby allowing for greater growth.
However, the extent of growth eventually saturates for sufficiently small kg, indicating that beyond a threshold
(approximately kg < 0.001 for the present arterial configuration), further reductions in kg do not lead to
appreciable changes in the maximum attainable growth. Thus, despite uncertainties in the precise calibration
of kg and, more broadly, the growth energy function, the proposed formulation robustly predicts a physically
realistic, bounded growth response.

An additional noteworthy observation concerns the influence of anisotropic elasticity. The inclusion of
anisotropy results in a more constrained isotropic growth response, with the growth parameter g saturating at
approximately 10% for low values of kg. Although this behavior may differ when anisotropic growth mechanisms
are incorporated, these results underscore the important role of three-dimensional structural anisotropy in
regulating bulk growth. This aspect is further explored through a parametric study presented in Figure 4.

Figure 2 depicts the corresponding temporal evolution of the arterial wall thickness, denoted by ∆r, as a
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Figure 2: Evolution of arterial wall thickness, ∆r, under three conditions: normotensive (internal pressure p0), hypertensive
(internal pressure p0 + ∆p0), and growth under hypertensive loading. Results are shown for isotropic and anisotropic elasticity,
considering two values of the growth energy parameter, kg.

function of the time variable t, for kg = 0.1 and kg = 0.001. The evolution process may be observed in three
distinct stages. In the first stage, the cylindrical arterial wall is subjected to the normotensive pressure p0 and
the corresponding axial force F . The second stage corresponds to the onset of a hypertensive condition, during
which the pressure increases to p0 + ∆p0. The third stage captures the subsequent gradual evolution of wall
thickness resulting from the growth process under sustained hypertensive loading.

For higher values of kg, the growth-induced change in wall thickness during the third stage exhibits a modest
increase relative to the hypertensive state, yet ∆r remains below its initial (normotensive) value. In contrast, for
smaller values of kg, the reduced energetic cost associated with growth permits ∆r to exceed the normotensive
wall thickness. Under isotropic elasticity, where the model predicts substantially higher levels of growth, the
wall thickening can reach magnitudes exceeding 20% relative to the normotensive configuration. Conversely,
in the case of anisotropic elasticity, the enhanced directional stiffness provides a regulatory effect, leading to
a more moderate increase in wall thickness. For comparison, experimental observations in both animal and
human studies have reported hypertensive wall thickening in the range of approximately 10–50% [Sáez et al.,
2014b; Fridez et al., 2002; Wiener et al., 1977; Boutouyrie et al., 1999; Schofield et al., 2002].

Figure 3 presents the radial profiles of the hoop (circumferential) stress, σθθ, plotted as a function of the
radial coordinate R, for the normotensive state (t = 5), the hypertensive state (t = 10), and the post-growth
state (t = 20). Growth influences the hoop stress distribution, partially restoring it toward the normotensive
condition and leading to a more uniform stress distribution across the arterial wall thickness, consistent with
observations [Chaudhry et al., 1997]. However, even substantial growth in the present isotropic growth analysis
results in only modest reductions in the hoop stress, such that the overall stress state remains considerably
elevated relative to the normotensive configuration. It should be noted that an anisotropic growth formulation
could produce a more pronounced reduction in the circumferential stress [Goriely, 2017]. Nevertheless, even in
such cases, the hoop stress is not expected to return precisely to its normotensive magnitude at every point
through the wall thickness.

To conclude this section, Figure 4 presents a comprehensive parametric study in which the fiber orientation
angles (γ1, γ2), the material parameter k2, and the pressure increment ∆p0 are systematically varied to assess
their respective influences on arterial growth. The temporal evolution of the isotropic growth parameter g is
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Figure 3: Hoop (circumferential) stress, σθθ, radial profile along the wall thickness plotted as a function of the radial coordinate, R.
Results are plotted at three states: normotensive state (t = 5), the hypertensive state (t = 10), and the post-growth state (t = 20).
They are shown for isotropic and anisotropic elasticity, considering two values of the growth energy parameter, kg.

plotted with respect to time t at both the inner and outer radii, R = Ri and R = Ro, respectively. Three
representative fiber orientation configurations, γ1 = −γ2 = 0◦, 29◦, and 60◦, are examined. The results indicate
that the growth parameter exhibits a non-monotonic dependence on the fiber orientation angles under identical
internal pressure and axial force conditions. Specifically, g attains a lower steady-state value for γ1 = −γ2 = 29◦

compared to both the 0◦ and 60◦ cases. This finding may provide valuable insight into the well-documented
phenomenon of collagen fiber remodeling in arterial walls [Driessen et al., 2003; Hariton et al., 2007]. Remodeling
and growth are intricately connected processes in arterial walls [Baaijens et al., 2010]. Although a fully coupled
analysis of growth and remodeling lies beyond the scope of the present work, related aspects of remodeling have
been investigated previously within a similar variational framework [Kumar and Yavari, 2023].

Next, the influence of the material parameter k2 in the HGO hyperelastic model (4.1) is analyzed by consider-
ing three representative values: k2 = 0.0084, 0.084, and 0.84, under identical loading conditions. This parameter
governs the degree of exponential stiffening in the nonlinear constitutive relation. As expected, larger values of
k2 result in stronger stiffening behavior, leading to a lower incentive to grow under force-controlled loading and,
consequently, reduced growth.

Finally, the effect of the pressure increment is examined by considering three levels of hypertensive loading:
∆p0 = 0.1p0, 0.25p0, and 0.5p0. As anticipated, higher pressure increments lead to more pronounced growth.
Interestingly, for the anisotropic arterial material considered, an increase of 50% in the internal pressure produces
only about a 15% increase in the growth parameter g, corresponding to an approximately 15% increase in the
wall thickness. This result highlights the moderating influence of anisotropy on the growth response under
elevated mechanical loads.

4.2 Growth generated by internal changes in the growth incentives

In the preceding section, growth was initiated through an increase in the internal pressure within the arterial
wall. A distinctive and novel aspect of the present variational formulation, however, is its ability to predict
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Figure 4: Parametric study assessing the role of fiber orientation angles (γ1, γ2), the material parameter k2, and the pressure
increment ∆p0 on growth parameter g.

Figure 5: Growth driven by the evolution in growth energy parameter kg from 0.1 to 0.001 at t = 20.

growth that may also be driven by the evolution of the growth energy itself, independent of changes in the applied
loads. There exists some experimental and theoretical evidence supporting this type of intrinsic growth incentive
in the literature [Humphrey et al., 2016]. Specifically, it has been proposed that, under certain physiological
conditions, hypertension may be preceded by an increase in structural stiffness, loosely defined as the product
of wall thickness and material stiffness.

Within the context of the present framework, an evolution in growth energy (or equivalently, in the effective
material elasticity) can lead to a change in arterial geometry, typically manifested as an increase in both the inner
radius and the wall thickness. Such geometric adaptation may, in turn, alter the hemodynamic environment,
resulting in elevated lumen pressure. This elevation could potentially establish a negative feedback mechanism
in which elevated pressure drives further growth.

To illustrate this capability of the variational formulation, we consider a simplified numerical example in
which the artery is subjected to constant internal pressure and axial force. At a given instant, the growth
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energy parameter kg is assumed to undergo an abrupt reduction from 0.1 to 0.001. This change alone, without
any modification to the external loading, induces an evolution in the growth parameter g and the correspond-
ing wall thickness, thereby demonstrating growth purely driven by variations in the growth energy. A more
comprehensive investigation of this phenomenon, encompassing different functional forms of the growth energy
and potentially incorporating multiscale modeling, is needed to better understand this feature of the proposed
variational framework.

Figure 6: Isotropic growth in a two-layered artery. Radial distribution of the growth parameter, g (left), and the evolution of the
wall thickness, ∆r, in the media and adventitia (right).

4.3 Effect of eigenstrains and differential growth between arterial layers

Next, the artery is modeled as a two-layered cylindrical shell, with the medial layer occupying the region
0.71 mm ≤ R < 0.97 mm and the adventitial layer extending from 0.97 mm ≤ R ≤ 1.10 mm [Holzapfel, 2004].
The growth energy parameter kg is assumed to be identical in both layers. Figure 6 presents the resulting
distribution of the growth parameter g at the conclusion of the growth process, alongside the corresponding
temporal evolution of the wall thickness, ∆r. The results indicate reduced growth in the comparatively softer
adventitial layer. The thickness of the medial layer increases relative to its normotensive value, whereas the
greater differential growth in the media induces a slight decrease in the adventitial thickness compared to its
normotensive state. This more modest growth in the adventitia, coupled with the negligible change in wall
thickness, is consistent with experimental observations.

Finally, Figure 7 illustrates the evolution of the growth parameter when radial and circumferential eigen-
strains, denoted ω1 (radial) and ω2 (circumferential), respectively, are incorporated. It is well established that
arteries contain residual stresses/strains, which manifest as differences in the resting lengths of layers upon
cutting [Vaishnav and Vossoughi, 1983; Holzapfel et al., 2007; Cardamone et al., 2009a]. The eigenstrains in
the present model are intended to account for the effects of prior developmental processes and physiological
growth that generate these residual stresses. The results demonstrate that the introduction of circumferential
eigenstrains increases the non-uniformity of growth across the wall thickness, while slightly reducing the overall
magnitude of growth. In contrast, the inclusion of radial eigenstrains has little effect, yielding growth patterns
comparable to those in the no-eigenstrain case. Finally, results for a non-uniform distribution of eigenstrains,
ω2 = −a+ bR with a = 1.9 and b = 1.54 are also shown. They produce qualitatively similar outcomes but affect
the non-uniformity of growth across the thickness. Introducing the gradient effect through a non-zero value of
the parameter κ̂g also has a similar effect.

5 Conclusions

In this paper, we formulated a general theoretical framework for the mechanics of bulk growth based on the
Lagrange–d’Alembert principle. The formulation is variational in nature and unifies elasticity, growth, and
dissipation within a two-potential approach. The key idea is to introduce, in addition to the elastic energy and
dissipation potential, a growth energy function that drives the evolution of the growth tensor through a config-
urational force analogous to the Eshelby stress. This framework allows one to describe growth as a dissipative
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Figure 7: Effect of radial eigenstrain, ω1 and circumferential eigenstrain, ω2 on the evolution of isotropic growth. The growth
parameter is plotted as a function of time t and as a function of radial coordinate R (at t = 20) in the top and bottom rows,
respectively. For the non-uniform eigenstrain distribution, the constants are a = 1.9 and b = 1.54.

process in the space of internal metrics, where the evolution law emerges naturally from the balance of elastic
and configurational forces. The resulting governing equations provide a systematic and thermodynamically
consistent description of bulk growth in anisotropic solids and the notion of mechanical homoestasis, and in
particular, offer a basis for studying arterial growth under physiological and pathological conditions.

The numerical simulations were carried out for a rabbit carotid artery with particular emphasis on growth
in the medial layer. The Fung-type (Holzapfel-Gasser-Ogden) hyperelastic model is utilized; however, the
governing equations are provided for an arbitrary monoclinic solid. We adopted a simple form of the growth
energy, independent of deformation and stress, and quadratic in the growth factor. Even with this simple choice,
the results demonstrate that the variational formulation produces a bounded and physically reasonable growth
response. The extent of growth is modulated by multiple factors, including the growth-energy parameter, the
magnitude and orientation of anisotropy, pressure elevation above the normotensive state, and any pre-existing
eigenstrains. Consistent with physiological expectations, growth leads to an increase in arterial wall thickness
and promotes a more uniform distribution of hoop stress across the arterial wall. When growth in both the
media and adventitia is considered, the results further reveal that differential growth between the two layers can
induce a modest reduction in adventitial thickness. A particularly noteworthy observation from the results is
that the variational formulation permits growth to arise solely from alterations in the tissue’s internal structure,
manifested as changes in growth energy, even in the absence of any increase in lumen pressure. Such a cause
for growth has been hypothesized in the literature [Humphrey et al., 2016].

In future work, incorporating anisotropic growth will be essential for capturing the inherently direction-
dependent growth observed in arterial tissues. A related goal is to establish a better understanding of the form
of the growth energy. In particular, understanding how the macroscopic growth energy relates to the energetics
of underlying cellular processes will provide critical insight and will ensure that the variational framework
remains grounded in biophysical mechanisms.
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