

Today's Presentation

Contents

Theory & Design

0

Fabrication

0

Packaging

0

MEMS Comb Drive Actuator to Vary Tension & Compression of a Resonating Nano-Doubly Clamped Beam for High-Resolution & High Sensitivity Mass Detection

GROUP D

Adam Hurst¹
John Regis¹
Chou Ying-Chi¹
Andrew Lie²
Adrian Podpirka³

- 1. Graduate Student in Mechanical Engineering, Columbia University
- 2. Undergraduate in Mechanical Engineering, Columbia University
- 3. Undergraduate in Material Science and Engineering, Columbia University

Overview

Contents

Theory & Design
O

Fabrication

0

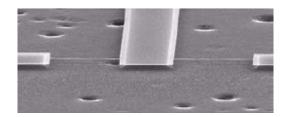
Packaging O Today's presentation will cover the following:

- Application & Functionality
- Types of Actuators
- Theory behind selected Actuator
- Thermal Time Constant
- Fabrication
- Packaging
- Questions

NEMS Resonating Beam

Contents

Theory & Design


Fabrication

0

Packaging
O

Applications

- Hyper-sensitive mass detector (hydrogen sensor)
- Anti bio-terrorism (organic compound sensor)
- Mechanical signal processing
- Parametric Amplification

Functionality

- NEMS Doubly-clamped Au/Pd beam (10 microns x 80nm x 100nm)
 - Resonant frequency shifts as a result of mass loading
 - Detection of frequency shift through magneto-motive technique
- Frequency shift corresponds to loading or beam dimension changes

MEMS Device for Adjusting Tension of NEMS Resonators

Contents

Theory & Design

Fabrication

0

Packaging O

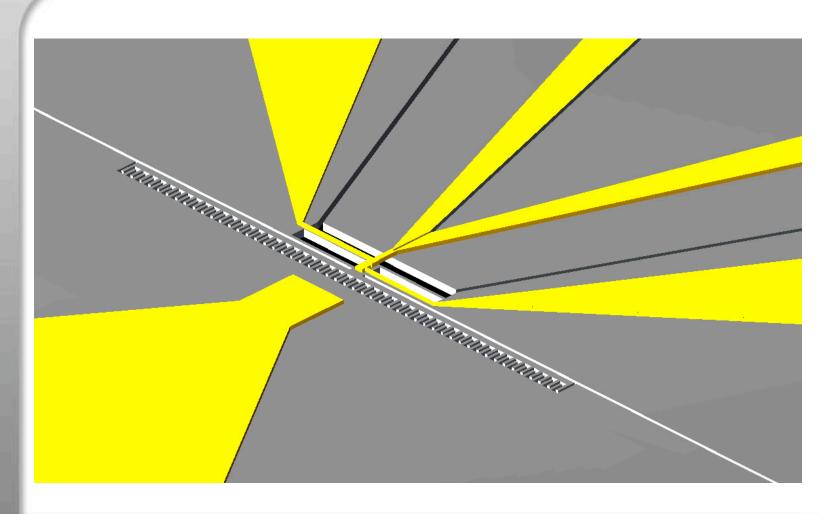
- Residual tensile stresses in beam due to fabrication
- Increased sensitivity under compressive loading
- Desired loading +/- 200Mpa
- MEMS Actuators

Motivation

- Capacitance-driven electrostatic actuator
 - Advantage: Easy fabrication
 - Disadvantage: Non-linear relationship between input voltage and resultant force/displacement
- Magneto-motive actuator
 - Disadvantage: Semi-linear relationship between input voltage and resultant force/displacement
- Comb drive electrostatic actuator
 - Advantage: Linear relationship between input voltage and resultant force/displacement, simple fabrication

Proposed Comb Drive Design

Contents


Theory & Design

Fabrication

0

Packaging

0

Contents

Theory & Design

Fabrication

0

Packaging

0

Resonating Beam Equations:

Required Force on beam is given by: (P = +/- 200MPa)

$$P = \frac{F}{A_{Au/Pd}} \longrightarrow F = 1.6 \text{ micro N}$$

Beam axial deflection under +/- 200 MPa:

$$E_{eAu/Pd} = \frac{E_{Au}A_{Au} + E_{Pd}A_{Pd}}{A_{Au} + A_{Pd}}$$

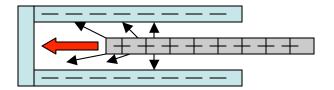
$$\Delta L = \frac{\sigma}{E_{Au/Pd}} L_0 \longrightarrow L = 25.6 \text{nm}$$

Contents

Theory & Design

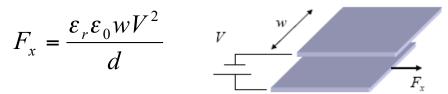
Fabrication

0


Packaging

0

Comb Drive Equations:


Energy in charged parallel plates:

$$U = \frac{1}{2} \frac{\varepsilon_r \varepsilon_0 A V^2}{d}$$

Differentiating with respect to x (lateral direction):

$$F_x = \frac{\varepsilon_r \varepsilon_0 w V^2}{d}$$

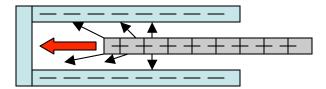
Contents

Theory & Design

•

Fabrication

0


Packaging

0

Comb Drive Equations:

Side Instability Voltage:

$$V_{SI} = \frac{d^2 k_y}{2\varepsilon_o bn} \left(\sqrt{2\frac{k_x}{k_y} + \frac{y_o^2}{d^2}} - \frac{y_o}{d} \right)$$

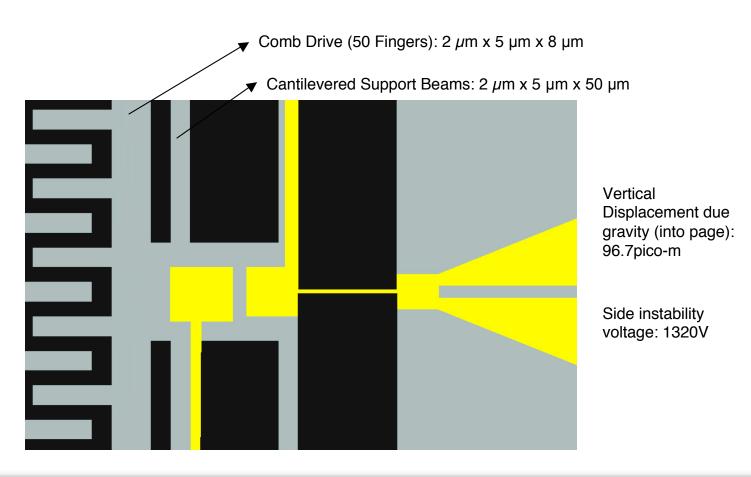
Beams supporting suspended comb drive resonator structure:

$$k_x = \frac{4E_e b h^3}{L^3}$$
 $F_x = k_{eff} \cdot x$ $v(x) = \frac{F}{6E_{eAu/Pd}I} (3x^2 L - x^3)$

(Assumed to be cantilever beams)

Contents

Theory & Design


Fabrication

0

Packaging

nay O

Critical Dimensions Based on Governing Equations:

Voltage Input vs. Force:

Theory & Design of Comb Drive Electrostatic Actuator


Contents

Theory & Design

Fabrication

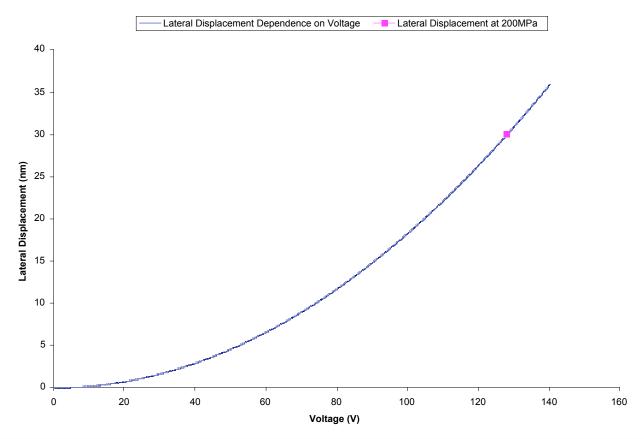
0

Packaging O Voltage Input vs. Comb Drive Lateral Force

Contents

Theory & Design

Fabrication


0

Packaging

0

Voltage Input vs. Lateral Displacement:

Theory & Design: Thermal Time Constant

Contents

Theory & Design

Fabrication

0

Packaging O

Thermal Time Constant:

- Thermal time constant of an actuator is the measure of time required for actuator to cool to ambient temperature following actuation.
- Speed at which frequency of the beam can be tuned is highly dependant on time constant.
- Heat Flow Equation: $\frac{\partial u}{\partial t} k \frac{\partial^2 u}{\partial x^2} = \frac{Q(x,t)}{C_p}$
- Applied DC Current: $I = (Io)^*(t)$; $I^2 = (Io)^{2*}(t)$ Thus, $Q(x,t) = ((Io)^{2*}(t)^*(R))/(h^*w^*L)$
- Boundary conditions (1-D): $u(0,t)=T_w$; $u(L,t)=T_w$ Initial condition: $u(x,0)=T_w$

Theory & Design: Thermal Time Constant

Contents

Theory & Design

•

Fabrication

0

Packaging

0

• New function:
$$v(x,t)=u(x,t)-T_w$$

 $v(0,t)=T_w-T_w=0$; $v(L,t)=T_w-T_w=0$;
 $v(x,0)=T_w-T_w=0$

• New Heat Flow Equation: $\frac{\partial v}{\partial t} - k \frac{\partial^2 v}{\partial x^2} = Q(x, t)$

$$B.C.(1)$$
: $v(0,t) = 0$

$$B.C.(2): v(L,t) = 0$$

$$I.C.:v(x,0) = 0$$

• Eigen-function Expansion:

$$v(x,t) = \sum_{n=1}^{\infty} a_n(t)$$

where
$$\phi_n(x) =$$

Contents

Theory & Design

Fabrication

0

Packaging

0

- Sturm-Liouville
- Eigenfunction Expansion<->Heat Flow equation → Generalized Fourier Series Q(x,t).
- Rules of orthogonally (to solve for Fourier coefficients):

$$\frac{da_n}{dt} + \lambda_n k a_n = \frac{\int_0^L Q(x,t) \phi_n(x) dx}{\int_0^L Q_n^2(x) dx} \equiv q_n(t)$$

$$where Q(x,t) = \sum_{n=1}^{\infty} q_n(t)$$

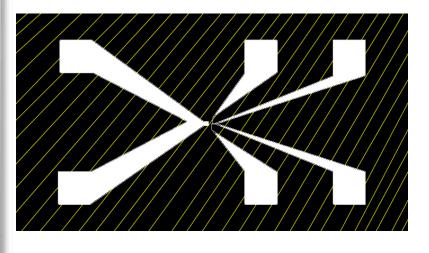
 Orthogonally equation continuous. To make it integratable, use the *Integrating Factor:*

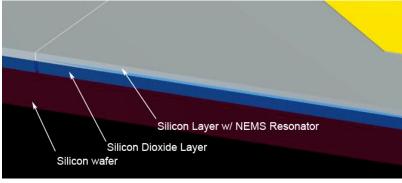
Fourier Coefficient solved →Longest time to reach steady state (n=1 eigenmode) →Thermal time constant = 0.169 micro-seconds

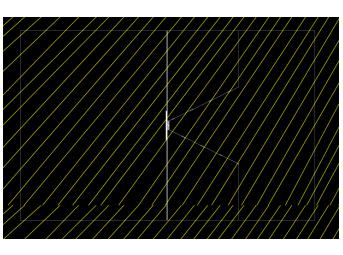
Fabrication

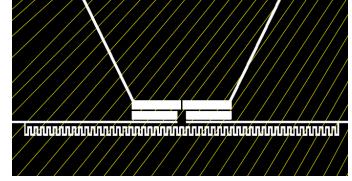
Contents

Mask #1: Au/Pd Contacts and Beam


Mask #2: RIE Comb Drives


Theory & Design


O

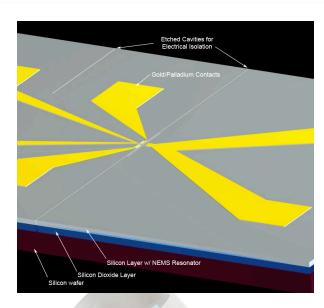

Fabrication

Packaging O

Close-Up View

Fabrication

Contents


Theory & Design

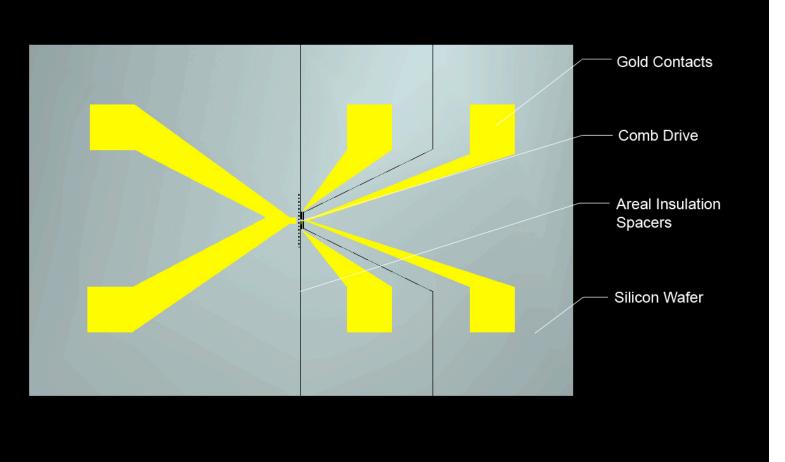
0

Fabrication

Packaging O

Process Flow	
Step	Description
Starting Materia	SOI (5μm-1μm-125μm)
Clean	Standard RCA clean
Photo Resist	Spin on photoresist
Photolithography	Mask #1 (contacts)
develop	Remove area for contact and beam placement
clean	Standard RCA clean
E-beam evap.	Au/Pd e-beam evaporation to a depth of 80nm
strip	Remove photoresist
clean	Stardard RCA clean
Photo Resist	Spin on photoresist
Photolithography	Mask #2 (basic structure)
develop	Develop and remove used photoresist
etch	RIE to Silicon Dioxide surface
strip	Remove photoresist
clean	Standard RCA clean
Etch (optional)	Optional - if by using SEM we notice the the underside of the beam is not cut, we will purge the system with XeF2
clean	Standard RCA clean
Etch	5:1 BOE etch
Drying	Supercritical CO2 drying
Clean	Standard RCA clean
Contacts	Place contacts. Wire bond to package.
Test	Test structure
Mount	Pryrex mount
Test	Test structure

Proposed Comb Drive Design


Contents

Theory & Design

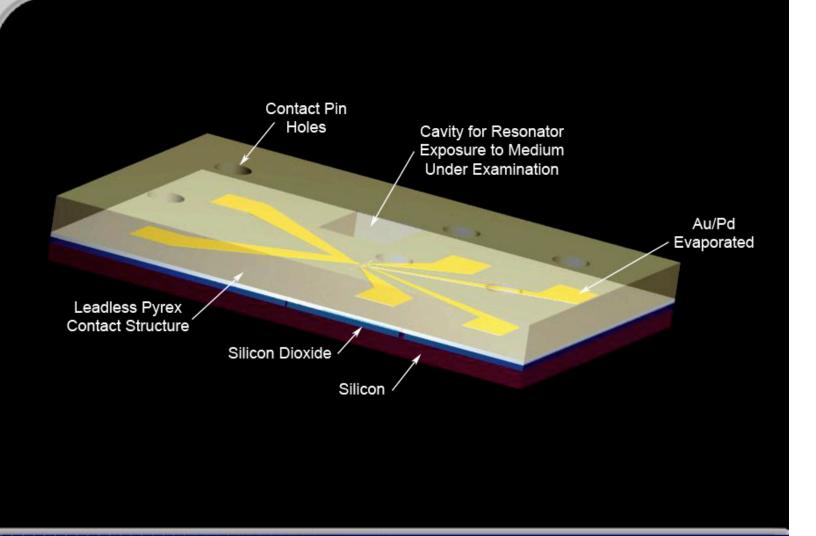
0

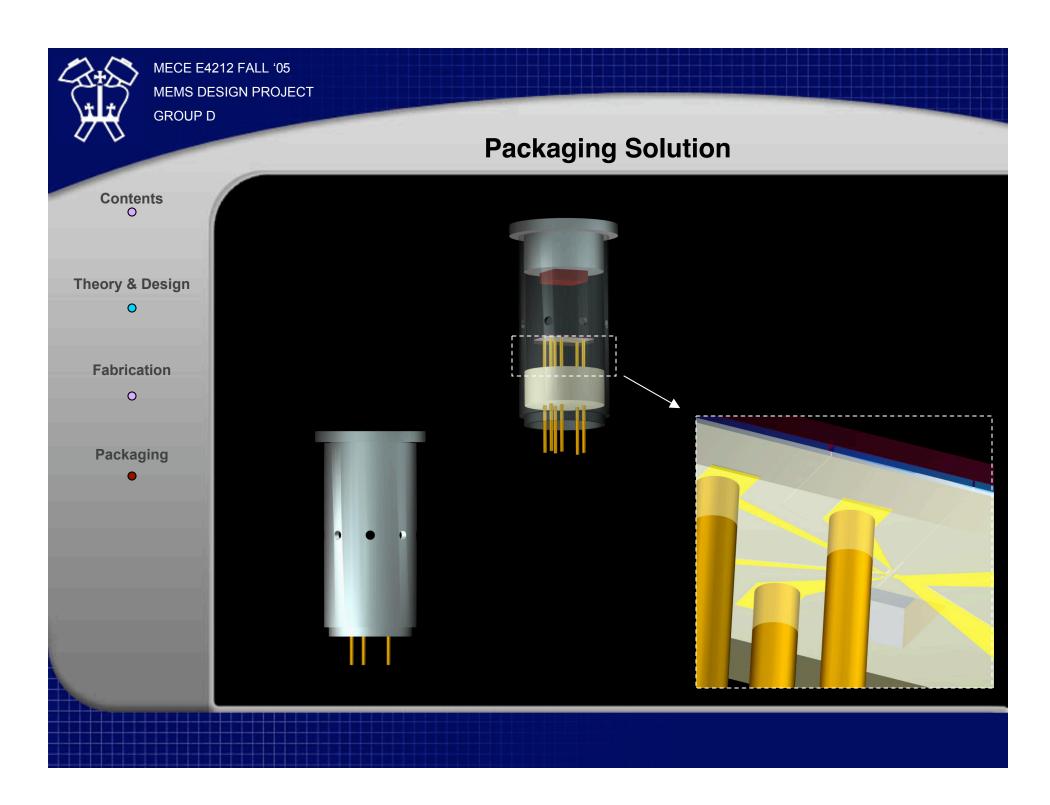
Fabrication

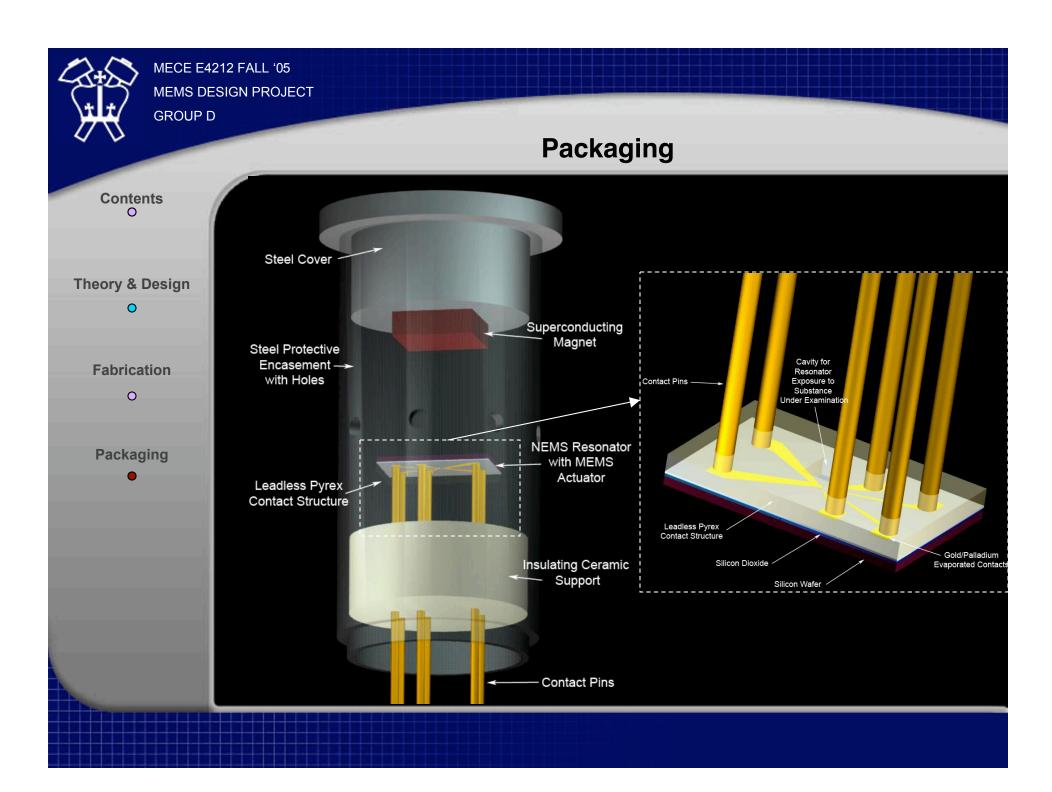
Packaging O

Fabrication to Packaging

Contents


Theory & Design


0


Fabrication

0

Packaging

Conclusion

Contents

Theory & Design

0

Fabrication

0

Packaging

- For this application, comb-drive actuator is superior to other mechanisms
- Design will allow accurate and feasible application
- Design will be relatively easy to fabricate using Columbia University resources
- Future Improvements: Feed back loop to determine distance traveled by block structure

Acknowledgements & References

Contents

Theory & Design

0

Fabrication

0

Packaging
O

We would like to thank Prof. Wong, Prof. Hone, Wei Xiaoding and Michael Mendalais for their guidance

References:

- Haber, Richard. Applied Partial Differences Equations. Prentice Hall. 2004
- <u>Math World</u>. Stephen Wolfram. March 10,2005. Wolfram Research, Inc http://mathworld.wolfram.com>
- G. Abadal. <u>Eletromechanical model of a resonating nano-cantilever-based sensor</u> for high resolution and high sensitivity mass detection. Nanotechnology 12 (2001) 100 104
- Z.J. Davis. <u>High mass and spatial resolution mass sensor based on nano-cantilever integrated with CMOS</u>. Transducers '01 Conference Technical Digest, pp72-75 (2001)
- Senturia, Stephen D. Microsystem Design. Springer. 2001

Questions

Contents

Theory & Design

Fabrication

0

Packaging

QUESTIONS?