Society for Experimental Mechanics

Conference and Exposition on Experimental and Applied Mechanics

Track 2: Challenges in Mechanics of Time-Dependent Materials

Sponsored by the SEM Time Dependent Materials Technical Division

Organized by: Meredith Silberstein, Cornell University; Alex Arzoumanidis, Psylotech; Alireza Amirkhizi, University of Massachusetts Lowell; Bonnie Antoun, Sandia National Laboratories; Jevan Furmanski, ExxonMobil; H. Jerry Qi, Georgia Institute of Technology; Hongbing Lu, University of Texas-Dallas; Richard Hall, Air Force Research Laboratory; Yuhang Hu, University of Illinois at Urbana-Champaign; Jonathon Tanks, Tokyo Institute of Technology; Yong Zhu, North Carolina State University

Abstract Submission: https://sem.org/papers/?pty=annual

We are soliciting papers on 1)characterization, 2)modeling and 3)applications of time dependence in materials. Time dependence means strain rate, creep, stress relaxation or frequency effects. We are interested in all materials: polymers, metals, biomaterials, granular materials, gels, foams and glasses. A wide range of topics are solicited, including papers in the following general technical research areas:

- <u>Viscoelasticity/Viscoplasticity</u> –low, moderate & high strain rates and large strain response.
- <u>Metals</u> time dependence in metallic materials at high temperatures, including additive manufacturing modeling.
- <u>Additive Manufacturing and Advanced Manufacturing Techniques</u> property characterization, process modeling & simulation and material design.
- <u>Damage, Fracture, Fatigue</u> challenges in characterizing & modeling of long term durability.
- <u>Environmental Effects and Extreme Environments</u> damage, degradation and aging at high temperatures, high pressure, solvents and radiation.
- <u>Inhomogeneities & Interfaces</u> effects from composite, hybrid and multifunctional materials.
- <u>Soft Materials</u> polymer and polymeric gels; biological materials including cells and soft tissues; soft matrix electronics.
- <u>Characterization Across Scales</u> time-dependent effects at variable length scales, in-situ material testing of time-dependent materials under microscopy, instrumented nanoindentation, including micro/nano scale.