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Abstract

In this paper we study universal deformations in anisotropic Cauchy elasticity. We show that the
universality constraints of hyperelasticity and Cauchy elasticity for transversely isotropic, orthotropic,
and monoclinic solids are equivalent. This implies that for each of these symmetry classes the universal
deformations and the corresponding universal material preferred directions of hyperelastic and Cauchy
elastic solids are identical. This is consistent with previous findings for isotropic solids. Universal
deformations and material preferred directions are therefore independent of the existence or absence of
a strain energy function.
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1 Introduction

A universal deformation is a deformation that can be maintained in the absence of body forces for every
material in a given class. Equivalently, such a deformation can be supported by boundary tractions alone,
independently of the specific constitutive equations within that class—for instance, homogeneous compress-
ible isotropic solids or homogeneous anisotropic solids with prescribed symmetry. In nonlinear elasticity,
universal deformations have long played an important role both experimentally [Rivlin and Saunders, 1951]
and theoretically [Tadmor et al., 2012, Goriely, 2017].

The concept of universal deformations was introduced by Jerry Ericksen in two seminal papers [Ericksen,
1954, 1955]. In [Ericksen, 1955], he proved that in homogeneous compressible isotropic solids, all universal
deformations must necessarily be homogeneous. His earlier study of incompressible isotropic solids [Ericksen,
1954] was motivated by Rivlin’s pioneering work on special classes of deformations [Rivlin, 1948, 1949a,b].
Ericksen also conjectured that deformations with constant principal invariants must be homogeneous, a
conjecture later shown to be false by Fosdick [1966]. In fact, the fifth universal family discovered by Singh
and Pipkin [1965] and Klingbeil and Shield [1966] provides examples of inhomogeneous universal deformations
with constant principal invariants. Whether further inhomogeneous universal deformations with constant
invariants exist remains unknown.

Since Ericksen’s original contributions, the study of universal deformations has been extended to more
general settings, including inhomogeneous isotropic elasticity [Yavari, 2021], anisotropic elasticity [Yavari
and Goriely, 2021, 2023], and anelasticity [Yavari and Goriely, 2016, Goodbrake et al., 2020]. In the linear
theory, the analogue of universal deformations is that of universal displacements [Truesdell, 1966, Gurtin,
1972, Yavari et al., 2020, Yavari and Goriely, 2022b]. In compressible anisotropic linear elasticity, these
were classified for all eight symmetry classes in [Yavari et al., 2020], where it was shown that the higher the
material symmetry, the larger the space of universal displacements. Thus, isotropic solids admit the largst
set of universal displacements, while triclinic solids admit the smallest. This classification was later extended
to inhomogeneous solids [Yavari and Goriely, 2022b] and to linear anelasticity [Yavari and Goriely, 2022a].

More recently, universal deformations have been studied in Cauchy elasticity, a broader framework that
contains hyperelasticity as a special case but does not presuppose the existence of an energy function [Cauchy,
1828, Truesdell, 1952, Yavari and Goriely, 2025]. For inhomogeneous isotropic Cauchy elastic solids, it was
shown that the sets of universal deformations and universal inhomogeneities coincide with those of Green
elasticity [Yavari, 2024]. The universal displacements of anisotropic linear Cauchy elastic solids have also
been systematically analyzed [Yavari and Sfyris, 2025]. Interestingly, despite the greater generality of Cauchy
elasticity, for each of the eight symmetry classes the resulting set of universal displacements is identical to
that of linear hyperelasticity.

Universal deformations have also been examined in the setting of implicit elasticity, where constitutive
relations take the form F(o,b) = 0, with o the Cauchy stress and b the Finger tensor [Morgan, 1966,
Rajagopal, 2003, 2007]. It has been shown that in compressible isotropic implicit elasticity all universal
deformations are homogeneous [Yavari and Goriely, 2024]. However, unlike in Green or Cauchy elasticity,
not every homogeneous deformation is admissible. The resulting set of universal deformations is therefore
material-dependent, though always contained in the class of homogeneous deformations. This distinction
underscores how the constitutive structure influences universality.

A frequently encountered class of solids with internal constraints in engineering applications is that
of compressible materials reinforced by inextensible fibers [Pipkin and Rogers, 1971, Pipkin, 1974, 1979,
Erdemir and Carroll, 2007]. This idealization captures many natural and engineered materials consisting of
a soft matrix reinforced by stiff fibers. The literature on universal deformations in such solids is limited.
Beskos [1972] studied homogeneous compressible isotropic solids with inextensible fibers and showed that



certain subsets of Families 14 of universal deformations remain universal for specific fiber distributions; all
are homogeneous except for the shearing of a circular tube with circumferential fibers. A similar study for
incompressible isotropic hyperelastic solids was presented in [Beskos, 1973], and universal relations for both
classes were discussed in [Saccomandi and Beatty, 2002]. Beatty [1978, 1989] identified all fiber distributions
in homogeneous compressible isotropic solids with a single family of inextensible fibers for which homogeneous
deformations are universal, proving that only three such distributions exist and that in each case the fibers
remain straight in both the deformed and reference configurations. In a recent study, universal deformations
in compressible isotropic Cauchy elastic solids reinforced with a single family of inextensible fibers were
systematically characterized [Yavari, 2025]. This work established the first systematic classification of such
deformations, thereby extending the classical results of Beskos and Beatty to the broader framework of
Cauchy elasticity.

The purpose of the present work is to study universal deformations and universal material-preferred
directions in anisotropic Cauchy elasticity. We show that for transverse isotropy, orthotropy, and monoclinic
elasticity in both compressible and incompressible cases, the sets of universal deformations and universal
material preferred directions coincide exactly with those of the corresponding anisotropic hyperelasticity.
This shows that, even within the more general framework of Cauchy elasticity, universality in these classes
is governed entirely by material symmetry.

This paper is organized as follows. A concise overview of nonlinear elasticity is presented in §2. In §3,
the equivalence between the universality constraints in hyperelasticity and those in Cauchy elasticity for
homogeneous compressible and incompressible isotropic solids is examined. The same problem is addressed
for homogeneous compressible and incompressible transversely isotropic solids in §4, for orthotropic solids
in §5, and for monoclinic solids in §6. Conclusions are given in §7.

2 Nonlinear elasticity

Within the framework of nonlinear anelasticity, an undeformed body £ is identified with a Riemannian
manifold (%, G), where G is the material metric tensor. A deformation of this body is defined by mapping
PBto(S,g),ie,p : B— S, where S is also a Riemannian manifold. We assume that (§, g) is the Euclidean
three-dimensional space (or R3). In nonlinear elasticity, (%, G) is an embedded submanifold of R3. The
tangent map of ¢ is the deformation gradient, F = T ¢, which is a linear map F(X) : Tx% — T,x)S
at each material point X € %. The deformation gradient tensor and its transpose FT are expressed in
components as

Foy = 38;21 (X), (2.1)
and
(FT(X))" & = gup (x) F? 5 (X) GAB (X)) , (2.2)

where { X4} and {2} are coordinate charts on % and §, respectively. The right Cauchy-Green deformation
tensor is defined as C(X) = FT(X)F(X). The associated tensor C”, where b denotes the flat operator
induced by the metric tensor (index lowering), is the pull-back of the metric g by the deformation, i.e.,
C’ = ¢*g. In components, it reads

Cap =g F 4 F'p. (2.3)

The Eulerian representation of C° is ¢® = ¢,G which is the push-forward of the metric G by ¢ and

has components c,, = F-4,F B, Gap, where F—4, are components of F~'. The left Cauchy-Green
deformation tensor is defined as the pull-back of the associated tensor gf to the reference configuration, i.e.,
B* = p*(g¥), where f is the sharp operator induced from the metric tensor (index raising). In components,
it is written as BAB = F~4, F~ B, ¢°. Equivalently, the spatial representation of B¥ is bf = ¢, (G¥), which
is called the Finger deformation tensor and is expressed in components as

b = Fo, FP 5 GAB . (2.4)



Note that ¢ = b~!. The principal invariants of b or C (the two tensors have the same principal invariants),
denoted by Iy, I, and I3, are defined as

I =trb=0% gy, Iy=- (If —trb?) = = (I7 — b b° guc gba) Is = detb. (2.5)

N —
DN | =

The first and second Piola-Kirchhoff stresses are defined by
P=JoF*, S=F'P=JFloF*, (2.6)

where o is the Cauchy stress, P is the first Piola-Kirchhoff stress, and S is the second Piola—Kirchhoff stress.
The volume elements dv and dV in the deformed and undeformed configurations, respectively, are related
as dv = J dV, where J is the Jacobian of deformation and is defined as

detg
= F. .
J =4/ e det (2.7)

P = Jo® A, (2.8)

In components these read

and
SAB — p=A paB — Jp=A g% =B, (2.9)

In the absence of body forces, the equilibrium equations in the current configuration are expressed in terms
of the Cauchy stress as
oy =0, (2.10)

where (-)|, denotes covariant derivative with respect to the Levi-Civita connection of the ambient space
metric g.

An anisotropic hyperelastic solid is characterized by an energy function (per unit undeformed volume)
that takes the following functional form

W:W(CbaGaCh"'aCn), (211)
where (;, i = 1,---,n are the structural tensors that describe the material symmetry group of the solid. By
Hilbert’s theorem, one can write W = W (X, Iy, -, I,,), where Iy, - - -, I,;, are basic invariants that form an

integrity basis for the set of tensors given in (2.11). However, a Cauchy elastic solid does not necessarily
have a strain-energy function. For Cauchy elastic solids, the stress at any given material point depends
explicitly on the strain at that point [Cauchy, 1828, Truesdell, 1952, Truesdell and Noll, 2004]. Material-
frame indifference in Cauchy elasticity implies that the second Piola—Kirchhoff stress is expressed in the
following functional form [Truesdell and Noll, 2004]

S:S(X7Cb7G7<17"'7<n)7 (212)
or
S=S(X,I1,-,1). (2.13)
3 Universality Constraints in Isotropic Elasticity

This section serves as a prelude to the subsequent developments. Its purpose is to fix notation and clarify
conventions by revisiting and reproving known results for isotropic Cauchy elasticity and hyperelasticity. No
new results are claimed here; rather, the presentation is intended to provide a consistent foundation for the
analysis that follows.



3.1 Compressible isotropic solids
The Cauchy stress for a compressible isotropic Cauchy elastic solid is represented as [Yavari, 2024]
O'ab = (Il, 127 Ig) gab + (Il, 12, [3) bab + Qs (Il, IQ, 13) Cab 5 (31)

where a1, as and a3 are response functions. Substituting (3.1) into the equilibrium equations (2.10) and
using metric compatibility (g, = 0) gives

a bab|b +as Cab|b tainhipg® +o10lop g™ +a13lsp g 4+ any Iy 0 + g o Ioy b

ab ab ab ab (3:2)
+ag3l3pb™ +azilipc™ +azolopc™ +azzlzpc™ =0,
in which the following relations have been used
ajp =0yl (i=1,2,3, 7=1,2,3), (3.3)
and oy ; = % and I;; = 8& Since «; are arbitrary functions, (3.2) holds only if the coefficients of
and a; ; vanis}]l, and hence, "
bab‘b _ Cablb —0,
Nyg" =Lyg =I3,9"" =0, (3.4)

Lipb® =1, 0" = I3, b =0,

L™ =Tpc™ =13, =0.

From (3.4)9, it follows that Iy, I, and I5 are constant. Consequently, the constraints (3.4)s and (3.4)4 hold
trivially. Taken together with (3.4); and the compatibility equations, this result implies that the universal
deformations are homogeneous. In conclusion, the universality constraints for homogeneous compressible
isotropic Cauchy elastic solids are the same as those in hyperelasticity as was shown in [Yavari, 2024].

3.2 Incompressible isotropic solids

As a prelude to our discussion of anisotropic solids, this section examines the equivalence of the universal-
ity constraints in Cauchy elasticity and hyperelasticity for homogeneous incompressible isotropic solids. In
[Yavari, 2024], it was shown that the universal deformations and inhomogeneities of compressible and incom-
pressible isotropic Cauchy elasticity are identical to those of hyperelasticity. Following the same notation
defined in [Yavari, 2024, Yavari and Goriely, 2023], we aim to provide an alternative proof of this result in
this section.

For incompressible isotropic hyperelastic and Cauchy elastic solids, the Cauchy stress tensor o has the
following representations [Yavari, 2024]

of = —pgf +2W, (I, L) b* —2W, (I}, I,) ¢,

# # f # (3.5)

o' = —pg' +ai (I1,12) b* + az (I1,I2) c*,

where p is the Lagrange multiplier corresponding to the incompressibility constraint (I3 = 1), W; = G
i

and a1 and as are arbitrary response functions in Cauchy elasticity.

The process of deriving the universality constraints and material preferred directions in hyperelasticity
as well as in Cauchy elasticity may be briefly explained as follows. We first substitute the corresponding
Cauchy stress into the equilibrium equations (2.10) to obtain pj, as

plbgab -9 [Wl bab _ W2 Cab] (36)

b6

in hyperelasticity, and

Pl i [al b + g cab] (3.7)

[



in Cauchy elasticity. The integrability conditions for the existence of p are pj,; = ppa- The resulting
expression in hyperelasticity is written as

Plab = Zﬂfb Wi, (3.8)

while in Cauchy elasticity it takes the following form
Diab = Z (Bar arr + B2 asn) (3.9)
where W, = ZTW and oy, = %, where k is a multi-index. The symmetries of the matrices of the

coefficients of W,, and a,,, namely A% and B are called universality constraints of hyperelasticity and
Cauchy elasticity, respectively. In fact, to ensure the symmetry of pjq, it is necessary that A, = A}, in
hyperelasticity, and B!} = B} in Cauchy elasticity (for more details, see [Yavari, 2024, Yavari and Goriely,
2023, 2021]).

For isotropic hyperelastic solids [Yavari, 2024, Yavari and Goriely, 2023, 2021]

AL ‘bn,

ﬂgb = CZuma

AL = bt T + (B Il,n)lb ,
ﬂab = - a|n Iy — (cq I2,n)\b )

= ba|n 12717 —+ (ba 12»")|b — CZ’ln Il,b — (CZ’ Ilfﬂ)\b s (310)
ﬂlu by Iin iy,
A2 =~ Iy Loy,

ﬂlm =by (Liplom +1inlop) —cy i 11y,
AR =V T Iop — ' (I y Iop + T I2p)
where f o = f|o = 0f/0x® when f is a scalar field.
We know that @1b is the matrix of the coefficient of a;,, and @2b is the matrix of the coefficient of «p,..
We omit x when it is zero, so that B, corresponds to the coefficients of a;. A total of twelve universality

constraints for Cauchy elasticity are obtained from the symmetry conditions of the following terms [Yavari,
2024]

b’l’L

albn 1
@217 = Cn\bn,
Bap = b 1o+ (05 Trn)
B2 = e Loy — (¢l o)y (3.11)
Bair = by Lo + (0 T2,0)
@2; = a|nllb (Cg]l,n)\b )
and
BEY =01 Dy,
B2 = —c Iy Loy,
BL2 = 0" (I p o + I1n Iop) (3.12)
B =~ 1y, '

Bip? = by Lo Loy,
B2 = —cl (I Lo+ T1 o) -



Concerning the nine terms in hyperelasticity, we clearly have the following relations

ﬂab - @ ab >

ﬂfb = @213,

Aqy = Bap

ﬂab - @ab )

A =32 4 @2l (3.13)
ﬂlll @;il ,

ﬂ222 _ @252 7

AN2 = gl12 4 g1
122 122 221
Ay =B+ By

Ericksen [1954] showed that if I; and Iy are not constant, the terms A, A222 A2 and A!2? are

ab > ab
symmetric only when VI; and VI, are parallel, with both being eigenvectors of b as well as c, or

Lio=cialz,,
T
by Iin =AM 114,

bZ IQ,n = )\1 IQ,(L )
(3.14)
CZ Il,n = 7-[1,0, )

At

6212,71 = )\*1[2.@7
where c192 and \; are scalar functions.
Now consider @;;1. We know that if I; is not constant, this term is symmetric only if b)) I; , = A1 [1 4. If
I5 is not constant, the term @152 is likewise symmetric only when b7 I , = A2 I3 4 (A2 is a scalar function).
Using these two results BL1? is written as

B2 =X Lolipy+MTaloy. (3.15)

The right-hand side of (3.15) is symmetric either when A; = A3, or when VI; and V5 are parallel, which are
equivalent. Since the eigenvectors of b and ¢ are the same, the symmetries of the terms 3222, B2l1 and B2
lead to the same result. Therefore, the symmetries of { AN}, A2 A2 A12%} are equlvalent to those of
{@éél, 252, @352, @2;1, QE(%Q, 221}, since the symmetries of both sets are described by the same condition.
This condition indicates that VI; and VI are parallel and are eigenvectors of b and c¢. Let us introduce
the notation A b = AL — A}, and @f‘f} o = Bay — By~ The corresponding universality constraints are then
Ajap) = 0 and Bjgp; = 0, which are equivalent to the symmetries of the terms Ay, and B}, respectively.

From this definition, we have
{ﬂ[lalﬁ = A5 = Ay, = Ap) = 0} is equivalent to {@[111] BER = Blay, = Biop) = Blay = Bl = O} ,

(3.16)

or
111 222 112 122 111 222 112 211 122 221
{ﬂab ) ﬂab ) ab 7 } {@ @ @ @ s (317)

ab ab7 ab? ab »*ab

where = indicates the symmetry equivalence between the two terms which is defined as follows:

Definition 3.1 (Symmetry equivalence). Two sets of symmetry constraints are equivalent if they impose
exactly the same conditions on the admissible deformations—that is, an admissible deformation satisfies the
symmetries of one set if and only if it satisfies those of the other set.

With respect to (3.14); and (3.14)3, the term B.Z can be rewritten as

@;z :CIQbZ‘nII,b+)‘1,bI2,a+)\1 IQ\ab' (318)



Since I is a scalar field, I3, is symmetric and the symmetry of @;i becomes equivalent to

@i% = c19 (b}

aln

Lp+XMplia). (3.19)
Using the same procedure, one can represent the symmetry of @Clbé as
Bai mlip+ A l1a- (3.20)
Thus,
Boiy = Bap (3.21)

which means that at least one of the six symmetry constraints of the terms (3.11) depends on the others.
Hence, we have at most five independent symmetry constraints in Cauchy elasticity (@ﬂab} =0, @fab] =0,
(B[lalb] =0, (B[Qab] = 0 and @[%llb] = 0) and at most five independent symmetry constraints in hyperelasticity
(ﬂ[ab} =0, J‘Z[ab] =0, J‘Z[lalb] =0, ﬂ[sz] =0 and ﬂ[lazb] = 0) which are related as (see (3.13);—(3.13)5)

Aot = Blor) = 0.
2 _p2

o) = Blay _0,

ﬂ[ b = ‘@[ab] = , (322)

Afat) = Biat) =

ﬂ B[ab] + B[ab] =
Consequently, these two sets of five universality constraints are equivalent. In conclusion, the universality
constraints for homogeneous incompressible isotropic Cauchy elastic solids are the same as those in hypere-
lasticity as was shown in [Yavari, 2024].

It is worth noting that the relations (3.22) follow directly from (3 13)1-(3.13)5. This is simply because if
Aty =B, +BF, (i, j and k are multi-indices), then Af, = B], + BE,, and thus A}, — A}, = (B, — B} )+
(BF, —BE ). Hence, ﬂ[ab] = (B[ab] + (B[ab] = 0. In other words, any relation that holds for a set of terms must
also hold for the corresponding symmetry constraints.

4 Universality Constraints in Transversely Isotropic Elasticity

A transversely isotropic solid is characterized at each point by a single material preferred direction, oriented
normal to the local plane of isotropy. The material preferred direction is defined by a unit vector N (X).
The strain energy function in hyperelasticity and the stress in Cauchy elasticity are then described by five
independent invariants I, - - -, Is. The additional invariants I, and I5 are defined as

IL,=N-C-N, I[;j=N-C2.N. (4.1)

For homogeneous transversely isotropic hyperelastic solids, the second Piola-Kirchhoff stress is given by
[Yavari and Goriely, 2023]

S=2W1 G} +2W, (I,C' —I3C2) +2W33C 1 +2W, (N @ N)

4.2
+2W;[N®(C-N)+(C-N) & NJ. 2
The Cauchy stress is written as [Yavari and Goriely, 2023, 2021]
a:—wlbul(IQWﬁIgWSg — 2/ Wycf iW4(n<g>n)
VI VI Uk (4.3)

2
F o Wslne (bon) £ (bom) ],



where W; = (i=1,---,5), n=F - N. Thus, the components of the Cauchy stress tensor are

2
o = v (W1 0% 4 (Iy Wy + Is W3) g — Is Wo ¢® + Wy n®nb + W5 £9Y], (4.4)
3

where n® = F® 4 N4 and ¢°° = n®b* n,. + nb b2 n,.
In transversely isotropic Cauchy elasticity, the second Piola—Kirchhoff stress is represented by [Spencer,
1970, Boehler, 1979, 1987, Yavari and Goriely, 2025]

S=ap G +a;C* +a,C* +a3(N®N) + a4 [N® (C-N) + (C-N) ®N]

2 2 (4.5)
+as[N® (C*-N)+ (C*-N)®N],
and thus the Cauchy stress is written as
o=iog’+ a1 b +ascf+as(m®n)+asn® (b-n)+ (b-n)@n) (16)

+asn®(c-n)+(c-n)@n],

where a;([1, -+, I5) and @;(I1,---,I5) , i =0,---,5 are the response functions.
For homogeneous incompressible transversely isotropic solids I3 = 1, and therefore the second Piola-

Kirchhoff stress in hyperelasticity is represented by
S=—pC ' 42W, G* +2W, (L,C™' = C™2) +2W, (N ® N)

(4.7)
+2Ws[N®(C-N)+(C-N)@N],

where W = W (11, I, 14, I5) and p is the Lagrange multiplier corresponding to the incompressibility con-
straint I3 = 1. Hence, the Cauchy stress reads

o=—pg'+2W b —2Whcf +2W,(n®n) +2W5sn® (b-n)+ (b-n)®n], (4.8)
which has components
O,ab — _pgab + 2 Wl bab _ 2 WQ Cab _|_ 2 W4 na nb + 2 W5 (na bbc nd gcd _|_ nb bac nd gcd) . (49)

Similarly, by taking Is = 1 and using the Cayley-Hamilton theorem, the second Piola-Kirchhoff stress for
incompressible transversely isotropic Cauchy elastic solids can be derived from (4.5) as

S=—pC 145G +a,C* +a (N®@N)+a,[N® (C-N)+(C-N)®N]

pu -1 -1 (4.10)

+a;[N®(C™"-N)+ (C™ -N)® N],
where a; (I1, I, 14,15), i = 0,1,2,4,5 are the response functions. We can use the Cayley-Hamilton theorem
again to write the Cauchy stress for incompressible solids as

oc=—pgf+au b +acf+am®n)+asn®(b-n)+ (b -n)®n]

(4.11)
tasm®(c-m)+ (c-n) @l

where o; = «; (I, 12, I4,I5), i = 1,2,4,5,6 are arbitrary response functions. In the following sections, the
equivalence of the universality constraints in hyperelasticity and those in Cauchy elasticity is investigated
separately for compressible and incompressible cases.

4.1 Compressible transversely isotropic solids

For homogeneous compressible transversely isotropic Cauchy elastic solids, the Cauchy stress (4.6) in com-

ponents reads

0% =1 ¢ + @ b + a3 ™ + ay n® n® + a5 070 + a6 190 (4.12)



where 090 = n%cben, +nbc%n,, and a; = oy (I1,12,13,14,I5),i=1,---,6 are arbitrary response functions.
Substituting (4.12) into the equilibrium equations (2.10) and using metric compatibility, one obtains
a2 b 4+ as ™y, + ax (R nb) b T as 0+ a6 0P+ 11 1y g+ anp Iy g7 + a3 I g
taialip g™ o155 9™ + ot Ly b + o Iop b 4 a3 I3 0% + a9 T4y b + i 5 I5 5 b7
+as1lp 4+ aso oy 4 as 3 I3y 4 as gy 4 ass sy 4 a1 I (n° nb) +agolzp (n® nb)
+agsz Iy (n*n) 4+ ags Iy (n*n) 4+ aus Isp (n* 1) + 51 I p 070 + s 0 To p £ 4 s 3 T3 070
+asalsy 09 4 as5 15 b 4 a1 L1 % 4 ag2 oy % 4 ag 3 I3 % 4 og.alap LS ag s Isp 0 =0.

(4.13)

Since a; and its derivatives are independent functions, (4.13) can be satisfied only if the coefficients of «;
and oy ; vanish. This leads to the following universality constraints

ab ab
b \b:C |b:O,

(n* nb)\b =0,
e, =0,
vy, =0,

Ii,b gab =0,
Liyb® =0,
Lipc™ =0,

I pn® n’ =0,
Lyt =0,
L% =0,

(4.14)

where i = 1,---,5. Except for (4.14)4 and (4.14)10, the remaining constraints in (4.14) are identical to those
of compressible transversely isotropic hyperelastic solids (see [Yavari and Goriely, 2023, 2021]). Therefore,
the following results are obtained. First, by comparing with (3.4), one finds that (4.14)1, (4.14)5, (4.14)g, and
(4.14)7 , for i = 1,2, 3, are the universality constraints for compressible isotropic solids. Thus, the universal
deformations for transversely isotropic solids must be homogeneous. Second, the constraints (4.14)5 imply
that I; (i = 1,...,5) are constant (note that since I; , = F~4,I; 4 = 0, then I; 4 = 0). With this result,
(4.14)g, (4.14)7, (4.14)g, and (4.14)9 are trivially satisfied. Third, from (4.14); and (4.14)s, it follows that
N is a constant unit vector [Yavari and Goriely, 2023, 2021].

It follows immediately that for homogeneous deformations, with constant invariants I; and a constant
unit vector N, the additional universality constraints in Cauchy elasticity, namely (4.14)4 and (4.14)1¢, are
satisfied identically. Therefore, the universality constraints in Cauchy elasticity are equivalent to those of
hyperelasticity. In summary, we have proved the following result.

Proposition 4.1. The universal deformations and material preferred directions of compressible transversely
isotropic Cauchy elasticity are identical to those of compressible transversely isotropic hyperelasticity.

4.2 Incompressible transversely isotropic solids

The method used to obtain the universality constraints for incompressible transversely isotropic solids follows
exactly the same steps as those described in §3.2 for incompressible isotropic solids: we first substitute the
two expressions for the Cauchy stress, given by (4.8) and (4.11) for hyperelastic and Cauchy elastic solids,
respectively, into the equilibrium equations (2.10) to determine pj, as

P g™’ =2 [W1 b — W c® + Wyn®n? + W5 %] (4.15)

b’
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in hyperelasticity, and

P g°° = [a1 0% + @z ™ + ayn®n® + a5 1% + ag (7] b (4.16)
in Cauchy elasticity. Recall that in both cases, the integrability condition for the existence of p requires pjqp
to be symmetric, that is, pjap = Pjpa-

In hyperelasticity, pjq, is written as pjq, = ), A% Wy, where W, are independent functions. The
symmetry condition pj,; = pjpe is then identical to the symmetries of the terms Ag,, ie., AL = Ay,
Yavari and Goriely [2023] demonstrated that there are 34 universality constraints in transversely isotropic
hyperelasticity. The first nine constraints are the same as those in isotropic solids, i.e., the symmetries of
the terms represented by (3.10). They showed that the remaining 25 constraints are the symmetries of the

following terms
ﬂ;lb = (na nn)‘nb )
b - £a|nb )
Agy = (nan™)y, Iop + (nan” Ium)y,
‘%55 - €a|n Isp + (EZ I5,”)|b ’

Ay = b Lap + (05 Lan), + (0 ™), Ty + (nan™ Iy (4.17)
Agy = Isp + (0 Isn)p + €0y Ty + (0 L)y s

Ay = =i Lap — () 1y n)pp + (nan™), Iop + (nan” Izp),

ﬂab - a|n I5 b — ( )\b + £a|n 12717 + (EZ 12,n)|b )

Agy = (nan™),, Isp (nan Is )y + Can Loy + (65 Tam)
and

At =ngn™ Ly Loy,
A =00 T5.0 15y,
AR =0 Iy Iy + Iap Iy
A =0 Usn iy + Isp I
AR =0 Iy Loy + LipIon) — " (I Iy +Lap hin) Fnan™ (I loy + Ty Ioy)
AR =0 (Is Loy + Isp o) — 2 (Isn iy + Isp Iip) + 07 (Iin Iop + Tip Ion)
A =0 Ty Ly +nan™ Tan Ty +Lap D),
AN =0 Iy Isp + Loy Is ) +nan™ (I Isp + Lip Isp) + 00 (Inp Iy + Ty Lo

+ Ng n' Il;n Il,b7
+€Z Il,n Il,ba

—_— — — ~—

A =00 I Doy + 00 (I Isp + Tip Is ) (4.18)
AR Y = ' (I Loy + Lip Ing) +nan™ Lo, Loy,
A2 = (I Iop + Isp o) + 02 Iop Loy,
T2 = = Iy Ly +nan™ (Iun Loy + Loy Iop)
AR = (Is o Loy + Isp Inn) +1an”™ (Ion Isp + Top Is ) + 00 (Top Lap + Top In0)
AZP ==l I Isp 4+ 0 (I Iy + Iop I )
A =man™ (Ian s+ Loy Isn) + 00 Iup Lay
A =nan™ Isn I p + 02 (Ion Isp + Lo I5.) -
In Cauchy elasticity, pjq, can be computed as
Plab = D _(Bof o1 + B o + Bif e + B s, + B ) (4.19)

K
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where @ab, @ab, @ab, @5b and @6b are the matrices of the coefficients of a1, (ox, Que, 5. and agg,
respectively and ;= O0a;/0I, (x is a multi-index) are independent functions. Therefore, pjap = Pppa
implies that B.; must be symmetric, i.e., B!} = B;%. The first twelve Cauchy elasticity terms B, are the
same as those of isotropic solids given in (3.11) and (3.12). It can be shown that in transversely isotropic
Cauchy elasticity the remaining terms are obtained as follows (note that when x = 0, we ignore this index

in @ab, and hence, @fw corresponds to the matrix of the coefficient of ;)

‘(Bib = (na nn)‘nb )
B2, ="

alnb >

BH = (ngn" )‘n Ly + (ngn™ I4n)|b7
B = 2 T + (02 T,

B =0 Ly + (0 Ta),

Bai ba|nl5b+(bal, )b
Bay = —Capn Lap — (i Ian)p, »

B =~ Top— (e )y 2
B = (nan ) Ilb—i—(nan Iln)lb,
Bap = (nan™), Lop + (nan™ Ion),
BY = (ngn n Isp + (e Isn), s
B = 00, Ty + (€0 Tr.a),,

Bai *€a|n12b+(f"12 )|b,

B = €2 T+ (€ L)y

12



and

@444_nannl4nl4bv

B> =L Is oI5,
@114 =by (Ign iy +1ap 11y
Bap” =y (Isn Iy + I5p In
@124 =by (Ianlop+ LapIon
B> = b (Isn Loy + Isp Lo
Bt = b Iy sy,
Bay® =0 (Lo Isp + Loy Is )
B =02 I5 sy

)

)

)

—_— — — —

)

B2 = —c Iy Iy + Lup Iin) s
B2 =~ (I Lip + Isp 11 )
B2 = " (Iyp Iop + Loy Ion),
B2 = " (Isp Lo+ Isp o)
B2 =~ Iy Iy,

BEHP = " (Isp Lo+ Isp Lun)
B2 =~ I5. I5p

@411 =nen" I, I1p,

BH2 =non" (I Loy + LipIon), "
BES =nan" (I Ispy+ Ty Isn),
_@3%2 =n,n" Iz, 1lop,

Baz® =ngn” (o Isp + Iop I5.0)
BEL =non" Iy iy + LipIin),
BE2 =non™ (Iyp oy + Lup o)
BES =non" (I Isp + iy Isn)
@455 =n,n"Isn 15y,

B =00 Lo Ty,

@512 =Ly (Linlopy +TipIon),
B = (I Ly +Tip Ia)
515—€n(IlnISb+IlbI5n)7

B2 =00 I Doy,

B =02 (I Lap + Iop Iun)

@525 =0 (IopnIsy +1opI5 ),
Byt =00 Iy Lup,

B =07 Iy Isp + Lo I5.) -

)

Moreover, there are 15 additional terms in Cauchy elasticity which are associated with the coefficients of
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QG-

,,_z

alnb >

B = (02 Iln) +?Z‘n11b,

By = (_Zfzn)| + oo b
B9 = (5 )y + Ei T
By = (0o Is,n)|b + oo Is b
BR =001 Iy,

B =0T Ioy,

B =00 Iy Iy,

B =" I50 15,

B =00 (Ion Iy + Iop I )
Byt =l (Tan Ip + Tap i)
B =0 (Isn iy +Isy I1n),
B =00 (I Lo + Ly o,
B> =y (Isn Loy + I I2.n)
B =00 (I Inp + I Ia ) -

(4.22)

Let us write the relations between the symmetry constraints .B[ b = = 0 and A}, = 0 for transversely

isotropic solids.

Ay
fay
Aoy =
Ay =
Ajar) =
Ay =
Afar) =
Afar) =
Ajar) =

= @flab] =0,

=By =0,
= Bjay =0,
= By =

= Bjgy) + @[ab] =
= Bigy) + Biay) =
= Bigy) + Blay) =
= Biyy + Blay =
= Blgy) + Biay) =

14

The first nine relations linking the symmetry constraints in hyperelasticity with those
in Cauchy elasticity are identical to those derived directly from (3.13) in isotropic solids.
(4.17), (4.18), (4.20) and (4.21), the remaining constraints are given by

According to

(4.23)



and
A = a3t o,
A% = 55—,
AL = Bkt =
55 = g + g -
A = g2 @214 + CB[%},? 0,
AL = 03+ o + o0 -
AL = s =
AL = 03+ 5 + @%
A5 = 05+ 97 -
A = 073+ 2 =
A = 07+ a3 =
AR = w38+ g =
A a5 0
A = W5 9 = 0.
28] = w5+ 7t =0,
A = 0+ A =0,

(4.24)

Therefore, there are a total of 75 universality constraints in Cauchy elasticity, compared to 34 in hypere-
lasticity. In what follows, we will prove that the universality constraints in transversely isotropic Cauchy
elasticity and hyperelasticity are equivalent. Note that n, Iy, I5, I4 and I5 are assumed to be non-constant,
although the result remains unchanged even if they are constant. Moreover, note that the twelve constraints
of Cauchy elasticity and the nine of hyperelasticity for isotropic solids are equivalent, so the proof is not
repeated here.

One of the common constraints is ﬂ[‘rﬁ? = @Fj’bs] = 0, which implies that VI is an eigenvector of {7, i.e.,

Oy Isn = A5 Is,a (4.25)

where A5 is the corresponding eigenvalue. The second common constraint is ﬂ[‘fﬁj]l = @E‘a‘lﬁ = 0, which

indicates that either n, I4; is symmetric or n™ Iy ,, = 0. The former entails that VI, and n are parallel, that
is,
Ng = C4lyq, (4.26)

where ¢4 is a scalar function. However, the latter is written as
Iy, = (Vly, n>>g =0, (4.27)

in which {.,.) o designates the inner product with respect to the metric tensor g, implying that VIs and
n are orthogonal. As a result, the symmetry constraints in both hyperelasticity and Cauchy elasticity are
satisfied if VI and n are either parallel or orthogonal. These cases are discussed separately.

4.2.1 Case 1: n(x) and VI, are parallel

Let us assume that VI, and n are parallel. We first consider the terms A%, and @;’g, where k is a three-
component multi-index in hyperelasticity, or equivalently, a double index in Cauchy elasticity.
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Symmetry equivalence of A, and B!, with x a triple index. Consider the terms ﬂg§5 and ﬂébSS in
hyperelasticity. From (4.25) and (4.26), these terms can be rewritten as

445
Agy” =calyglapyn” Is g +calaglspn” Loy + 00 Ionlay,

455 _ n n (4.28)
A’ =AM Is ooy + 00 LanIsp+calsglspn™Is, .

If the symmetric term Iy, Iy on the right-hand side of (4.28); is neglected, one can write the following
expression representing the symmetry equivalence of A 445

ﬂ445—C4I4aI5b’n I4n+£ I4n—[4b (429)

The symmetry of (4.29) implies that

calogIspn” Lyp + 05 Iap Loy =calaplson™ Lop+ 0y Ionlsg, (4.30)
which leads to
(64 n" 147n 1571, — EZL 147n) [47(1 = (04 n" I4)n 15@ — 52 I47n) I47b . (431)
Eq. (4.31) holds if either
Cq n" I4,n I5,a - ZZ I4,n =0 I4,a ) (432)
or
Cilym=canIypnlsq—cily,, (4.33)

where ¢ is a scalar function. Substituting (4.33) into (4.28)2 gives us
AP =NsIsalap+ (can Iy Isq — 1 1ag) Isp +calogIspn™ Is . (4.34)
Again, omitting the symmetric term I5 4 I5 , in (4.34) yields
AP = N5 Is o Loy + (can™Is — 1) Ina I5p - (4.35)
Therefore, if A5 # can” I5 , — ¢, the term ﬂ§§5 is symmetric if and only if VI, and V5 are parallel, i.e.,
Iyo=ca5 154, (4.36)

where ¢45 is a scalar function. It should be noted that, as given by (4.35), the other condition preserving
the symmetry of ﬂ;‘g‘r’ is A5 = cqn™ Is , — ¢1. However, this is a highly specific case that is not satisfied by
any class of the universal deformations in hyperelasticity (this can be verified by the results in [Yavari and
Goriely, 2021]). Thus, (4.36) is the only solution preserving the symmetries of ﬂﬁf and ﬂg§5 when n and
V1, are parallel. We can apply a similar approach to examine A}}* and A1, From (4.26) we have

A =00 I Ly +can™ I Ioa Iip +can™ I Iyg Loy,

v (4.37)
Ay =bg Lo Iip + 05 Iy Iyp +can” Iy Iy o Ly g -
After ignoring the symmetric term, the symmetry of (4.37); gives the following relation
by Lo =can™ Iypnliq—Colag, (4.38)

where ¢ is a scalar function. Substituting (4.38) into (4.37)2 and employing (3.14)2, A4 reduces to
At =eun" Lphaolip—Gliahip+Mhalsp+ean™ i lialiy. (4.39)
Eq. (4.39) can be rewritten in a simplified form as follows

ALY =(can" I — @) Ina iy + M IioLay (4.40)
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Thus, the symmetry of A, 114 indicates that VI; and VI, are parallel. This remains the sole solution as the
other possibility \; = ¢4 n”" I 1,n — C2 is not satisfied by any of the universal deformations.

Similarly, the symmetries of {ﬂ;l}‘r’, 155} {ﬂ2§4, 244} and {ﬂg?, 255} imply, respectively, that
Lo = ci515,4, 12,0 = c2a 4,4, and Iy, = 25 I5 4, Where c15, ca4 and cps are scalar functions. Given these
results, the symmetries of the remaining terms {ﬂ ;54,]{ 355,]( ;g‘iﬂ 235} hold identically. Therefore, the
symmetries of A, where & is a triple index, hold if and only if n, VI, VI, VI, and VI; are parallel. To
prove the symmetry equivalence of A%, and B it suffices to show that this condition is the unique solution
that satisfies the symmetries of the Cauchy elasticity constraints as well. In what follows, this is discussed
in detail.

Recall that n and VI, are parallel, and that VIs is an eigenvector of ¢, which together preserve the

symmetries of @444 and @555 in Cauchy elasticity. Based on these relations, one can express @435 as
B =cylygLopn™Isy + calog Ispn™ Loy, (4.41)
which after neglecting the symmetric term simplifies to
B =y Iy Isyn™ Iy . (4.42)

Since n™ I, # 0, from the symmetry of (4.42) it follows that VI, and V15 are parallel. Thus, B3}, B255
and @2;:’4 are also symmetric. Equivalently, this may be written as

{3445 @544 ] 455 554} {ﬂ445 455 . (443)

abvabaabv ab >

Similarly, we again consider (4.26) to rewrite B! as follows
@441 =4 I47a 1411, n" Il,n +cq 14@ Il,b n" I47n . (4.44)

Since the first term on the right-hand side of (4.44) is symmetric and n" I, # 0, the symmetry of B4}
reduces to that of ¢4 Iy 4 I1p, implying that VIs and VI; are parallel. Consequently, (B[lfb% =0, Q%Ef}bl] =0
and @ﬂalﬁ = 0 hold identically, and hence

{@441 @144 411 114} {ﬂllél 144 . (445)

ab7ab’ab7 ab

Proceeding with the same approach leads to the following results

{@115 511 155 551} {ﬂ115 155

ab »ab ab ’ ab ’
224 422 244 442 224 244

{@ab ) ’(Bab ) ab a } {'ﬂab ) ) (446)
225 522 255 552 225 255

{@ab a@ab ’ ab ’ } {ﬂab ) ’

which is equivalent to saying that VI; (i = 1,2,4,5) are parallel. The remaining terms @354, @2;4, @3;2,

@3557 @2%57 @222, @335, @;’%57 @2114, @3357 @355, and @224 can then be shown to be trivially symmetric.

Since n and VI are parallel, n is an eigenvector of b7, that is, b)) n, = A1 ng. As a result, we have

=2 ngn", (4.47)

- 2

Iy = —mngn™. (4.48)
A1
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With the given relations, it is straightforward to show that

@611 — @511

ab
622 _ 522
'Bab = @ab )

@234 = @544

ab >
@625 — @5?5
ab — “ab >
@612 = @5%2
@614 @214 7 (449)
ab

@615 — @515
ab

@624 @524
ab >

625 _ 525
@ = @ab )

@645 @545

In conclusion, the symmetry constraints associated with the terms A, where & is a triple index, in

5K

hyperelasticity and those corresponding to @ab, @ab, Q%ab, or, and BOx or, where  is a double index, in
Cauchy elasticity are equivalent in Case 1. Both sets are symmetric if and only if n, VI;, VI, VI, and
V15 are parallel.

Symmetry equivalence of A, and B}, with x a double index. We next turn our attention to the terms A%,
and @“‘“, where k is a two-component multi-index in hyperelasticity or a single index in Cauchy elasticity.
First, ﬂab and @4b are expanded as follows

Ay = Bay = Najn 0" Tap + 1o nfy Ly + 0™ I +na (0" Iog), - (4.50)
Using (4.26), the above expression simplifies to read
ﬂab = Bég = na‘n n" [471) +cq TL‘nn 147,1 14,(; + Cab 14,,1 n" 14,?7/ +cq I4|ab n" I47n +cq 14,,1 (n” I4,n)|b . (451)

Because the terms Iy o I4p and Iy in (4.51) are symmetric, the symmetry equivalence is described by

Agy = Bay = Napn 0™ Tup + cap Loan™ L+ calyg (0" Ioy), - (4.52)
Hence
AM =B = Mg " Lip + (ea Loan™), Tna (4.53)
or
Agy = Bay = a0 Loy + (nnn™), Tua- (4.54)

The symmetry of (4.54) is represented as follows
Najn " Tap + (M n")lb Lia = npppn” Iaa + (N n")‘a Iy, (4.55)

which can be written in a more simplified form as
[nam n" — (nn nn)la} Iyy = [nb|n n" — (Tln nn)lb} Iy, - (456)

Eq. (4.56) suggests that
Najp 1" = (M n™), = C314q, (4.57)

where €3 is a scalar function. Now, consider @;%. We proceed as in the case of @32, take ng = ¢1 1,4, where
c1 is a scalar function, and neglect the symmetric terms. This yields the following expression

@;% = Na|n n' Il,b + (nn nn)|b Il,a . (458)
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From (4.57), we have
Najn " = 3140 + (N n”)‘a ) (4.59)

Substituting (4.59) into (4.58) and taking Iy , = ca1 I1,, yields
@25 =csenligip+ (0 n”)la Ly + (ng n")‘b I, (4.60)
which is clearly symmetric. This means that if @41) is symmetric, then Q% will also be symmetric. Therefore,
B =B (4.61)

Similarly
CBab = @ab ) @ab - 44 (462)

Moreover, we may use (4.47) to rewrite A2 = B2} as follows
ﬂab = @ab = (2 A n” ’I’La)‘n I57b + (2 A ngn” I5’n)|b R (463)
which is simplified as

ﬂab = @Sb = na|n (2 )\1 nn) 1571) + ng (2 )\1 n")‘n 15717 + na|b (2 )\1 n" 15’7,) +ng (2 )\1 n" 157n)|b . (464)

Following an approach similar to that used in (4.51)—(4.56), one can show that the symmetry of A2 or B39
results in
Na|n (2 A1 n") =4 I5’a + (2 A1 Ny ’an)la s (465)

and that the following symmetry equivalence also holds
By = Napn 2 0") I + 2 A 0™y T (4.66)
where ¢4 is a scalar function. We substitute (4.65) into (4.66) to get
By = lsalip+ 2Aingn™), Ly + (22X n,n")), T (4.67)

Due to the functional dependence of I; and I, the right-hand side of (4.67) is symmetric. As a result, the
symmetry of B3} is equivalent to the symmetry of B39, i.e.,

B = B (4.68)
The following results can be obtained in a similar manner
By =By,  Boy =By (4.69)

With respect to (4.47), B2} takes the following form

B = (2 \ n" Na), T1p + (2A1 g 0" Il,n)‘b , (4.70)
which can be further simplified to
B3 =2 M0 (0" na)yy T+ (00 Fun)y| + 2000 10 Ty + 2 Ao ma n™ T, (4.71)
or
B =2X B 42 M on" ng Ly +2 1 pnan"™ I1 . (4.72)

Given that B2} is symmetric and n and VI; are parallel, the following relation is implied

B =2\ ynan™ I . (4.73)
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Now, let us use the relation (4.48) to write B} as

2 2
Q%ab— —n"ng Ly+ | —nen" iy . (4.74)
)\1 In /\1 |b

We can perform a similar manipulation for @Sé to obtain

2\
@Ol = A;”’ ngn™ I ,, . (4.75)
1
Hence,
By = Bap (4.76)
and similarly
@ab - @ab ) @ab - @ab ’ @ab = ;L)Z)) . (477)

Therefore, although this part involves 16 universality constraints in Cauchy elasticity, only 6 of them, namely
those associated with the symmetries of the terms B2, B85 B3 325 Bl and B2} are independent, and
these correspond to 6 independent universality constraints in hyperelastl(:lty, as given by (4.23)3—(4.23)s.
Note that the symmetry of ﬂgl‘:’ is not an independent constraint in this case because with respect to (4.23)s,

(4.23)4, (4.23)9, (4.62)2 and (4.69)2, one can show that

AL = A+ A5 (4.78)

ab —
and hence there are 6 independent symmetry constraints in hyperelasticity in this case.

In conclusion, in Case 1 the symmetrles of the terms AL, where k is a double index, in hyperelasticity
are equivalent to the symmetries of BlF, B2 Bir @55 and B, where r is a single index, in Cauchy
elasticity.

Symmetry equivalence of A%, and B, with « a single index. Finally, we consider A" and B, where x

is a single index in hyperelastimty, or equivalently, x = 0 in Cauchy elasticity. Since we have

ab’

Ak, =B A2, = B2, (4.79)

we only need to prove that the symmetry of the remaining term in Cauchy elasticity, i.e., B%,, does not
admit an independent constraint. To this end, relation (4.48) is applied to (4.22); to obtain

By = (2 n" n) : (4.80)

which is expanded as

Bayp = ()\1> 7 T + <)\1> (n"™ na)y, + ()\1>b (n" na),, + N (0" 1)y, - (4.81)

Because the term (n" ng )|, is symmetric according to the symmetry of @317, this term can be ignored. After
some simplifications, (4.81) can be expressed as

2
Q?Sb =— (/\2>| Ann"ng — /\2 (2A1nan") - (4.82)
1/

Taking (4.47) into account, we know that the term (2 A1 nyn")|pp is equal to £, ,, and hence is symmetric

a|nb’

due to the symmetry of B3,. So, the symmetry equivalence (4.82) takes the form

4

CBab = )\3

Ay Ain n"ng . (4.83)
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To prove the symmetry of (4.83), it is enough to show that VA; and n are parallel. For this reason, attention
is given to (4.73). From this equation, the following term must be symmetric

)\Lb Ng n" Il,n . (484)

Since n" I, # 0, the symmetry of (4.84) indicates that VA; and n are parallel. Accordingly, (4.83)
is symmetric and the symmetry condition of the term @217 is satisfied. Therefore, QS[Gab] = 0 is not an
independent symmetry constraint in Cauchy elasticity in this case. As a result, the symmetries of the terms
A, where £ is a single index in hyperelasticity, and the symmetries of B2, B3,, and BY, in Cauchy elasticity
are equivalent.

So far, we have assumed that n, I, I, I, and I5 are not constant. However, it can be readily shown that
if any of them or any combination thereof becomes constant (as in Family 5, where I; are constant), the

equivalence still holds. For example, suppose that I is constant. Then,

Ak s
@ab—@ab—@ab =B =0,

A — s

A — gl @414 (4.85)

ﬂ244 @244 @424
ﬂ445 — @544 — @644 — @445 — 0
@114 @214 @154 @514 @614 @224 @524 @624 @545 @645

and accordingly,

ﬂ;l? = @ab )
ﬂgé = @ab )
ﬂab - @ab )
ﬂ114 @4;1
ab >
(4.86)
A2 = gi12

14

ﬂ14o @41o
ab

A = 22
ab >

ﬂ245 — 425

ab7

while the remaining symmetry relations remain valid, thereby preserving the equivalence.

In summary, for incompressible transversely isotropic solids in Case 1 (when n (x) and V1, are parallel),
the universality constraints in Cauchy elasticity and those in hyperelasticity are equivalent, and their material
preferred directions are identical.

4.2.2 Case 2: n(x) and VI, are orthogonal

As discussed earlier, the symmetries of the terms A* and B4 are also maintained when n and VI, are
orthogonal. In hyperelasticity, the term A 415 is then written as

Any® = (nan™ I p + €3 Inp) Inp (4.87)
which is symmetric only when
ngn" 157n + 62 I4’n = Cj 147(1 s (488)
or
f: I4,n = 55 14,(1 — Ng n" I5,n 5 (489)
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where G5 is a scalar function. We first assume that n™ I ,, # 0 and substitute (4.89) and (4.25) into (4.18)1¢
to represent AP° as follows -
T = Ns Isp Inq +C5 Lap Is o (4.90)

which is symmetric when VI4 and VI5 are parallel (note that the very special solution in which A5 = &5 is
excluded because it is not valid for any family of universal deformations). Another solution to the symmetry
of (4.87) is obtained when n" I5,, = 0 and ¢} I4,, = =\ Iy 4, where A4 is the associated eigenvalue. In this
case, the term AXP° reads

AR = N5 Isa Loy +Malaa sy, (4.91)

which tells us that either Ay = A5, or VI and V15 are parallel. As a result, in hyperelasticity when n L VI,
the symmetries of ﬂ445 and ﬂ455 hold for only two scenarios: 1) when VI, and VI are parallel, and 2)
when n is orthogonal to Vs, Wlth VI, and VIs both being independent eigenvectors of £ associated with
the same eigenvalue.

Now consider B2, @514 and B5%* in Cauchy elasticity. Since n and VI, are not parallel, B4° =
Ng Lapy ™ I5 , is symmetric if and only if n is orthogonal to VIs (n” I5 , = 0). Moreover, the symmetry of
B34 implies that VI is also an eigenvector of ¢. Consequently, B354 becomes

B = Ns Is o Loy +Malaalsy- (4.92)

The symmetry constraint associated with (4.92) has two solutions: 1) VI and VIj are parallel, and 2)
A = A5 and VI, and VI are not parallel while both are orthogonal to n. These two solutions are clearly the
same as those obtained for the symmetry conditions of A% and A5, Let us first address the equivalence
for the first scenario in which VI, and V15 are parallel.

Equivalence of 7, and B;, with « a triple index. We know that n is orthogonal to V1, and that VI,
and VIs are parallel. It immediately follows that n L VI5 and ¢ Iy, = A5 I1 4. Thus B35 = 3155 =0, and
the terms

ﬂ445 544_£ I4nl4b—)\514a14b7

- (4.93)
Ag? =B =00 (Isn Iy + Isp La) = As (I Lap + L I5p)
are symmetric. Therefore, we have
{Bay”, Boy" Bay Bap' } = {Aap” s Aai” } - (4.94)

Proceeding further and with reference to (3.14),, the terms A1 and A4 take the following form

A =0 Ty Ly +nan™ I Iy,

114 n n (495)

A" =bpIapnhipy+ Do lapy +nen™ Il

Regarding (4.95);, the constraint ﬂ[ﬁ‘]* = 0 gives b)) Iy, = C61a,a — ngn™ 11, which can be substituted into
(4.95)5 to yield

ﬂlm = Cg I4,a Il,b + A\ Il,a I4’b, (496)

where & is a scalar function. Enforcing the symmetry of (4.96) requires VI; and VI4 to be parallel, which
is the only possible solution. On the other hand, the symmetry of B! = n, Iy, n" I, is preserved if
and only if n™ I, = 0, since n and VI are not parallel. CB;ZM is also symmetric only when b7 I, and
1, are parallel. We therefore conclude that a functional dependence between I; and I constitutes a
unique condition ensuring the symmetries of @;34 and @331. Given this solution, the terms @554 and CB;‘él
are symmetric as well. Since the symmetries in both sets, {@331,@3347@54,@411 and {ﬂ;g‘l,ﬂ;{f‘l}, are
preserved if and only if VI; and VI, are parallel, the corresponding symmetry constraints are equivalent,
ie.,

(B2, 310 B ) = (A A (497)
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Following the same approach, one can show that
224 (422 (244 442 224 7244
{@ab ) @ab 9 @ab ’ @ } {ﬂab )
115 511 155 @551 115 7155
{'Bab ’ @ab ’ ab ’ ‘(8 } {ﬂab ’ ab ’ (498)

225 522 255 552 225 255
{@ab y Pab > ab , } {ﬂab ) ’

which are equivalent to the functional dependence of the pairs {Is, I4}, {I1,I5} and {Is, I5}, respectively.
Thus, VI; (i = 1,2,4,5) are mutually parallel and orthogonal to n. The symmetry constraints corresponding

to the remaining terms in hyperelasticity, {ﬂ 3547 ﬂ;g‘r’, A, 145 , A 245}, as well as those corresponding to the
1Y P Rl 0512 @145 (pals (514 (245 (425

similar ones in Cauchy elasticity including B}24, 3214 @412 (Bab B, Byt By, B, Bop®, By, Bai”s
and B524 are then identically satisfied.

To complete this discussion, we need to investigate the additional terms in Cauchy elasticity, i.e., B,
BE22 BOIA BOO5 BOL2 pblA BOLS 3624 " B625 and BEIS. Let us use (3.14)4 to simplify (7 I; , (i = 1,2,4,5)
as follows 1

o Lin=n"conelin+ngcinli, =n"1; ,cone+ng 5V Iicn, (4.99)
1

which according to the orthogonality of n and VI; leads to
01, =0. (4.100)

Consequently, with reference to (4.22)—(4.22)15, we see that the additional symmetry constraint terms
vanish and do not impose further constraints beyond the existing ones. Therefore, A, and B,, where x is
a triple index, are equivalent.

Finally, it is worth noting that by following the same calculation as used in (4.100), one also obtains
I, = 0. As a consequence, the symmetry equivalences in (4.94), (4.97) and (4.98) can be written more
precisely as

ﬂ114 @114
ab
ﬂ115 @115
ab >

144 144
Ay =Boy

155 155
A’ =B,

.%224 @2%4 ,
ﬂ244 — g2
ab
A -
ﬂ445 — 3;}15 — 07
A = Bap” =0.
Equivalence of A}, and B/, with x a double index. In Case 2, we know that
@b_ﬂb_( n") Ly,
‘ e I (4.102)
@ab = ga In ‘[5’17 :

Since VI, and V1, are parallel, the symmetry of (Bﬁl = (ngn")}, 11,5 is equivalent to that of Bt Likewise,
we have

Boy = Boy »

@312; = @ab )

B2 = B (4.103)
Bap = Bay »

By = B
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Subsequently, with reference to (4.23)5—(4.23)g, the following relations hold between the hyperelasticity and
the Cauchy elasticity constraints

s = sl + 5

ab »
Ay = Bip + B
A% =B + B, (4.104)

25 _— p25 55
ﬂab = @ab + CBab )

45 44 55 _ p44 55
ﬂab = ﬂab + ﬂab = @ab + @ab .

Thus, in hyperelasticity there are six independent symmetry constraints namely ﬂ[‘ff] = 0, ﬂ[‘:’f’b] = 0,
ﬂ[la%)] =0, ﬂ[laf;)] =0, ﬂfa‘%’] =0 and ﬂﬁfb] = 0. These correspond to six independent symmetry constraints
in Cauchy elasticity, CBfla“b] =0, CBf’fb] =0, CB[lfb] =0, @[1(1517] =0, @[Z;b] =0, and Q%[Qj’b] = 0, indicating that the
two sets are equivalent.

Because J‘Z;lb = @3,) and J/Zg‘b = @3,7, we conclude that in Case 2, all symmetry constraints in hyperelastic-
ity are equivalent to the corresponding ones in Cauchy elasticity. In other words, the universal deformations
and universal material preferred directions in Cauchy elasticity are subsets of those in hyperelasticity. In
order to complete the proof, it is necessary to show that the symmetries of the extra terms B5,, B} 352
BS and B5? hold trivially. These terms in Cauchy elasticity, if not trivially symmetric, can only impose
further constraints on the existing universal deformations and material preferred directions in hyperelasticity
given in [Yavari and Goriely, 2021]. Following [Yavari and Goriely, 2021, 2023], we find that for all families
of universal deformations of incompressible transversely isotropic hyperelastic solids in which n 1 VI, the
following relations hold

=" =0. (4.105)

aln aln —

Concerning (4.22);—(4.22)s, it follows that BS, = B¢l = B2 = BE} = B = 0, and therefore the universality
constraints in hyperelasticity and Cauchy elasticity in Case 2 are equivalent.

As outlined previously, in addition to Case 1 and Case 2, there remains one other possibility to be
addressed. This possibility indicates that VI, and VI5 are perpendicular to n, and that both are eigenvectors
of 7 associated with the same eigenvalue while they are not parallel. With reference to [Yavari and Goriely,
2021], one observes that I; (i = 1,2,4,5) are functionally dependent for all families of universal deformations,
and thus this case is not an admissible solution in hyperelasticity. Thus, let us investigate it for Cauchy
elasticity. If a solution satisfies the symmetries of the Cauchy elasticity terms, then the Cauchy elasticity
constraints of (4.23) and (4.24) are all satisfied, implying that the hyperelasticity symmetry constraints also
hold. Therefore, this solution must also be valid for hyperelasticity, which leads to a contradiction. As a
result, this case is inadmissible in both hyperelasticity and Cauchy elasticity.

In summary, we have proved the following result.

Proposition 4.2. The universal deformations and material preferred directions of incompressible trans-
versely isotropic Cauchy elasticity are identical to those of incompressible transversely isotropic hyperelastic-
ity.

5 Universality Constraints in Orthotropic Elasticity

At each point in the reference configuration, an orthotropic solid exhibits reflection symmetry with respect
to three mutually perpendicular planes. Accordingly, the orthotropic directions at a point X are defined by
a set of three vectors Ny (X), N3 (X) and N3 (X) that are mutually orthonormal with respect to the metric
tensor G. In hyperelasticity, the energy function of an orthotropic solid is described by seven independent
invariants, denoted as Iy, I, I3, I4, I5, Is and I7. The first three invariants are defined in (2.5). The
remaining invariants are introduced as follows

I1=N;-C-Ny, Is=N; -C?.Ny, Is =Ny -C-Ny, I; =Ny - C?.Nj. (5.1)
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For orthotropic hyperelastic solids, the second Piola—Kirchhoff stress and the Cauchy stress are given,
respectively, by [Yavari and Goriely, 2021, 2023]

S=2W1G!+2Wy (I,C ' —I3C2) +2W33C}

+2W,4 (N1 ® N1) +2W5[N; ® (C-Nj) + (C-Nj) @ Ny]

(5.2)
+2Ws (N2 ® N3) +2W7 [N2 ® (C-Ny) + (C-N3) @ Ny,
and

2 2
o=—aWibl 4+ — (I, Wy + IsW3) g —2/Is Wy cf
Vi g )

2 2
+ﬁW4(H1®H1)+ﬁW5[n1®(b~n1)+(b-n1)®n1]

2 2
—l—ﬁWG(H2®H2)+ﬁW7[n2®(b~112)+(b-n2)®n2]7

where W; = EiA (i=1,---,7), n; =F-N; and ny = F - Ny. In components, the Cauchy stress reads

O_ab: 2

\/T [Wl bab + (12 Wo + I3 W3) gab — I3 Ws Cab
3

+ Wanfnl + Ws (80 n geq + nb 5% n geq)
+ Weng nb + Wr (ng 6% nd gea + n5 b2 nd gea)]

where n{ :FHANf‘ and ng:F“ANQA

For orthotropic Cauchy elastic solids, we have the following representation for the second Piola-Kirchhoff
stress tensor [Yavari and Goriely, 2025]

S =ag G* + a1 C* + a; C¥ + a3 (N; ® Ny) + a4 [N; @ (C-Nj) + (C-Np) @ Ny
+ as [N1®(C2~N1)+(02~N1)®N1]

+ag (N ® N3) 4+ a7 [N2 ® (C-Nsy) + (C - N3) @ Ny

(5.5)
+ag [Ny ® (C* - Ng) + (C? - Ny) @ Ny,
where a; (I1,--+,I7), 7 =0,---,8 are the response functions. The Cauchy stress tensor is written as
o=apg +a1b' +aycf +as(n, ®n;)+asn;®(b-ny)+(b-n;)@n]
+asn; ®(c-ny)+ (c-ny;) @ny] (5.6)
+dg (n2 ®n3) + a7 N2 ® (b - n2) + (b - n2) ® Ny .

+ag[ny ® (c-ny) + (c-n3) ®nyl,
where a; (I1,--+,1I7),i=0,---,8 are the response functions.

The second Piola—Kirchhoff stress tensor for incompressible orthotropic hyperelastic solids is represented
as [Yavari and Goriely, 2023, 2021]

S=—pCl42W, G +2W, ([, C™t —C?)
+2Wy (N3 @ Np)+2W5 [N; ® (C-Nyp) + (C-N;p) ® Ny]

(5.7)
+2W6(N2®N2)+2W7[N2®(C~N2)+(C-N2)®N2],
where W =W (I4, Iz, 14, I, I, I7). Moreover, the Cauchy stress reads
o :—pgﬁ-i-QWlbu —2W2Cu+2W4(n1 ®1’11)
+2W5n; ® (b-n;)+ (b-n;)®n;] + 2Ws (ng ® ny) (5.8)
+2W7[n2®(bcn2)+(b~n2)®n2].
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In components, it is written as
0 = —pg® 4 2W b — 2Wo ® + 2Wyndnb + 2 Wi €% + 2 W nd nb + 2 W, £3° (5.9)

where (4° = n§ b n¢ g.q +nf % n{ geq and €50 = ng b* ng geq +nf b ng geq. For incompressible orthotropic
Cauchy elastic solids, the second Piola—Kirchhoff stress tensor is written as [Spencer, 1970, Boehler, 1979,
1987]

S=—pC 1 4+aG +a,C* +a, (N, @N;) + a4 [N; ® (C-N;) + (C-N;) @ Ny
+a5[N;® (C7'-Np) +(C71-Np) @ Ny
+ a6 (N2 ® N2) + a7 [N2 @ (C - Na) + (C - Na) @ Ny
+as[N2® (C7'-Ny) + (C7' - Ny) ® Ny,

(5.10)

where a; (I1, 1o, 14, 15,16, I7), i = 0,1,2,4,5,6,7,8 are the response functions. Thus, one can write the
Cauchy stress tensor for incompressible Cauchy elastic solids as

a':fpgﬁJralbﬁ+a2cﬁ+a4(n1®n1)+a5[n1®(b~n1)+(b~n1)®n1]
+as[n; ®(c-ny)+(c-ny) ®ny]

5.11
+ a7 (n2 ®@ny) + agne ® (b-ny) + (b - n2) ® ny] (5:11)
+ ag [ny ® (c-ng) + (¢ - n2) ® ng),
where a; = a; (I, I2, Iy, I5, I, I7), i = 1,2,4,5,6,7,8,9 are arbitrary response functions.
5.1 Compressible orthotropic solids
Let us write the Cauchy stress (5.6) in components as
0% =1 g% + g b + az ™ + agndnb + as 090 + a6 09" + arnd nb + ag 180 + o 130 (5.12)
where £9° = n¢ c* né g.q+nl ¢ nd geq and £9° = ng c** ng geq+nb c* ng geq, and a; (11, Io, I3, Iy, Is, Is, I7) ,i =
1,---,9 are arbitrary response functions. Thus, the equilibrium equations read
a2 b, + @z ™)y + ay (nf n’{)lb + as E‘fb‘b + ag Z_‘fl’lb + ar (ngnb) b T s €§b|b + g Zgb‘b
tari Ly g™ +ani Lipb™ 4+ ag,; Ly ¢+ ag Ly (n$nh) + asi Ly 050 + ae Tip 15° (5.13)

b b Zab
+oaqi iy (n5ns) +as; Iipl5° + g Iip b5 =0,
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where i = 1,---,7. Therefore, the universality constraints are written as

bab‘b _ cablb —0,

(nf nb) b= 0,

(nsn3), =0,

glllb“; =0,

fgbu; =0,

Iz',b gab =0,

Ly b =0,

Tip e =0, (5.14)
Liyninbt =0,

a b
Iiynyng =0,

Ly (3" =0,
Lipt3" =0,
g_(llb“, =0,
Zgb“) =0,
Lip 5 =0,
Ly 03" =0.

The constraints (5.14)1—(5.14)12 coincide with those obtained for homogeneous compressible orthotropic
hyperelastic solids [Yavari and Goriely, 2023, 2021]. Thus, to prove that the universality constraints in
Cauchy elasticity and hyperelasticity are equivalent, it is sufficient to show that the extra constraints in
Cauchy elasticity, i.e., (5.14)13—(5.14)16, are trivially satisfied.

Considering (5.14)g, one concludes that I; (i = 1,---,7) are constant. Consequently, (5.14)7—(5.14)12
hold identically. Moreover, the forms of the constraints (5.14)s, (5.14)3, and (5.14)4, (5.14)5 are identical
to (4.14)2 and (4.14)3, respectively. Therefore, the constraints (5.14);—(5.14)5 are the same as those for
transversely isotropic solids. This shows that universal deformations are homogeneous, and N; and Ny are
constant unit vectors. By combining these results, one can show that

Z(11b\b = ggb\b =L 0" =L, 05" =0. (5.15)
Hence, the extra constraints in Cauchy elasticity are satisfied identically. In summary, we have proved the
following result.

Proposition 5.1. The universal deformations and material preferred directions of compressible orthotropic
Cauchy elasticity are identical to those of compressible orthotropic hyperelasticity.

5.2 Incompressible orthotropic solids

The derivation of the universality constraints for incompressible orthotropic solids proceeds in precisely the
same manner as that employed for incompressible isotropic solids (see §3.2) and transversely isotropic solids
(see §4.2): the corresponding Cauchy stress tensors, given in (5.8) for hyperelastic solids and in (5.11) for
Cauchy elastic solids, are substituted into the equilibrium equations (2.10) to determine p|, as

b g =2 [W1 b — Wy ™ + Wy ng nI{ + W E‘fb + Weng ng + W, Egb] b (5.16)
for hyperelastic solids, and
p|b gab = [Oél bab + Qo Cab —+ ay n’f ’flli + a5 Etllb + ag Z(llb + ar ng ’I'Lg + ag Kgb + Qg Zgb] b (517)
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for Cauchy elastic solids. Upon imposing the integrability condition p.;, = pjpa, the universality constraints
are then determined.
In hyperelasticity, we obtain

Plab =Y _ A Wi (5.18)

Recall that pj,, = ppp, if and only if all the coefficients of partial derivatives of W are symmetric, that is,
AL, = Ap,. As discussed in [Yavari and Goriely, 2023] and [Yavari and Goriely, 2021], the matrix A%,
contains 83 terms that can be categorized as follows:

i) The nine terms that already appear in the isotropic hyperelastic case:

k€ Kiso = {1,2,11,22,12, 111,222, 112,122} . (5.19)

ii) 25 terms associated with Nj:

Kk € K; = {4,5,44,55,14, 15,24, 25, 45, 444, 555, 114, 115, 124, 125,

144,145,155,224, 225,244, 245, 255, 445,455} . (5.20)
iii) 25 terms associated with Ny:
k€ K;; =1{6,7,66,77,16,17,26,27,67,666,777,116,117,126, 127, (5.21)
166,167,177, 226,227,266, 267, 277,667,677} .
iv) 24 terms corresponding to coupling of N7 and Ny:
Kk € K = {46,47,56,57,146,147,156, 157, 246, 247, 256, 257, 446, 447, (5.22)

456,457, 556, 557, 466, 467, 566, 567, 477, 577} .

The terms K; and K;; are equivalent in form to (4.17) and (4.18) in transversely isotropic hyperelasticity.
This leads to the following conclusion for orthotropic hyperelastic solids [Yavari and Goriely, 2021, 2023] as
well as orthotropic Cauchy elastic solids: the material preferred directions N1, Ny and N3 are universal for
orthotropic solids if each direction is universal for transversely isotropic solids, and if the pairs (N1, Na),
(N1,N3) and (N3, N3) satisfy the K;;; constraints in hyperelasticity as well as the corresponding ones in
Cauchy elasticity (we can extend this statement to Cauchy elasticity because we have shown that for incom-
pressible transversely isotropic solids, the universality constraints in hyperelasticity and Cauchy elasticity
are equivalent).

Let n = n; and m = n,, and assume that I; (i = 1,2,4,5,6,7) are not constant. Since n and m
should satisfy the corresponding constraints of transversely isotropic solids, each of them has the same two
possibilities discussed in §4.2 (recall that each set gives 63 universality constraints in Cauchy elasticity).
Taken together, these give rise to three distinct cases: 1) n and VI; (i = 1,2,4,5,6,7) are mutually parallel
and orthogonal to m, 2) VI; (i = 1,2,4,5,6,7) are mutually parallel and orthogonal to both n and m,
and 3) n, m and VI; (i = 1,2,4,5,6,7) are all parallel. From the universal deformations and material
preferred directions for orthotropic hyperelasticity reported in [Yavari and Goriely, 2021, 2023], it can be
recognized that the third case is not valid in hyperelasticity. Therefore, in order to investigate a possible
equivalence between the universality constraints in hyperelasticity and those in Cauchy elasticity, we need
to study the terms corresponding to coupling N; and Ny, taking only the first two possibilities into account.
Furthermore, note that in transversely isotropic solids, the symmetries of the terms related to N; require
that VI, VI, VIy and VI; be parallel. A similar argument can be applied to the symmetries of the terms
corresponding to Ny as well, resulting in the functional dependence of I, I, Is and I;. As a consequence,
VI;(i=1,2,4,5,6,7) in both cases are functionally dependent.
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We first represent the terms AL, associated with K;; as follows [Yavari and Goriely, 2021, 2023]

Ay = (nan™), Top + (nan" Iop), + (mam™), Ly + (mam™ Iun), |

ﬂ (na )|n I7b+(nan I7n)|b+‘ﬁ7a|n‘[4vb+(ﬁg‘[‘l,’ﬂ)“} 5 (5 23)
A% = &0 Loy + (£5 L)y, + (mam™) ), Isp + (mam™ I5 ), ’
ﬂ =gr \nI7b+(2 I7n)\b+ﬁa|n15,b+(QZI&n)‘b ,
and

ﬂ;;}f} bg (I4 7L16b+14b16 n)a

Agy" = b (Lan Iy + Lay Inn)

A =0 (IsnIsp + 15y Ion)

Agy" = b (Isn I + Isp Inn)

AZE = (Lo Iop + 1ap o),

AL =l (I Iy + Lap In )

A2 = (Isn Iop + I5p Ion)

AL = (Isn Irp + Isp Inn)

AgyS =mnan™ (Lo Loy + Lo Ion)

AT =nan™ (Ion Iry + Loy I7.) (5.24)

AT =nan™ (I Iy + Isp Irn) + L0 (Ion D7y + Lap I7.0)
Ags® =mam™ (Lo Isp + Lo Ion)

AgyT =mam”™ Iy Irp + Loy Irn) + 8o (I Iop + Loy Isn)
Agt" = R (Ian I o+ Lap In )

AN = L0 (Isn Iop + Isp Io.n)

AN =80 (Isn Inp + Isp Ir )

AL =mam™ (Is Lo b + I5p Io.n)

AZT =mam™ (Isn Inp + Isp Ir.n) + 82 (Isn Loy + L5 I6,n)
AT =R (Is p Irp + I p In.)

( )
( )

AL =nan™ (I Iop + Isp Ion) + &2 (Ian Top + Tap Io ) »
( )+ £

where £ = (4% and £ = (5.
In Cauchy elasticity, p|q) is expressed as

Plas = Y _ (Bop a1 + B ow + Bl cuan + By s + BSY e + Bip g + By s + B aow) ,  (5.25)

K

where Bl B2x @in @ox @b @Te B85 and B are the matrices of coefficients of a1, a2y, Qux, s,

g, (7, Qg and gy, respectively (g, = Oay /01, where k is a multi-index). It can be shown that there
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are 44 terms in Cauchy elasticity corresponding to coupling of N7 and N, which are

Bap = (nan™),, Lo+ (an" In)y,
Bap = (nan™), Irp + (nan” Inp)y,
Bop = Loy, Loy + (L4 Ton),
Bap = L4 1 I + (€4 Irn) 5
B = Ly, Lo + (7 Isn)), -
B = a|nI7b+(2 I?n)|b7

(5.26)

Zéz(mam> I4b+(mam I4n)| ,

|n

B

BT = (mgm" Jin Isp + (Mg m™ I5,n)|b ,
B3 = K2, L + (80 L),y

B3 = o T+ (R Ton)y

@

B

)
bt (R Lun)
( )
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and

Ban® = bt (o Lap + Iop Lan)
By =00 (Iyn Iy + Loy I7n)
Baa® =00 (Isn Iop + Isp Io,n)
BT =" (Isp Irp + I5p In.n)
B2E =l (Iopn Lup + Top Lan),
BT = Iy Iz + Loy I7.0)
B2 = (Is p Isp + I5p Io,n)
BLT = (Isn I + I Irn)

By’ = " (Lo Loy + Lap Lo )
By =n n(f4n17b+14bf7n),
Bar® = nan” (Isn Lo + Isp Ton) |
B =non™ (Isy Irp + Isp In.n)
By’ = L8 (Lo Isp + Lap Ion) ,
BT = L0 Iy Iy + sy I7.0)
B = & (Is I p + Isp Io.n)
BT =L (Isn Iy + I5p I7.0) (5.2
By’ = L (Lo Top + Lap Ton) '
BT = L0 Iy Iy + Lap I7.0)
By’ = L (Isn Io b+ Is Ton)
BT = L8 (Is I + Isp Irn)
BN = mym" (Iyn Iop + Lap Ion)
BT =mem™ (Iyn Irp + Loy I7n),
By’ =mam" (Isn Isp + Isp Ton)
Biy" =maem" (Isn Irp + Isp I n)
By’ = Ry (Lo Lo o + Lap Ion)
BT = Q7 Iy Iy + Iap I7.0)
B = R (Is I p + Isp Io.n)
By =Ry Isn Irp + Isp Irn)
By’ = Ry (Lo Iop + Lap Ton)
By = Ry (Lo I + Lap In )
B’ = Ry (Isn Isp + Isp Iom)
By = Ry (Isn Irp + s In )

where £2° = /9® and R*® = /3. Consequently, the following relations are established between the two groups
of terms

ﬂab - @ + @ab 9
AL = Ba + BEE
ﬂab - @52 + @ab 9
ﬂab - @5 %ab )

(5.28)
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and

ﬂ146 — 146
ab
ﬂ147 e 147
ab
ﬂ156 — (pl56
ab >
ﬂlS? _ @157
ab
46 246
AL =
ab >
ﬂ247 _ @247
ab >
ﬂ256 — (256
ab
ﬂ257 _ @257
ab
ﬂ446 @446
ab
ﬂ447 @447
— Pab >
5.29)
456 456 546 ( :
ﬂ = @ab +@ab )
457 457 547
A =B +Boy'
ﬂ466 @746
ab
467 747 846
Agp' =By +Byy s
ﬂ477 @847
ab >
ﬂ556 _ @556
ab
ﬂ557 _ @557
ab >
566 __ 756
A =B

ﬂ567 _ @727 + @856

577 __ mp857
AT = @37

In what follows, the symmetry equivalence between the terms in hyperelasticity given in (5.23) and (5.24),
and those in Cauchy elasticity represented by (5.26) and (5.27) for the two possible cases is examined
separately.

5.2.1 Case 1: n(x) and VI; are mutually parallel and orthogonal to m (x)

This section discusses the equivalence between the symmetry constraint terms in hyperelasticity and those in
Cauchy elasticity, when n and VI; (i = 1,2,4,5,6,7) are parallel to each other and orthogonal to m (because
of the existing symmetry, this case is equivalent to that in which m and VI; (i = 1,2,4,5,6,7) are parallel
to each other and orthogonal to n).

We first investigate the symmetry equivalence between the terms A[, and @B/, when s is a three-
component index. Regarding the relations (5.29) and (5.27), only the terms appearing in (5.29)11, (5.29)12,
(5.29)14 and (5.29)19 need to be examined. Since n, VI5, Vs, and VI; are parallel, the symmetry conditions
for the terms B39 and B27 are trivially satisfied, and thus

A = o =0, Al = - 530
or equivalently
A=, A = 531

Besides, owing to the orthogonality of m to VI, VI5 and V17, it follows that @Z§7 = @227 = 0, which leads
to
A" = B5)° A =B’ (5.32)

ab >

The remaining terms in Cauchy elasticity are in one-to-one correspondence with those in hyperelasticity, as
represented in (5.29). It remains to show that the symmetries of the extra terms in Cauchy elasticity, namely
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CB%G, @227, @3;:’6, @327, @236, @237, @956 and @227 hold identically. Knowing that n is an eigenvector of c,
one may write £7 = N ngn™ (see (4.48)), and hence
2 2
@646 71417” na[6b+716nn TLaI4b,
A1 A1
647 _ 2 n 2 n
—B )\ I4,nn Ng I7,b + )\7177”” Ng I4,ba
21 ! (5.33)
@656 71571” naIGb+ IﬁnnnnaISba
)\1 )\1 5 )
2
@657 = 715nnnnal7b+ 7I7nnnna15b7
)\1 ’ El Al ’ )

which are symmetric because n and VI; are parallel. In addition, the orthogonality of m to VI; (i =

Il a
1,2,4,5,6,7) together with ¢ I, ,, = )\’
1

1
= Liem®=0. (5.34)
A1

a7 Lin =m"comelin +mec mC L, =m"I; p cgme +mg
It follows that
B — BT — 35 — B — 0, (535

and thus the additional Cauchy elasticity terms introduce no new constraints. Consequently, in this case the
symmetry of the term A~} is equivalent to that of B, where k is a three-component index.

We next discuss the symmetry equivalence between the terms (5.23) and (5.26) (i.e., A%, and BY,, where
k is a two-component index). Given that n and VI are parallel, we have ng Is », = 1y, I o and the term @3?
becomes

@35 = (na )\n IG b+ (IG a n' nn)lb . (536)

Expanding the right-hand side of (5.36) and omitting the symmetric terms n4 s, and Is|qp, one has the
following representation
@417 = Na|n n" Iﬁ’b + Iﬁ’a (’I’Ln nn)lb . (537)

Referring to (4.54), which provides an equivalent expression for B4} when n and VI, are parallel in trans-
versely isotropic solids, and with respect to the functional dependence of I, and I, it is inferred that

B = @it (5.38)

Similarly, we have

B = B (5.39)

We can also use (4.47) and ng Is , = np I 4 to rewrite CBE? as

B = (21 ng n") i, Loy + (2Anan" Isa)y, (5.40)
which is further simplified to read

Bop = Napy 2A1n") Isp + (2 A1 0y, n")p, Ioa- (5.41)

By applying (4.65) which is obtained from the symmetry of B39 for transversely isotropic solids, (5.41) can
be expressed in the following form

Bop = Calsalon+ (2Mn,n™)y Ioa+ 2Mingn"), Top, (5.42)

which is evidently symmetric. Thus
B = B5Y. (5.43)
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Using the same approach, the following symmetry equivalences are established:

BT =@ B =@ BT =@ (5.44)
From (5.28), (5.38), (5.39), (5.43) and (5.44);, one deduces that
Agy = Bay + By »
Aay = Bay + Bay

5.45)
56 — 55 (
Agp = Bay + By »

Agy = Boy + By
We know that the terms B2 = A4 and B35 = A5 are already symmetric, since each direction must be
universal for transversely isotropic solids. As a consequence, (5.45) becomes

74 47 84 56 — 75 57 — 85
ﬂab - aba 'ﬂab - abv ﬂab - ab’ ‘Zab - . (546)

To complete the proof of the symmetry equivalence between the Cauchy elasticity terms and the hypere-
lasticity terms in this case, we need to show that the remaining terms in Cauchy elasticity, including 3% and
@gg’, are trivially symmetric. Following [Yavari and Goriely, 2021, 2023], a direct computation shows that for
all universal deformations of incompressible orthotropic hyperelastic solids, when m | VI;, the expression

a | Vanishes identically. This, along with (5.34), leads to B} = B2 = 0. It follows that there are at most
four independent terms in hyperelasticity (46, 247, %% and /°7) and at most four independent terms in
Cauchy elasticity (B7*, 3%, B™ and B%°), which are related by (5.46). Hence, the two groups of symmetry
constraints are equivalent. This conclusion completes the proof of the symmetry equivalence in this case.

5.2.2 Case 2: n(x) and m (x) are orthogonal to VI;
In this case, both n and m are orthogonal to VI; (i = 1,2,4,5,6,7), and accordingly

n"Iin:m"Iinz()

’Sn Z’I'L_’S IZ’I'L_‘ﬁ IZTL_R IZTL_O (5.47)
Sg\n :ﬁa\n :£a|n :‘ﬁam =0.

In view of the above relations, most of the hyperelasticity and Cauchy elasticity terms in (5.23), (5.24),
(5.26) and (5.27) are identically zero. The remaining terms are related as follows (see (5.28) and (5.29))

Aay = Bay + Biy -
ﬂab - @ab )
ﬂab - @ab )
ﬂ146 @3216 ,

147 _ p147
ﬂ - @ab ’

AR =B (5.48)
AT = 157
ﬂ246 @2216
a )
T2 = 2T

256 256
ﬂ @ab ’

257 __ 257
ﬂab _gBab :

In this case @36 = (ngn ) I, and @ab = (ng )‘n I4p. Due to the functional dependence of Iy and I,
we have B1¢ = B4, Since @ig is symmetric, it follows from (5.48); that
A = gTl (5.49)
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Thus, the symmetry constraint terms in Cauchy elasticity correspond one to one with those in hyperelasticity
in this case, showing that the two sets of constraints are equivalent.

We showed that for incompressible orthotropic solids, the symmetries of the terms corresponding to the
coupling of N7 and Ny in hyperelasticity and those in Cauchy elasticity are equivalent for the two possible
cases. Since each direction must be universal for transversely isotropic solids, the symmetry equivalence
between the corresponding terms in hyperelasticity and Cauchy elasticity holds as demonstrated in §4.2. In
summary, we have proved the following result.

Proposition 5.2. The universal deformations and material preferred directions of incompressible orthotropic
Cauchy elasticity are identical to those of incompressible orthotropic hyperelasticity.

6 Universality Constraints in Monoclinic Elasticity

The material symmetry of a monoclinic solid is characterized by three unit vectors N1, N2 and N3 [Merodio
and Ogden, 2020]. The first two vectors, N; and Ny, are not mutually perpendicular, whereas N3 is oriented
normal to the plane they span, i.e., Ny £ Na, and N3 | span{Nj, Ny}. The strain energy density function
of monoclinic hyperelastic solids is defined in terms of nine invariants, i.e., W = W(Iy,---,Iy). The first
seven invariants are the same as those introduced for orthotropic solids, while the two additional invariants
are defined as [Spencer, 1986]

Is=gN;-C-Ny, Iy = g%, (6.1)
where g = Ny - Nao. The second Piola—Kirchhoff stress tensor for monoclinic solids is written as [Yavari and
Goriely, 2023, 2021]

S=2W,G* +2W,y ([,C ' —3C™ %) +2W3[3C!
+2Wy (N1 ®N1) +2Ws [Nl & (CN1)+(CN1) ®N1] (62)
—|—2W6(N2®N2)+2W7[N2®(CN2)+(CN2)®N2]+9W8(N1®N2+N2®N1)

01
Note that Wy does not contribute to the above equation because =% — 0. The Cauchy stress is then written

ocy
as
a:iwlbﬁ—ki(IgWg—i—IgW;;)gﬁ—2\/I3W2cﬁ
v van
2 2
+ﬁW4(H1®H1)+ﬁW5 [n1®(b~n1)+(b-n1)®n1] (63)
2 2 1
+ —Wg(ny®ny) + — Wrna ® (b-n3) + (b-ny) ® ny +—gW8n®n2+n2®n s
ow . .
where W, = FIA (i=1,---,9), n; = F-N; and ny = F - Ny. In components, it takes the following form

2
ab ab ab ab
g = Wlb + IQ WQ-"-I;), ng —I3 [/[/2C
/*[3 [ ( )

+ Wyngnh + Ws (n§ 0" nf gea + nb b n geq) (6.4)
Wa né b W a bbc d b pac d } W, a b a b
+ We ng ng + Wr (ng b7 nf gea + 15 0" n gea) + 59 s (nfng +n5ni)l,

where n§ = F%4 N{* and n$ = F%4 N3
Referring to [Yavari and Goriely, 2025], the second Piola—Kirchhoff stress tensor for monoclinic Cauchy
elastic solids has the following representation

S=apG* +a;C* +a;C¥* +a3(N; ®N;) + a4 [N; ® (C-Ny) + (C-N;) @ Ny
+a5[N; @ (C?-Nj) + (C?-N;) @ Ny
+ a6 (N2 ® N3) + a7 [N2 ® (C-N3) + (C - N3) @ Ny]
+as [N2 ® (C? - Ny) + (C? - Nj) ® Na] + gag (N; ® N2 + N2 @ Ny),
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where a; (I1,---,1y),i = 0,---,9 are the response functions. The Cauchy stress tensor is similarly written
as

a:dogﬁ—l—&lbﬁ—l—dgcﬁ—i—dg(nl ®ny)+ads[n; ® (b-ny)+ (b-n;) ®ny
+as[n ®(c-ny)+ (c-ny) ®ny|+ag (ng ®ng) + a7 [n2 ® (b-ny) + (b - ny) ® nyj (6.6)
+as[ng ® (c-ny) + (¢ n2) ®Na] + gy (N ®n2 +nz2 @ny),
where a; (I1,--+,Io),i=0,---,9 are the response functions.
Taking Is = 1, we have the following expression for the second Piola—Kirchhoff stress tensor of incom-
pressible monoclinic hyperelastic solids [Yavari and Goriely, 2023, 2021]
S=—-pC ' 4+2W, G +2W, (I, C™! -~ C?)
+2W, (N1 ®@Np)+2W5[N; ® (C-Np) + (C-Np) @ Ny (6.7)
+2W5 (N2 ® N3) +2W7 [N2 ® (C-Ngz) 4 (C-N3) ® Na] + g Ws (N; ® No + Ny @ Ny ),
where W = W (I, 12, 14, I5, I, I7, Is, Iy). The Cauchy stress is similarly written as [Yavari and Goriely,
2023, 2021]
o=—pg'+2W1b* —2Wycf +2W, (n; @ ny)
+2W5n;® (b-ny)+ (b-n;)@n;| +2Ws (n2 ® ny) (6.8)
+2Wrn2® (b ng) + (b-n2) ®nz]+9gWs (n ®ny +ny@mny).
Hence, the Cauchy stress can be represented in components as

0 = —pg® L 2W b — 2Wo 4 2Wyngnb + 2 Wi £5° + 2Wsn§ nb + 2 Wy £3° + W £4° (6.9)

where (% = n{ b*° n{ geq + nf b n geq, €40 = ng b* ng geq + nb b ng geq, and €5° = g (n$ nb + nb ng).
In the case of incompressible monoclinic Cauchy elastic solids, the second Piola—Kirchhoff stress tensor
is written as

S=—pC 1 4+aG +a,C* +a, (N, ®N;) + a4 [N; ® (C-N;) + (C-N;) @ Ny
+a5 N1 @ (C™-Np) + (C71 - Np) @ Ny
+dg (N2 ® N3) + a7 [Na ® (C - Nj) + (C - N3) @ Ny
+ag[Ny® (C™1-Ny) + (C71-Ny) @ No| + gag (N7 @ Ny + Ny @ Ny ),

where a; (I, I, Iy, Is, I, I7,Is, 1), i = 0,1,2,4,5,6,7,8,9 are the response functions. Thus, the Cauchy
stress tensor for incompressible monoclinic Cauchy elastic solids is represented as

(6.10)

a:—pgﬁ—|—a1bﬁ+azcﬁ+a4(n1®n1)+a5[n1®(b-n1)+(b~n1)®n1]
+agn; ®(c-ny)+(c-n)®ni|+ar (ny ®ny) +agny ® (b-ny) + (b-ny) ® ny) (6.11)
—|—oz9[n2®(c~n2)—|—(c-n2)®ng]—|—ga10(n1®n2—|—n2®n1),

where «; = o (I1, 2, I, I5, I, I7,Is, Ig), i = 1,2,4,5,6,7,8,9, 10 are arbitrary response functions.

6.1 Compressible monoclinic solids
The Cauchy stress for compressible monoclinic Cauchy elastic solids is given in components as (see (6.6))

0% =01 g 4+ a2 b + a3 ™ 4+ oy n{ n? + as E‘fb + ag E‘fb + arng ng + ag é;b + ag Zgb + aqp Egb ,  (6.12)

be be

where £ = n{ ¢* n{ gea+n c**nf gea, £5° = n3 " 13 gea+nl ¢ n§ gea, and o (I, Iz, I3, Is, Is, I, I1, Is, Io),
i =1,---,10 are arbitrary response functions. Substituting (6.12) into the equilibrium equations (2.10) yields

b b b b 7ab b b Fab
a2 b + s ™y + ay (n‘fnl)lb—i—asﬁ‘f w6l +ar (ngny), +as b5, +agls’),

Ib
+ aqp £§b|b tari Lip g™ +ani Lipb™ 4+ ag,; Iy ¢ + agy Iy (n§nh) + as i Iy 457 (6.13)

Jab b b Jab b
+ag Lip b +ari Ly (ngng) + g Iip 057 + g I p 057 + cvigi i 05 =0,
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where i = 1,---,9. Therefore, the following universality constraints are obtained
bab‘b _ Cablb -0,
(n§ nf) =0,
(ngn3), =0,
E%bw =0,
égbu) =0,
Egbw =0,
Liyg™ =0,
L0 =0,
Iiyc™ =0,

b
Lipniny =0,

(6.14)

b
Lipngng =0,

Ly 05" =0,
L3 =0,
L3 =0,
Z‘llbu) =0,

Egbu; =0,

Lipt" =0,
Ly 05" =0.

The constraints (6.14)1—(6.14)14 are identical to those for hyperelastic solids [Yavari and Goriely, 2023, 2021].
Thus, similar to orthotropic solids, (6.14)15—(6.14)15 are the extra constraints in Cauchy elasticity.

Except for (6.14)¢ and (6.14)14, the remaining constraints (for ¢ = 1,---,7) are the same as those for
orthotropic solids. Consequently, universal deformations are homogeneous, I; (i = 1,---,7) are constant, and
N; and N5 are constant unit vectors. The constraints K%blb =0and I; g“b =0 (for ¢ = 8,9) imply that N3
is also a constant vector and that Ig and I are constant (note that (6.14)14 is then trivially satisfied). Given
these results, it can be shown that the additional constraints in Cauchy elasticity, i.e., (6.14)15—(6.14)1s,
are trivially satisfied. In summary, we have proved the following result.

Proposition 6.1. The universal deformations and material preferred directions of compressible monoclinic

Cauchy elasticity are identical to those of compressible monoclinic hyperelasticity.

6.2 Incompressible monoclinic solids

Let us substitute (6.8) into the equilibrium equations to get

1
pp g™ =2 Wi b™ — Wa e + Wyn§nd + Wi 4% + We ng nb + Wr 05" + 3 Ws Qo (6.15)
|b

for hyperelastic solids. Similarly, substituting the Cauchy stress (6.11) into the equilibrium equations (2.10)
gives the following equation for Cauchy elastic solids

P g% = [ b + g ™+ agn§ nf 4 as 050 + ag 050 + ar n§ nb 4 ag 157 4 ag 150 + o Egb] b (6.16)
In hyperelasticity, pjqp = >, AL, Wi, and therefore the condition pjq, = pjp, is identical to Af, = Aj,.

It was found that there are 78 additional terms for monoclinic hyperelastic solids which are [Yavari and
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Goriely, 2023, 2021]

Agy = qZ|nb’

Agy = Qo T + (a5 )y, + 0oy, Iso + (03 Isn)y,

AL =00 T+ (00 Do)y »

ATy = L2+ (a5 T2y, — i Isp — (€ Isin) )y

AZy = ~Can oy = (ch Ton)y, -

Aab = i1 Lap + (a5 Lon)py, + (na ™)y, Isp + (nan” Isn)y,

AL = (ng "n)ln Inp + (ngn™ Ig,n)‘b ,

AZs = Qo Lo+ (a5 Isn)y + 51 Isp + (€0 Isn))y (6.17)
Agy = L3 1, Top + (€5 Ton)y -

Ags = Qo Lo + (A5 Ton) ), + (Mam™), Isp + (Mam” Isn)),

A% = (mgm" )in
Ay = Qo Irp + (a5 Irn)y, + 85, Isp + (88 Isn))y
Agy = R Top + (80 Ion)

Ay = g Lsp + (a5 Isn)y -

Ay = o Lo + (a5 Tomn)p, »

I9b+ (mam Ign)‘b 3

and
A =0 (I Isp + iy Is )
Ay’ =03 (I Iy + Ty Ton)
A = by (I Isp + Top Isn) = ¢ (Iin Isp + T Isin)
A =00 (I Ioy + Iop Ion) — it (I Iop + 11 Io )
Agy® =00 (I Isp + Loy Is ) + nan”™ (I Isp + T Is )
Ay? =00 s Iop + Ly o) +nan™ (Inn Top + T1p Ion)
ALE =0 s Isp + Isp Isn) + &0 (I Isp + T1p I )
Ay =00 IsnIoy + Isp Ion) + £ (It Iop + T Io ) (6.18)
AXE =0 (Ion Isp + Iop Isn) +mam™ (It Isp + Ty Isn)
AL =07 (Ion Top + Top Ion) +mam”™ (It Ty + T p Io )
AN =07 (Ir I + Trp Is ) + 82 (I Is + Ty Is )
Aas” = by (Trn Iop + T Ton) + 8 (Tn Top + T Ton)
Ay =0y Isn Isp + a4 (I Isp + iy Is )
AL =0 s Iop+ sy Ion) + a8 (It Top + T1p Io.n)
Ay = by Ton Iop
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and

and

ﬂ289
ﬂ299
ﬂ448

449
ﬂab

—cpy (Ion Isp +IopIs ),
= —cq I2nlop+ T2 p Ion),

—Cq Tan I3y + Lap Is ) + man™ (20 Isp + T2 Isin)
=—cp (Lundop+ LapLon) +nan” (Iopnlop+ IopIon),
—Co (Isn Isp + Isp I n) + £4 (T Isp + T2 p Isn)

=—cg Isndop+ IspLon) + L5 (Lo Iop+ T2 Ion),
—cg (T Isp + Lop Is ) + mam”™ (o Isp + Iop Isn)
—cp s Iop + Isp Lom) + mam™ (I Iop + Iop Lo )
—cy (Irn Isp + I Isn) + 8Bg (Ion Isp + T2p Is )
—cp Iz Iop + Irp Ion) + Ry (Lo Loy + 12 Io ),

=—colsnlsp+a, (IonIspy +1IopIsn),

= —cy (Isn Top + I8 p L) + a4y (I Loy + Iop Ton),
—cglon oy,

=ngn" (IgnIsp + Iap Isn) .

=ngn" (Ion oy +Iaployn),

=ngn" (Ispnlspy +IspIsn) + L0 Tanlsp+1apIsn),
=ngn" (Is;nIop + 155 Io.0) + L4 (Ian Loy + Iap Lon),
=ngn" (Ispn Isp + Iop Isn) + mam”™ (IanIsp + Loy Isn),
=ngn" (Ign LIop + Iop Ion) +mam" (IanIop + sy Io ),
=ngn" (Irp Isp + IrpIsn) + R (Tan Isp + Lap Isn),
=ngn" (Irpnloy +IrpIon) + Ry (Tanlop + Laplon),
=nan" Ign Iy + a5 (Lo Isp + Lo Isn)
=ngn" (I lop + Isp Ion) +qg (Ian Loy + 1 Ion),
=ngn"Ignlgy,
=2n(15nfsb+f5b18n)7

Lo Is o+ Isp Ion),
Lo T Isp+ Isp Ism) +maem™ (Isn Isp + Isp Is ) s
Lo TsmIop+Isp Lo n) +mem™ (IsnIop + Isp Io ),
Lo Iz Isp + Irp Isn) + R (Isn Isp + I5p Isn)
Lo It Iop +Irp Iop) + RG (s Loy + Isp Ion),
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and

Agy> = Lo Isn Isp + g (Isn Isp + I Isn)

AR = L0 (I Iop + Isp Ton) + a7 (Isn Top + Isp Io )
A% = L0 Ionlow,

A =mam™ (Ien Is b+ Top Tsn)
AL =mam™ (Isn Iop + Top Ion)
A =mam™ (Ig Isp + Irp Isn) + 82 (Ion Is b + Top Is ) »
A =mam™ (I Loy + Irp Ion) + 82 (Lo Lo + Lo Ion)
ASE =mam™ Is n Isp + 7 (Ion Isp + Loy In)

ASE =mam™ (Isn Iop + Isp Ion) + a2 (Isn Iop + Lo b Ion)
A =mam™ Iy Iy,

AT = R (I Igp + Ty Is )

AT = 82 (I Top + Iy Io.0)

Agy® = 8y I Is +dg (Irn Isy + Inp Is,n)

A = &7 (I Iop + Isp Ion) + a7 (It Top + I Io )
AL =R Ion lo,

Agy® = dg Ign Isyp

A5 =ay (Isn oy + Isp Io )

A =anTon oy,

(6.21)

where n = n;, m = ny, £ = (90 R = (3% and q?° = ¢3°.
Taking (6.16) into account, one may determine pj,; in Cauchy elasticity as

Plab = Z (@ig Qi + @3g Q2 + @2‘? Q4 + —(ng Qs + @21’: et
. (6.22)
@7/{ @81{ @91{ @10&
+Bay vz + By g + By g + By ™ iok )

where @;g, Cng”, @;"f, @g’b”, @Sg, @Zb“, @257 @9,)"”” and @;g"“ are the matrices of coefficients of a1, ok, 4y,
5y Qs Q7re, Oy Qg and g g, Tespectively (ay, = da; /01, where k is a multi-index). The extra terms
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in Cauchy elasticity are found to be
10
@ab
@18
19
Bap

= qZ|nba

= bajn s + (05 Is.n)

= b1, Lop + (b7 o)y,

= —CupnIsp = (i Isn)y »
—Candop = (i om), -

= (nan )\n Igb + (’ﬂannlg n)

)

@32 = (nan )\n IQb + (nan Iy ")|b ,

B = Lo dsp + (€6 Is )y
@22 £a|n Ty + (Lo IQ,n)|b )
@Sg = £a|n Igp + (E’Z I&n)|b ’
Bay = Lo Lo + (L5 Ton) , -

@Zg = (ma mn)‘n I8 b+ (ma m" IS n)|b 5

‘(BZ? = (mam )\n

@88 = ﬁgm I8 b+ (ﬁ -[8 n)‘b )

B _ﬁa|n]9b+< o)y, »
Q; a|n18b+( n)|ba
@ab_7a|n]9b+( ”)|b’
Bap ' = a1 L1y + (@ D),
Bav” = Ao L2 + (@5 L), »
Bap = ai 1 Loy + (@ Lan)py »
Bap® = Ay Loy + (G Is,n)y »
Bap® = da 1 Loy + (@ Lon)p, »
By = Qo L76 + (g Irn))y
Bip® = a1 Iy + (@ Is,n)py »
Bap” = Ay, Loy + (0 Lon)yy »
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and

and

S o o L e B e i L e B L e e

Q3 23 93 203 93 03 03 083 03 €83 83 @83 83 3 3

—C

—C

—C

—C

—C

—C

—C

—C

—C

—C

—C,

_Ca

n
a
n
a
n
a
n
a
7
a
n
a
n
a
n
a
n
a
n
a
n
a
TL
a

Iinlgp+11pIsn),
Iinlop+1iplon),
Ionlgpy +1IopIsp),

n)

n) s
,n

)

/o

NN N N NN
-l - o
S S RS S R =
oo+ o+ o+
oSS
> - > - = =
o S et & e S

n)

Tsnlop +Isplon),
Inpnlgp +1I7p I3 p),
Inpnlop +1Irp Iy p),

A~ N N N N N N /N /N /N A/~ o/~
(=2 B & B

)
)
)
)
)
)
)
)
)
)
)
)

~

8,nd8b
(Isn Iop + Isp Io.m)
Iy, Iy,

(I I+ Tip Isn)
(IinTop + Ty Ion),
(Ipn Isp + I2p Is n) 5
Iz Top + T2 Io.n),
Iy Isp + Iup Isp)
(Iapn Lo+ Iap o n),
Usndsp+15p I3 n)
Us;ndop + 156 1on),
(o Isp+ 1o b Isn)
(Ton Loy +Top Ion)
(Irn Igp + I7p I8 n) 5
Iz Top + Iz Io.n),
I Isp,

—cg (Isn Iop + Igp Lo ),

—C,

n
o Lon Iop,
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(6.24)

(6.25)



and

and

Bap® =nan" (I lsp + iy Isn),
Bap” =nan™ (Innlop + Iy Ion),
BEE = non" (I Isp + Inp Isn)
B =nan" (Ioplop + TopIon),
Bap® =nan” (Inn sy + Lap Isn)
BEO =non" Iy Top + IupIon),
BB =non" (Is, Isp + Isp Isn)
Bap? =nan”™ (Isn Loy + Isp Ion)
BIE = non" (I Isp + lop Isn),
B = nyn"™ (Isn Iop + Isp Ion),
@478: "(I Isy + Irp Isn),
@gg—na "Iz lop + I Io0) ,
By =nan” Isn sy,

Bay) =nagn"™ (IsnIop + Isp Ion)

499
@ab = Ng Tln Igyn I9,b s

B =20 (I Isy + iy Isn),
B =L (L Iop+ Ty Ion),
BB =L (Lo Isp + Iop Is )
B = & Iy Iop + Top Io.n),
By = Lo (Lo Isp + Tap Tsn)
B =L (I Iop + Loy Ion)
By = Lo (Isn Is b+ Isp Tsn)
B = Ln s Iop + Isp Ion)
Bop® = L1 (s Isp + Iop Is )
B’ = L8 s Loy + Isp Ton)
BT = 2" Iy Iy + Iy Is )
Bop? = Lo (I Top + Trp Ton)

B = Lp Isn Is
B = L8 (Ism Iop + Isp Ion),
B =L Ign Iy,
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(6.27)



and

BOE = &0 (I Isp + Ty Isn)
B =L (i Iop + Ty Ion),
B = &1 (Ion Igp + I2p Ig n) 5
B =L (Lo Iop + Iy Ion),
B =L (I Isp + Lap Isn)
BE = &1 (I Iop + Iap o),
BEE = &1 (Isp Isp + Isp Isn)
B =L (I Iop + I5p Ion), (6.28)
BESE = £ (I, Isp + I Isn) s
B = & (Is I p + Iop To.n)
BOTE = & (Ir 0 Isp + Irp Isn)
B = L& (I Iop + Irp Ion),
B = Lo Isn sy,
Boy? = L (Ism Top + Isp Ton)
B = L0 I lo,
and
BIE =mam™ (I Isp + iy Is )
@5;9: m" (I Loy + 11p Ton)
B =mem™ (IonIsp + Iop Is ),
B2 = mam"™ (I Iop + Iop Ion),
B =mum" Iy Isp + LapIsn),
BT =mam"™ (g Top+ Loy Ion),
B =mem™ (Is n Isp + I5p Isn)
B =mam” (Isn Iop + Isp Ion) (6.29)
BID® =mam” (Iomn Isp + Io b Isn)
@229: m"™ (Ie.n Lop + Lo.p Ion) ,
B =mam™ (Irn Isp + Iy Is )
B =mem™ (I n Iop + Irp Io.n)

ab = Mmgm™Ig Iy,
789
Bay =mam" (I lop + Isp lon) s

= Mmgm™ Iy lgy,
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and

and

=8 (inlsp+Liplsn),
=R (Iinlop+Tiplon),
=8y (Lo Isp + 12 Isn) ,
=Ry e lop +Iop Ion)
v =Ry (LanIsp + 1apIsn),
y, =Ry TanIop+Iaplon),
=Ry (Isn Isp + Isp Is ),
=Ry Usnlop +IspIon),
b =84 Lo Isp + Iop Isn)
=R (Isn Iop + IspIon) ,
ZﬁZ(I ISb+I7bI8n),
=Ry (Irnlop + I7p Iom),

=Ry Isnlsp,

=8, (Is;nIop + Isp o),
—ﬁ;’ IonIgp,

Linlsp+TipIsn),
Linlop+Tiplon),
IonIgy + 1o Ig
Iy pIgy +Io Ig
TopIsp+1apIsp

)

)

)

)
)
)
)
)
Linloy+1IspIon),
IsIgp + Isp g n) s
IsnIop+ IspIon),
I Isy + Isp Is )
Isn Loy + Isp Ion)
)
)

)

)

nlsp +Irplsy),

I7nIQb+I7bIQn )

n I8,b ;

(I Top + Isp Io.m)

Ignloy,
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(6.31)



and

Bap'® =al (IinIsp + L1y Is )
BLILO Linlopy+ T pIon),
Bap > InpIsp+IopIs ),
Bap > Iy Ilgp+IopIon),

BLIA® = Linlgpy+1Isplsyn),

da ( )
=qy (I, )
=q; (I, )
=q; (I, )
qa (1, )
B4 = q Iy Iop + Lop o),
Bap ™ = dit (Is.n Isp + Isp Is.n)
Qo Isn o + Isp Ion) (6.32)
do (TIo,n Isp + Iop Is n) ,
qo (Te,n Iop + I Lo.n) 5
=0y Urnlsp +1IrpIsn),
Bap " =t (Irn Loy + Iz Ion),

)

@1059
@1068
@1069

1078
@ab

Bap®® = ql Isn Is
Bap > = ap (Isn Lo s+ Isp Io,n)
Ban? =qi Ion Iy,

where £ = (9® and R = (3°. Thus, there are 160 additional universality constraints for incompressible
monoclinic Cauchy elastic solids.

First consider the terms A, and B
(6.24)—(6.32), we have

., where xk is a three-component index. From (6.18)-(6.21) and

.%199 — pl99
ab

ﬂ119 — pl19
ab

499 _ 1499
Ay =By s

ﬂ699 _ @799
ab
4, 4 104
AL = B + B,
ﬂ689 @789 + @10 69 ,
ﬂ188 _ @188 + @Clbé) 18 ,
ﬂllS @118

(6.33)

The symmetry of ﬂ;gg or @339 asserts that Vg is an eigenvector of b7 (we assume that I;,i =1,2,4,5,6,7,8,9
are not constant), i.e., b Iy , = Ag Ig o, Where Ag is the corresponding eigenvalue. Substituting this expres-
sion into ALY or B gives

AR =BYY =N Lalop+Noloalip, (6.34)
which is symmetric only when A\ = A9, or equivalently, VI; and VI are parallel. Thus, Iy and I; (i =
1,2,4,5,6,7) are functionally dependent. Moreover, the symmetry of the term A% or B399 is preserved
if n and Vg are either parallel or orthogonal. Referring to [Yavari and Goriely, 2021], we find that the
former case is inadmissible, and thus n L VIy. A similar line of reasoning shows that m is orthogonal to
V1, ensuring that the term ﬂ§£9 or @229 remains symmetric. Let us now consider the term @ég 49 Since
n" Iy, =m" Iy, =0and VIy and VI, are parallel, it follows that n" Iy , = m"™ I, = 0. Hence

Bop™® =g (nam™ Lypn Iy +nam™ Ioy Iy +man”™ Iy Iop +man” Iy Isp) =0, (6.35)
in which we used q) = g (ny m™ + mgn™). Therefore, (6.33)5 becomes

ﬂigg = ‘(ngg =ngn" Igpn oy . (6.36)
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Because n and Vg are not parallel, the term ﬂéfg or @éfg

Similarly, 1969 = 0 and (6.33)¢ is written as
ﬂggg = @229 =mem" IgnIgp. (6.37)

is symmetric only if n™ Iy , = 0, i.e., n L VlIs.

The symmetry of A or B8 then gives m L VIs. Therefore, q7 Is,, = 0, and consequently B1918 = (.
Hence (6.33)7 is simplified to read

Any® = Bai® = bt Ign Iy, (6.38)
which implies that b] Is , = Ag I3 4, Where Ag is the corresponding eigenvalue. Given this result, we have
AN =B = MTNalsp+Aslsaliyp, (6.39)

which is symmetric only if VI; and Vg are parallel.
To summarize, we showed that the symmetries of the terms

199 7119 7499 7699 7489 689 188 118
{ﬂab ) ﬂab ’ ﬂab vﬂab ’ ﬂab ) ﬂab ) ﬂab ’ ﬂ ’ (6'40)
in hyperelasticity are equivalent to those of
199 119 R499 P799 RABI P68Y P18 RH118
{@ab » Pab ’@ab ’ ab 7@1117 ’@ab 7@1117 a@ ’ (6'41)

in Cauchy elasticity. Both sets are symmetric if VIg and VI are parallel to VI; (i =1,2,4,5,6,7), and are
orthogonal to n and m. Therefore, VI; (1 = 1,2,4,5,6,7,8,9) are mutually parallel and all orthogonal to n
and m. This conclusion, in turn, leads to

22 Ii,n = Eg ]i,n = ﬁg Ii,n = .QZ Ii,n = qZ Ii,n = 0, (642)

where i = 1,2,4,5,6,7,8,9. With this conclusion, most of the remaining terms in (6.18)-(6.21) and
(6.24)—(6.32) are zero. The non-vanishing terms are described by b7 I; , Isp = A1 Lo Isp (or ) I; . Doy =
1 1
MIialgp), and ¢ I; , Isp = " IigIsy (or e Iin Iy = N~
1 1
tional dependence of I; (i = 1,2,4,5,6,7,8,9). Therefore, the symmetries of the remaining terms trivially
hold, and the Cauchy elasticity and hyperelasticity terms are equivalent in this case.
We now turn our attention to the terms A, and B, where x is a two-component index, as given by
(6.17)9—(6.17)15 and (6.23)9—(6.23)95 for hyperelastic and Cauchy elastic solids, respectively. Referring to
[Yavari and Goriely, 2021], one may find that

=g

I; o I ) which are symmetric owing to the func-

a|n = 'Rg\n = q2|n =0. (643)

a|n

Based on (6.42) and (6.43), the terms ng, @22, @Sg, BOY B B B B and B (i =1,2,4,5,6,7,8,9)
in Cauchy elasticity, as well as ﬂab, ﬂab, ﬂab, J‘Zab, A 8b and A Bb in hyperelastl(:lty vamsh Consequently,
eight terms remain in Cauchy elasticity and eight in hyperelasticity, with a one-to-one correspondence given

by the relations below (see (6.17) and (6.23))

aln =

A

A

A

a8 =93
(6.44)

A

A

A

69 _ »79
ﬂab - @ab .

Regarding 8 o = @1b = 0, one now concludes that the Cauchy elasticity universality constraints in this case
are equivalent to those in hyperelasticity. Therefore, for incompressible monoclinic solids, the additional
constraints appearing in hyperelasticity are equivalent to those in Cauchy elasticity.

In summary, we have proved the following result.
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Proposition 6.2. The universal deformations and material preferred directions of incompressible monoclinic
Cauchy elasticity are identical to those of incompressible monoclinic hyperelasticity.

7 Conclusions

In this paper, we analyzed universal deformations in compressible and incompressible anisotropic Cauchy
elastic solids. We showed that for transversely isotropic, orthotropic, and monoclinic materials, the sets of
universal deformations and universal material preferred directions coincide with those previously obtained in
the hyperelastic case. Thus, the existence of an energy function does not affect the form or characterization
of universal deformations and material preferred directions in Cauchy elasticity. This result establishes that
universal deformations and material preferred directions are independent of whether the constitutive law
is derived from a potential. These findings extend and generalize earlier results for isotropic solids to the
anisotropic setting. The present analysis provides a foundation for further exploration of universal defor-
mations in more general material frameworks, including non-Cauchy elastic solids, materials with residual
stress or microstructure, and generalized continua where additional internal variables appear.
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