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A B S T R A C T

Film-substrate systems are prevalent in various industries, and manipulation of their adhesion strength is 
essential to guarantee their desired functionalities. Inspired by the heterogeneous characteristic of geckos’ 
spatulae, heterogeneous adhesion devices are proposed for enhanced directional adhesion, but experimental 
measurements of their adhesion strength are significantly lower than the theoretical predictions. This discrep
ancy is likely due to the cohesive zone, a factor that was usually overlooked in previous theoretical models. To 
elucidate the effects of the cohesive zone on the peeling behavior of bio-inspired heterogeneous thin films, we 
developed a semi-analytical model based on energy principles. In the model, the peeling force can be determined 
by two dimensionless parameters: the heterogeneity factor and the cohesive-zone factor. The heterogeneity 
factor significantly strengthens the adhesion when peeling from the soft side to the stiff side, and weakens the 
adhesion when peeling from the opposite direction. This indicates that heterogeneity simultaneously facilitates 
the attachment in soft-stiff direction and the detachment in stiff-soft direction. The cohesive-zone factor partially 
offsets the attachment enhancement by heterogeneity; however, the cohesive-zone factor has marginal impact on 
the detachment enhancement. This study systematically reveals the combined effects of heterogeneity and 
cohesive zone on the peeling behaviors of bio-inspired heterogeneous thin films and provides useful guidelines 
for the design of smart attachment/detachment adhesion systems.

1. Introduction

Film-substrate systems are widely utilized in numerous industries, 
including micro-electromechanical systems (MEMS) [1], locomotion 
robotics [2], and advanced manufacturing [3,4]. The ability to precisely 
design and manipulate film/substrate adhesion is essential for various 
functional applications [5–7]. Nature offers a number of biological 
adhesion systems that exhibit swift and smart control in adhesion. 
Notably, the adhesion system of geckos serves as an exemplary model for 
the designs of functional adhesive devices. The average stress between a 
gecko’s feet and contacted surfaces can reach up to 100 N/cm² (~10 
atm) [8,9]. Despite such a strong attachment, geckos can detach 
effortlessly from and climb rapidly on diverse surfaces. This combina
tion of two seemingly contradictory properties, strong attachment and 
easy detachment, is elegantly realized within geckos’ adhesion systems. 
Previous investigations have revealed that the geckos’ adhesion is the 
van der Waals force in nature [10,11], which is universal yet weak 
intermolecular forces; however, geckos achieve remarkably reversible 

adhesion through their hierarchical brush-like fiber array system.
Fig. 1(a) illustrates the typical hierarchical structure of the geckos’ 

adhesion system [12,13]. The gecko toes are covered with lamellar 
forms of seta array, and each seta further branches into hundreds of 
spatulae at the tip. Significant research efforts have focused on eluci
dating the adhesion mechanisms of geckos through theoretical 
modeling, computational simulations, and experimental demonstra
tions. For instance, Geim et al. [9] manufactured adhesives mimicking 
gecko spatulae using arrays of submicrometric polyimide pillars. Their 
work demonstrated that such gecko-like adhesives can achieve an 
adhesion strength of 3 N/cm² (~0.3 atm) when the pillars are designed 
with appropriate density and geometry. In contrast, the unstructured 
polyimide films exhibited a negligible adhesion strength (<10⁻³ N/cm²), 
underscoring the importance of spatula design in the adhesion behav
iors. Gao et al. [12] modeled the spatula as an elastic cylinder with a flat 
tip in contact with semi-infinite substrates, and found that the 
nano-scale size of spatulae is crucial for achieving high adhesion 
strength and tolerating potential contact flaws. Yao et al. [14] further 

* Corresponding author.
E-mail address: zhang_zuoqi@whu.edu.cn (Z. Zhang). 

Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

https://doi.org/10.1016/j.tws.2025.113357
Received 3 March 2025; Received in revised form 18 April 2025; Accepted 21 April 2025  

Thin–Walled Structures 214 (2025) 113357 

Available online 22 April 2025 
0263-8231/© 2025 Published by Elsevier Ltd. 

https://orcid.org/0000-0003-2688-8960
https://orcid.org/0000-0003-2688-8960
mailto:zhang_zuoqi@whu.edu.cn
www.sciencedirect.com/science/journal/02638231
https://www.elsevier.com/locate/tws
https://doi.org/10.1016/j.tws.2025.113357
https://doi.org/10.1016/j.tws.2025.113357


proposed a bottom-up design of hierarchical structures mimicking 
geckos’ spatula array, and demonstrated that the work of adhesion and 
flaw-tolerant size both exponentially increase with the number of hier
archy levels. Although these studies confirmed the significance of 
spatulae in realizing strong adhesion, the mechanism of easy detach
ment has been mainly attributed to the asymmetry of setae at a larger 
scale (the setae generally feature an inclination angle ~30◦ not 90◦ with 
the contacted surfaces) [12]. However, the specific characteristics of 
spatulae in geometry and material have not been paid much attention. 
Actually, many organisms that have adhesion-based locomotion systems 
possess spatula-like terminal elements [15]. Fig. 1(b) highlights these 
similarities, emphasizing the significance of spatula-like structures in 
adhesion. It is essential to recognize that the spatulae in contact with a 
substrate function more like elastic thin films [13], rather than simple 
micropillars.

Considering the spatula as an elastic thin film facilitates under
standing the mechanics involved in the terminal adhesive element 
contacting with substrates. Tian et al. [13] established a theoretical 
model for peeling a thin film from a substrate based on force balances, to 
account for the friction and adhesion mechanisms in geckos’ toe 
attachment and detachment. They suggested that the transition between 
attachment and detachment may be controlled by the toe’s rolling mo
tion that alters the peeling angle. Chen et al. [16] developed a hierar
chical model covering multiple levels from the spatula to the toe. Their 
findings indicated that the specific geometry of spatula allows for a 
relatively large contact area with surfaces and so achieve the maximal 
adhesion strength even with discontinuous contact. They further 
employed the classical Kendall model [17] to show that the peeling force 
could be increased approximately tenfold at the spatula level by opti
mizing the spatula angle. Recent progresses in this field have presented 
various peeling models to study the effects of the thin film length [18,
19], bending stiffness [20], heterogeneity [21–25], and pretension [26], 
as well as the film-substrate periodic cohesive interactions [27] and 
cohesive zone [28,29]. These factors generally fall into two categories: 
film properties and film-substrate interaction properties. The effect of 
heterogeneity in composite interfaces had been studied in Kendall’s 
work on controlling the interface cracks [30]. The inverted triangle tip 
of the gecko’s spatulae reflects their evident heterogeneity in geometry 
[31], as shown in Fig. 1(a); as a result, there must be heterogeneity in the 
bending stiffness. Xia et al. [21] theoretically investigated the effect of 
stiffness heterogeneity on peeling of a thin film from a substrate, and 
found that the heterogeneity would significantly increase the critical 

peeling force when peeling from the low stiffness segment to the high 
stiffness segment, whereas it would decrease the critical peeling force 
when peeling in the other direction. In another word, the heterogeneity 
surprisingly enhances the directionality in adhesion, simultaneously 
making the attachment stronger in one direction and the detachment 
easier in the other direction. However, the experimental measurements 
of the attachment force distinctly fell below the theoretical predictions. 
This may be mainly attributed to the effect of cohesive zone that was not 
taken into account in the theoretical models. Avellar et al. [28] carried 
out experiments and finite element simulations to investigate the effect 
of cohesive zones on the peeling behaviors of heterogeneous adhesive 
tapes, and indicated that the existence of cohesive zones suppress the 
adhesion enhancement by the bending stiffness heterogeneity. In natural 
biological adhesion systems such as the geckos’, the spatula-like ter
minal elements of adhesion have such a small size up to tens of nano
meter, comparable to the action range of van der Waals forces, and 
hence the cohesive zone effect is likely non-negligible. Therefore, a 
critical question arises, how the cohesive zone and structure heteroge
neity interplay to define the directional peeling behaviors of the bio
logical or bioinspired adhesion systems.

To clarify the interplaying mechanisms between cohesive zone and 
structural heterogeneity in the film-substrate systems, here we establish 
a theoretical peeling model for a heterogeneous thin film attached to a 
rigid substrate with the cohesive zone taken into account. In the model, 
the potential energy for the whole system, especially including the 
cohesive energy in the cohesive zone, was established, and a semi- 
analytical solution of the peeling force was derived based on the prin
ciple of minimum potential energy. Interestingly, the peeling force can 
be characterized with two dimensionless parameters: the cohesive-zone 
factor and the heterogeneity factor, respectively representing the effect 
of cohesive zone and structure heterogeneity as their names indicate. 
For verification purposes, extensive finite element simulations were 
conducted to complement the theoretical predictions.

2. Theoretical model

The peeling model for a heterogeneous film on a rigid substrate, 
which incorporates the cohesive zone, is illustrated in Fig. 1(c). The film 
is composed of two segments, designated as Segment 1 and Segment 2. 
The film is treated as a beam in a plane-strain state. The bending stiff
nesses of Segment 1 and 2 are denoted by D∗

1 = E∗
1I∗1 and D∗

2 = E∗
2I∗2, 

respectively. Here, E∗
i (i= 1,2) is the plane strain modulus, defined as 

Fig. 1. (a) The hierarchical structures of gecko’s adhesive system [12], with the spatula as its terminal element [30]; (b) Non-uniform structure designs of 
spatula-like adhesive elements seen in some insects [15]; (c) The mechanical model of a two-segment thin film attached to a rigid substrate, in which the two 
segments have different bending stiffness and especially the cohesive zone is taken into account.
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Ei/
(
1 − ν2

i
)
, in which Ei is the elastic modulus and νi is the Poisson’s 

ratio. I∗i (i= 1,2) denotes the moment of inertia of the cross-section per 
unit width, calculated as h3

i /12 with hi being the film thickness. Struc
ture heterogeneity can arise from the variations in E∗

i or/and I∗i . The film 
is assumed to be inextensible, which is valid at large peeling angles. 
During the peeling process, the heterogeneous film is peeled vertically 
off the substrate, gradually from Segment 2 to Segment 1, in which a 
cohesive zone of a certain size is especially included instead of the ideal 
brittle debonding point. The cohesive zone is modeled as a triangular 
region, at the front of which the film is perfectly adhered to the substrate 
while completely deboned from the substrate at the rear. For analytical 
convenience, a curvilinear coordinate system (s, θ) is introduced to 
describe the deformation of the film with the function θ(s). Here, s de
notes the arc-length of the film measured from the origin o at the left 
end, while θ represents the inclination angle between the tangent to the 
film and the horizontal axis. The arc coordinates l and lc denote the front 
and rear end of the cohesive zone, respectively, while L represents the 
total length of the heterogeneous film.

The traction-separation relationship within the cohesive zone is 
assumed to be a bilinear curve [32], fully defined by three key param
eters: the peak stress σp, critical separation δc, and interface energy γ. 
Given the nature of peeling at large angles, it is reasonable to consider 
only normal interfacial traction [17]. Thus, the cohesive law is 
expressed as follows: 

σ =

⎧
⎪⎨

⎪⎩

δ
δp

σp 0 ≤ δ ≤ δp

δc − δ
δc − δp

σp δp ≤ δ ≤ δc

(1) 

where δp represents the separation corresponding to the peak stress σp, 
and denote α = δp/δc. The interface energy γ can be calculated as: 

γ =
1
2

δcσs (2) 

Under steady-state peeling conditions for homogeneous materials, 
the cohesive zone size remains constant and can be approximated as 
follows [16,33,34]: 

ci =

(
E∗

i h3
i γ

σ2
p

)1
4

=

(
12D∗

i γ
σ2

p

)1
4

=

(
3D∗

i δ2
c

γ

)1
4

(3) 

For heterogeneous materials composed of two segments, the cohe
sive zone size changes as peeling transitions from Segment 2 to Segment 
1 [28]. However, the details of this change is still unknown to a large 
extent. According to the physical peeling process, there should be three 
stages. In Stage 1, steady-state peeling occurs in Segment 2, and hence 
the cohesive zone size is a constant, equivalent to that for the homo
geneous film of Segment 2. In Stage 2, transitional peeling happens with 
the cohesive zone spanning both Segment 2 and Segment 1, and there
fore the cohesive zone size changes as the peeling propagates. In Stage 3, 
steady-state peeling occurs in Segment 1, and the cohesive zone size 
keeps a constant as that for the homogeneous film of Segment 1, with 
analogy to Stage 1. Evidently, Stages 1 and 3 are just the same as the 
peeling process of homogeneous films, and the cohesive zone does not 
change and makes no effects under the steady peeling scenario consid
ered here. For Stage 2, the cohesive zone comes into play; for the 
simplicity of theoretical modeling, a linearly varying form of the cohe
sive zone size is assumed as the peeling front propagates in Stage 2, 
illustrated in Fig. 2. Mathematically, the cohesive zone size can be 
defined as the following function of the length l: 

c(l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c2 s12 < l ≤ L
c1 − c2

c1
⋅(s12 − l) + c2 s12 − c1 < l ≤ s12

c1 0 ≤ l ≤ s12 − c1

(4) 

where s12 represents the arc coordinate at the interface between the two 
segments, c1 and c2 denote the cohesive zone size in Segment 1 (Stage 3) 
and Segment 2 (Stage 1), respectively.

As illustrated in Fig. 3, the cohesive energy in the cohesive zone can 
be integrated from the traction-separation curve: 

∏

cohesive
= −

[ ∫ l0

l

(

γ −
δ2σp

2δp

)

ds+
∫ lc

l0

(δc − δ)2σp

2
(
δc − δp

) ds
]

(5) 

where lp corresponds to the arc coordinate at peak stress. Considering 
the triangular configuration of the cohesive zone, the cohesive energy 
can be simplified to be: 

∏

cohesive
= −

1 + α
3

∫ lc

l
γds (6) 

Consequently, the total potential energy of the system can be 
formulated as: 

Π =

∫ s12

l

1
2
D1θʹ2ds +

∫ L

s12

1
2
D2θʹ2ds − F

∫ L

0
sinθds −

∫ l

0
γds −

1 + α
3

∫ lc

l
γds

(7) 

where θʹ is the first derivative of θ with respect to the arc coordinate s, 
the first and second terms represent bending strain energy, the third 
term represents external force potential energy, the fourth term repre
sents interface energy, and the last term represents the interface energy 
in the cohesive zone.

Applying the principle of minimum potential energy, we get that the 
variation of the total potential energy with respect to l and θ is equal to 
zero: 

δΠ =
∂Π
∂l

δl +
∂Π
∂θ

δθ = 0 (8) 

Combine the boundary condition (θ(l) = 0, θʹ(L) = 0) and the con
tinuity of bending moment (M|s−12

= M|s+12
), we can derive: 

D1θʹ́ + Fcosθ = 0

D2θʹ́ + Fcosθ = 0
1
2
D1θ 2́

l − γ −
1 + α

3
γcʹ

l = 0

D1θʹ|s−12
− D2θʹ|s+12

= 0

θʹ
L = 0

(9) 

Fig. 2. Illustration of the cohesive zone size variation as the detachment going 
to the segment 1 from the segment 2.
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where θʹ́  is the second derivative of θ with respect to l, and 

cʹ
l = m

dc
dl

= − m⋅
c1 − c2

c1
= − m⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦ (10) 

here m is a correction coefficient introduced to compensate for the 
simplified linear hypothesis of cohesive zone size change across the 
interface (Stage 2 shown in Fig. 2), since the actual variation of the 
cohesive zone size should be more complex, depending on many factors, 
such as γ, δc, α, and D2. Based on dimensional analysis of mechanics, the 
dimensionless coefficient is inferred to be a function of two dimen
sionless factors as below: 

m

⎛

⎜
⎝

(
D2

γδ2
c

)1
4
, α

⎞

⎟
⎠ (11) 

Combing Eqs. (3) and (4), it can be inferred with ease that the first 
dimensionless parameter actually represents the normalized cohesive 
zone size c2 in the following way: 

(
D2

γδ2
c

)1
4
∼

(
3Diδ2

c
γ

)1
4
/

δc ∼ c2 / δc (12) 

Then, the peeling force can be solved to be (See Appendix for the 
derivation in detail): 

F =

D1γ⋅
(

1 + 1+α
3 ⋅ćl

)

D2 + (D1 − D2)sinθs12

(13) 

Without loss of generality, here we assume D1 > D2. Considering the 
small bending deformation of the thin film over the cohesive zone, we 
can set θ12 = 0 and get a maximum value of the peeling force: 

F21
max =

D1γ
D2

⋅
(

1+
1 + α

3
⋅ćl

)

=
D1γ
D2

⋅

⎧
⎪⎨

⎪⎩
1 −

1 + α
3

⋅m⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(14) 

Similarly, if peeling from the other direction (i.e., from Segment 1 to 
Segment 2), we can derive a minimum value of the peeling force: 

F12
min =

D2γ
D1

⋅
(

1+
1 + α

3
⋅ćl

)

=
D2γ
D1

⋅

⎧
⎪⎨

⎪⎩
1 −

1 + α
3

⋅m⋅

⎡

⎢
⎣1 −

(
D2

D1

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(15) 

We can see that F21
max and F12

min, respectively, represent the strong 

attachment force and the weak detachment force in the directional be
haviors of the gecko-inspired adhesion structure. In the equations above, 
the coefficients (1+α)/3 and m both are related to the cohesive zone, 
and m is also a function of α, and so we combine them into a new 
dimensionless parameter M as below: 

M =
1 + α

3
⋅m = M

⎛

⎜
⎝α,

(
D2

γδ2
c

)1
4

⎞

⎟
⎠ (16) 

M is supposed to be a function of 
[
D2/

(
γδ2

c
)]1/4 and α. It is difficult to 

analytically derive the specific expression of M, and hence we turn to 
seek a semi-empirical solution based on finite element analysis (FEA) in 
the following section. Noteworthy that the differential equations in Eq. 
(9) can also be solved via some numerical methods, e.g., the shooting 
method as done in previous works [18–20,22]. However, an analytical 
solution is highly desirable, since analytical solutions have incompa
rable advantage of numerical solutions in unveiling the fundamental law 
and mechanism in principle.

Finally, the peeling forces in Eqs. (14) and (15) can be expressed in a 
more concise format as below: 

F21
max
γ

=
D1

D2
⋅

⎧
⎪⎨

⎪⎩
1 − M⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(17) 

F12
min
γ

=
D2

D1
⋅

⎧
⎪⎨

⎪⎩
1 − M⋅

⎡

⎢
⎣1 −

(
D2

D1

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(18) 

Here, the physical meaning of every term is quite self-evident: (1) the 
bending stiffness ratio outside the brace (e.g., D1/D2) represents the 
enhancing effect of structural heterogeneity; (2) the ratio in the braces 

(e.g., M⋅
[
1 − (D1/D2)

− 1/4
]
) denotes the weakening effect due to the 

cohesive zone. When D1 = D2, Eqs. (17) and (18) yield F21
max = F12

min = γ, 
corresponding to the analytical solution for homogeneous films. For 
heterogeneous films (D1 > D2), if the effect of cohesive zone is not taken 
into consideration, the equations go back to F21

max = (D1 /D2)γ and F12
min =

(D2 /D1)γ, respectively, just the same as the solutions by Xia et al. [21]; 
if the cohesive zone effect is considered, Eqs. (17) and (18) clearly 
suggest that the effect of structural heterogeneity would be offset to 
some extent.

Fig. 3. Illustration of the calculation of the cohesive energy.

B. Zhu et al.                                                                                                                                                                                                                                      Thin-Walled Structures 214 (2025) 113357 

4 



3. Results and discussion

In order to validate our theoretical model and systematically inves
tigate the effect of cohesive zone, we conducted FEM simulations with 
ABAQUS 2016. In the FEM models, the plain strain element CPE4 was 
adopted for the heterogeneous film, an analytical rigid body was used to 
simulate the substrate, and the cohesive element COH2D4 was 
employed to model the interaction between the film and the rigid sub
strate. The substrate was always fixed, while a vertical displacement was 
applied to the right end of the film. The non-bonded part of the film was 
sufficiently long to achieve 90◦ peeling. Before conducting systematic 
simulations, mesh convergence analyses were performed on the FEM 
model to ensure the simulation results are consistent and reliable.

The bilinear cohesive law (see Fig. 3) adopted in the simulations 
have three independent parameters. Hereafter, the interface energy γ, 
and the separation displacement δc, and the separation ratio α are 
adopted to characterize the cohesive law. Noteworthy that α is inversely 
related to the interface stiffness (the initial slope of the cohesive curve), 
while γ and δc are fixed. Hence, α is sometimes referred as the interface 
stiffness hereafter. For convenience, the following group of parameter 
values are adopted as base reference: 

γ0 = 0.01 J⋅m− 2;

δc0 = 1 nm;

ν = 0.3;
h0 = 5 nm;

E0 = 1 GPa;
E∗

0 = 1
/(

1 − ν2) = 1.0989GPa;

D∗
0 = E∗

0h3
0
/
12 = 11.4469nN⋅nm 

Fig. 4(a) shows the plots of the cohesive zone size and peeling force 
varying with respect to the debonding length. At the onset of peeling, the 
cohesive zone size increases linearly from 0 to a steady-state value of 
Segment 2, and correspondingly the peeling force rises non-linearly 
from 0 to its steady-state value. Then, the peeling process goes into 
Stage 1, as aforementioned in Fig. 2. As the cohesive zone approaches 
the interface between Segment 1 and 2, the peeling process goes into 
Stage 2. In this stage, the peeling force rises quickly to a high peak far 
beyond the steady value of the homogeneous segment; the cohesive zone 
size generally increases from c2 (for homogeneous Segment 2) to c1 (for 
homogeneous Segment 1) in a linear way as assumed in our theoretical 
model, see Fig. 4(b). However, the FEM simulation results clearly pre
sent that the cohesive zone size has a slight drop below c2 at the 

beginning of Stage 2, and then increases quickly to reach a peak beyond 
c1. These localized details reflect the mechanical complexity of the 
transitional stage when the cohesive zone crosses the interface between 
Segment 1 and 2, and the deviation from a simply linear transition from 
c2 to c1 in cohesive zone size also justify the necessity of the introduction 
of the correction coefficient m. As the cohesive zone passes the interface 
and enters Segment 1, the peeling force gradually decreases to a steady 
value of the homogeneous segment, and the cohesive zone size also 
slightly decreases to c1. Then, the peeling process goes into Stage 3, 
another steady peeling stage similar to Stage 1.

To check the influences of the separation ratio α and the film bending 
stiffness D on the cohesive zone size, Fig. 5 shows the variations of 
cohesive zone size for different α and D under the condition that the 
interface energy γ and critical separation displacement δc are kept to be 
constant. It can be seen that the cohesive zone size is independent of α (i. 
e., the interface stiffness here), but increases with the film bending 
stiffness D, well consistent with the theoretical prediction by Eq. (3). To 

ascertain the specific form of the coefficient function M
(

α,
[
D2/

(
γδ2

c
)]1/4

)
, we investigated the influences of the two variables on 

the peeling force through checking FEM simulation results. Fig. 6

Fig. 4. FEM-based verification of the linearly varying form of the cohesive zone size with respect to the debonding length around the interface: (a) the normalized 
peeling force and cohesive zone size co-vary with respect to the debonding length; (b) the determination of the varying rate of cohesive zone size around 
the interface.

Fig. 5. Variations of the cohesive zone size for different D and α, with the 
interface energy γ and the critical separation displacement δc fixed.
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presents the plots of the normalized maximum peeling force against the 
bending stiffness ratio D1/D2 for different α and D2 under the condition 
that the interface energy γ and critical separation displacement δc are 
kept to be constant. Three points can be figured out from the plots: (1) 
the peeling force is always equal to the interface energy when D1 /D2 =

1 (i.e., the homogeneous case), regardless of α and D2; (2) the maximum 
peeling force significantly increases with the bending stiffness ratio (D1 
/D2) as well as the film bending stiffness of Segment 2 (D2); (3) most 
interestingly, α shows negligible effect on the maximum peeling force, 
and M can be further simplified to be a function of the sole variable 
[
D2/

(
γδ2

c
)]1/4. Regarding the role of the interface stiffness (α), studies on 

the cohesive interface in composites have obtained similar conclusions 
[33]. They suggested that either two of the three parameters, the 
interface energy, the cohesive strength, and the critical separation 
displacement, are most critical for using a bilinear cohesive law to 
simulate the interface delamination. Thus, without loss of generality, α 
is always set to be 0.5 in the subsequent simulations, unless otherwise 
specified.

Extensive FEM calculations were carried out on a series of combi
nations of interface energy, critical separation displacement, and 
bending stiffness, as listed in Table 1. For each combination 
[
D2/

(
γδ2

c
)]1/4, eight cases of different bending stiffness ratios were 

simulated via FEM to calculate their maximum peeling forces, and 
further to determine the corresponding correction coefficient M by 
fitting. Finally, a series of M corresponding to these combinations 
[
D2/

(
γδ2

c
)]1/4 were obtained, as shown in Fig. 7. By fitting these data, 

the expression for the correction coefficient M can be acquired to be: 

M = 0.4252 + 0.9896⋅exp
(

−

(
D2

γδ2
c

)1
4
/

30.4645
)

(19) 

Hence, a semi-analytical solution for the maximum peeling force in 
Eq. (17) can be explicitly expressed as: 

F21
max
γ

=
D1

D2
⋅

⎧
⎪⎨

⎪⎩
1 −

[

0.4252 + 0.9896⋅exp
(

−

(
D2

γδ2
c

)1
4
/

30.4645
)]

⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(20) 

It clearly indicates that the maximum peeling force is mainly deter
mined by two dimensionless combinational parameters: D1 /D2 and 

[
D2/

(
γδ2

c
)]1/4. As aforementioned, the former parameter represents the 

film bending stiffness ratio between Segment 1 and Segment 2, while the 
latter parameter is a normalized cohesive zone size c2/δc, and thus we 
name them as the heterogeneity factor and the cohesive-zone factor, 
respectively. Similarly, the semi-analytical solution for the minimum 
peeling force in Eq. (18) can be explicitly expressed as: 

F12
min
γ

=

(
D1

D2

)− 1

⋅
{

1 −

[

0.4252 + 0.9896⋅exp
(

−

(
D2

γδ2
c

)1
4
/

30.4645
)]

⋅
[

1 −

(
D1

D2

)1
4
]}

(21) 

It is interesting that Eq. (19) presents M as a monotonically 
decreasing function of 

[
D2/

(
γδ2

c
)]1/4 and hence gives two extremums of 

M as 
[
D2/

(
γδ2

c
)]1/4 approaches +∞ and 0, respectively. If the film stiff

ness is extremely high or the cohesive strength is extremely low, i.e., 
[
D2/

(
γδ2

c
)]1/4

= + ∞, then Eq. (19) yields a minimum M, Mmin =

0.4252. Correspondingly, Eqs. (20) and (21) respectively become 

F21
max
γ

=
D1

D2
⋅

⎧
⎪⎨

⎪⎩
1 − 0.4252⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(22) 

F12
min
γ

=

(
D1

D2

)− 1

⋅

⎧
⎪⎨

⎪⎩
1 − 0.4252⋅

⎡

⎢
⎣1 −

(
D1

D2

)1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(23) 

The two equations above provide estimations on the weakest effect 
of cohesive zone on the maximum adhesion force and the minimum 
detachment force, respectively.

On the contrary, if the film stiffness is extremely low or the cohesive 

strength is extremely high, i.e., 
[
D2/

(
γδ2

c
)]1/4

= 0, then Eq. (19) gives a 
maximum M, Mmax = 1.4148. Consequently, Eqs. (20) and (21) lead to 

F21
max
γ

=
D1

D2
⋅

⎧
⎪⎨

⎪⎩
1 − 1.4148⋅

⎡

⎢
⎣1 −

(
D1

D2

)−
1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(24) 

F12
min
γ

=

(
D1

D2

)− 1

⋅

⎧
⎪⎨

⎪⎩
1 − 1.4148⋅

⎡

⎢
⎣1 −

(
D1

D2

)1
4

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(25) 

Correspondingly, the two equations above represent the strongest 
effect of cohesive zone on the critical peeling forces.

In order to verify this semi-analytical solution, another eight com
binations of interface energy, critical separation displacement, and 
Segment 2 bending stiffness were selected as listed in Table 2, and their 
FEM results of the maximum peeling force are shown in Fig. 8(a), along 
with the theoretical predicted curves. Note that the plots by Eqs. (22)
and (24) are also included to show the possible weakest (Mmin =

0.4252) and strongest (Mmax = 1.4148) effects of cohesive zone on the 
maximum peeling force, respectively. First of all, we can see that the 
theoretical predictions are in good agreement with the FEM results, 
affirming the validity of our solution. As the bending stiffness ratio in
creases, the curves of maximum peeling force rise quite quickly, indi
cating stronger attachment achieved by the film heterogeneity. 
However, our predicted curves including the one of the weakest 
cohesive-zone effect (Mmin = 0.4252) are still much lower than the dash 
line (F21

max /γ = D1 /D2) predicted by the model excluding the cohesive 
zone’s effect. It is worth noting that M has a distinct influence on these 
curves. For the strongest case Mmax = 1.4148, one can see that the 
cohesive-zone effect is profound, and almost completely offset the het
erogeneity effect. In another word, the previous studies that omitted the 
cohesive zone effect may distinctly overestimate the enhancement in 

Fig. 6. Plots of the normalized maximum peeling force against the bending 
stiffness ratio for different αfrom FEM simulations. Here the interface energy 
and the critical separation displacement are both fixed.
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attachment by the heterogeneity. If we peel in the other direction, i.e., 
from the stiff Segment 1 to the soft Segment 2, we can just interchange 
D1 and D2 in Eq. (20) to obtain the minimum peeling force needed for 
detachment, as indicated by Eq. (21). Two theoretical predicted curves 
are shown in Fig. 8(b), together with the data points from FEM simu
lations (the parameters adopted listed in Table 3). In addition, the plots 
by Eqs. (23) and (25) are also included to show the possible weakest 
(Mmin = 0.4252) and strongest (Mmax = 1.4148) effects of cohesive zone 
on the minimum peeling force, respectively. The theoretical predictions 
agree well with the FEM results, and they both showed that the mini
mum peeling force decreases quickly with the bending stiffness ratio, 
indicating easier detachment achieved by the film heterogeneity. 
Interestingly, the plots for different values of M including Mmin = 0.4252 
and Mmax = 1.4148 are quite close to one another, which suggests that M 
has trivial influence in this scenario. Nevertheless, our predicted curves 
including the one of the weakest cohesive-zone effect (Mmin = 0.4252) 

are above the dash line (F12
min /γ = D2 /D1) predicted by the model 

excluding the cohesive zone’s effect, that means a slight underestima
tion of the detachment force if the cohesive zone effect is omitted.

Moreover, combining Fig. 8(a) and (b) together, we can conclude 
that the structure heterogeneity simultaneously enhances the attach
ment in soft-stiff direction and the detachment in stiff-soft direction, 
providing an amazing directional characteristic to the film-substrate 
adhesion which is not only greatly useful in biological attachment sys
tems like gecko’s but also highly desired in many industries such as 
robotics. On the other hand, the cohesive zone exhibits a reverse effect, 
partially offsetting the attachment enhancement by heterogeneity; 
however, its impact on the detachment enhancement is marginal. These 
mechanisms unveiled here can well explain the discrepancy between 
existing theory and experimental observations [28]. To systematically 
clarify the influence of the heterogeneity factor and cohesive-zone fac
tor, the maximum peeling force for attachment (i.e., peeling from 
Segment 2 to Segment 1) and the minimum peeling force for detachment 
(i.e., peeling from Segment 1 to Segment 2) are respectively shown as 
contours in Fig. 9(a) and (b). One can see that for the attachment di
rection, larger heterogeneity and cohesive-zone factors generally lead to 
larger critical attachment forces. Noteworthy that the influence of the 
cohesive-zone factor is more pronounced when the heterogeneity factor 
is larger. On the contrary, for the detachment direction, the larger is the 
heterogeneity factor, the smaller is the detachment force; however, the 
cohesive-zone factor has little effect on the detachment force. These 
contours can serve as useful guidelines for the design of smart adhesion 
devices based on film-substrate systems.

4. Conclusions

In this paper, we systematically investigated the peeling behavior of 
bio-inspired heterogeneous film, especially with the cohesive zone 
considered. Based on the principle of minimum potential energy and 
dimensional analysis, a semi-analytical solution of the critical peeling 
force was derived, as a function of two dimensionless parameters: the 

heterogeneity factor D1/D2 and the cohesive-zone factor 
[
D2/

(
γδ2

c
)]1/4, 

respectively, representing the effects of the film heterogeneity and the 
cohesive zone. The following major conclusions were drawn: 

Table 1 
Combinations of interface energy, critical separation displacement and bending stiffness used for FEM simulations to determine the coefficient function M.

Interface energy 
(γ)

Critical separation 
displacement(δc)

Bending stiffness 
(D2)

Cohesive-zone factor
[
D2/γδ2

c
]1/4 Heterogeneity(D1/D2)

0.1⋅γ0 0.2⋅δc0 64⋅D0 65.4187 1,8,27,50,64,100
0.1⋅γ0 0.2⋅δc0 0.64⋅D0 20.6872
1⋅γ0 1⋅δc0 10⋅D0 10.3436
1⋅γ0 1⋅δc0 5⋅D0 8.6979

0.3⋅γ0 1⋅δc0 1⋅D0 7.8594
0.2⋅γ0 1⋅δc0 0.5⋅D0 7.3140
1⋅γ0 1⋅δc0 2⋅D0 6.9172

0.1⋅γ0 1⋅δc0 0.1⋅D0 5.8166

Fig. 7. Coefficient M obtained as a function of 
[
D2/

(
γδ2

c
)]1/4 by fitting to FEM 

results (data points).

Table 2 
Different combinations of interface energy, critical separation displacement and bending stiffness in FEM simulations for the theory validation.

Interface energy 
(γ)

Critical separation 
displacement(δc)

Bending stiffness 
(D2)

Cohesive-zone factor
[
D2/γδ2

c
]1/4 Heterogeneity(D1/D2)

0.1⋅γ0 1⋅δc0 1⋅D0 10.3436 1,8,27,50,64,100
0.3⋅γ0 1⋅δc0 2⋅D0 9.3465
0.2⋅γ0 1⋅δc0 1⋅D0 8.6979
1⋅γ0 0.7017⋅δc0 2⋅D0 8.2260

0.6⋅γ0 1⋅δc0 2⋅D0 7.8594
0.8⋅γ0 1⋅δc0 2⋅D0 7.3140
0.5⋅γ0 1⋅δc0 1⋅D0 6.9172
1⋅γ0 1.4142⋅δc0 2⋅D0 5.8166
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(1) Our model quantitatively clarifies the roles of structural hetero
geneity and cohesive zone in the directional peeling behaviors of 
heterogeneous film-substrate systems. The model was well vali
dated by comparing with FEM simulation results.

(2) The structural heterogeneity significantly enhances the adhesion 
when peeling from the soft side to the stiff side, and weakens the 
adhesion when peeling from the opposite direction. The 

heterogeneity induced directional characteristic simultaneously 
achieve strong attachment and easy detachment in a single 
design.

(3) The existence of cohesive zone partially offsets the attachment 
enhancement by heterogeneity; however, it has marginal impact 

on the detachment enhancement. A larger 
[
D2/

(
γδ2

c
)]1/4 (corre

sponding to a smaller M) is suggested in the film-substrate system 
design to better reduce the unexpected effects of cohesive zones.

Fig. 8. Validation of the semi-analytical model with additional FEM simulation results: (a) Peeling from Segment 2 to Segment 1 (soft-stiff direction); (b) Peeling 
from Segment 1 to Segment 2 (stiff-soft direction).

Table 3 
Different combinations of interface energy, critical separation displacement and bending stiffness in FEM simulations for the peeling in stiff-soft direction (from 
Segment 1 from Segment 2).

Interface energy 
(γ)

Critical separation displacement(δc) Bending stiffness 
(D2)

Cohesive-zone factor
[
D2/γδ2

c
]1/4 Heterogeneity(D1/D2)

1⋅γ0 1⋅δc0 2⋅D0 6.9172 1,8,27,50,64,100
0.1⋅γ0 1⋅δc0 0.1⋅D0 5.8166

Fig. 9. Influence of the heterogeneity factor and cohesive-zone factor on the directional adhesion behaviors: (a) Contour of the attachment force, i.e., critical peeling 
force when peeling from Segment 2 to Segment 1; (b) Contour of the detachment force, i.e., critical peeling force when peeling from Segment 1 to Segment 2.
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Our model explicitly elucidates the cohesive zone’s effect on the 
heterogeneity-induced directional adhesion and provides valuable in
sights for the design of bio-inspired smart adhesion systems, as well as a 
deeper understanding of the reversible adhesion mechanisms employed 
by gecko-like biological systems. It is worth noting that our model is 
built on the basis of some simplifications, for instance, linear elastic 
materials, a bilinear cohesive law, 90◦ peeling, and small deformations 
within the cohesive zone. Further in-depth studies are certainly war
ranted, to cover aspects such as general materials, cohesive laws, and 
peeling angles, etc.
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Appendix: Calculation of the critical peeling force

Taking the variation of total potential energy Eq. (7) with respect to l and θ: 

δΠ = − D1θʹ
l|(δθ)|l + D2θʹ

L(δθ)|L +
(

D1θʹ|s−12
− D2θʹ|s+12

)
(δθ)|s12

−

∫ s12

l
D1θʹ́ δθds

−

∫ L

s12

D2θʹ́ δθds −
1
2
D1θ 2́

l δl −
∫ L

0
Fcosθδθds − γδl −

1 + α
3

γcʹ
lδl

(A1) 

Considering the boundary conditions:θ(l) = 0,θʹ(L) = 0, and noting that 

δθ(l) = (δθ)|l + θʹ|lδl (A2) 

Eq. (A.1) can be further derived as 

δΠ = −

∫ s12

l
(D1θʹ́ + Fcosθ)δθds −

∫ L

s12

(D2θʹ́ + Fcosθ)δθds +
[
1
2
D1θ 2́

l − γ −
1 + α

3
γć l

]

δl

+
(

D1θʹ|s−12
− D2θʹ|s+12

)
(δθ)|s12

+ D2θʹ
L(δθ)|L

(A3) 

Eq. (8) requires that the terms before δθ and δl equal zero, and so we have: 

D1θʹ́ + Fcosθ = 0 (A4) 

D2θʹ́ + Fcosθ = 0 (A5) 

1
2
D1θ 2́

l − γ −
1 + α

3
γcʹ

l = 0 (A6) 

D1θʹ|s−12
− D2θʹ|s+12

= 0 (A7) 

θʹ
L = 0 (A8) 

Multiply Eq. (A4) by D1θʹ and then integrate from l to s−12, we obtain: 

1
2
D2

1

(
θ 2́

l − θ 2́
s−12

)
+ FD1(sinθl − sinθs12 ) = 0 (A9) 

Similar operations apply to Eq. (A5), and we have: 

1
2
D2

2

(
θ 2́

s+12
− θ 2́

L

)
+ FD2(sinθs12 − sinθL) = 0 (A10) 

Combing Eq. (A9) and Eq. (A10) together with Eqs. (A6–8), we get: 

D1

[

γ +
1 + α

3
γcʹ

l

]

− FD1sinθs12 + FD2(sinθs12 − 1) = 0 (A11) 

Finally, we can obtain the formula of critical peeling force to be: 

F =

D1γ⋅
[

1 + 1+α
3 ⋅ć l

]

D2 + (D1 − D2)sinθs12

(A12) 
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