User login

You are here

Index of all discussions

ESIS's picture

Discussion of fracture paper #18 - A crack tip energy release rate caused by T-stress 

Zi-Cheng Jiang, Guo-Jin Tang, Xian-Fang Li, Effect of initial T-stress on stress intensity factor for a crack in a thin pre-stressed layer, Engineering Fracture Mechanics, pp. 19-27.

Discussion of fracture paper #17 - What is the second most important quantity at fracture?

Fracture assessment based on unified constraint parameter for pressurized pipes with circumferential surface cracks, M.Y. Mu, G.Z. Wang, F.Z. Xuan, S.T. Tu, Engineering Fracture Mechanics 175 (2017), 201–218

Discussion of fracture paper #16 - What is wrong with pure mode I and II? A lot it seems

An improved definition for mode I and mode II crack problems" by M.R. Ayatollahi, M. Zakeri in Engineering Fracture Mechanics 175 (2017) 235–246.

Discussion of fracture paper #15 - Design for crack arrest

Brittle crack propagation/arrest behaviour in steel plate – Part I: Model formulation” by Kazuki Shibanuma, Fuminori Yanagimoto, Tetsuya Namegawa, Katsuyuki Suzuki, Shuji Aihara in Engineering Fracture Mechanics, 162 (2016) 324-340.

Discussion of fracture paper #14 - How to understand the J-integral when multiple cracks are growing at different rates

Fracture resistance enhancement of layered structures by multiple cracks, S. Goutianos and B.F. Sørensen, Engineering Fracture Mechanics, 151 (2016) 92-108.

Discussion of fracture paper #13 - Cohesive properties at ductile tearing

Cohesive zone modeling and calibration for mode I tearing of large ductile plates, P.B. Woelke, M.D. Shields, J.W. Hutchinson, Engineering Fracture Mechanics, Vol 147 (2015) pp. 293-305.

Discussion of fracture paper #12Crack paths and fracture process region autonomy

Method for calculating G, G_I, and G_II to simulate crack growth in 2D, multiple-material structures, E.K. Oneida, M.C.H. van der Meulen, A.R. Ingraffea, Engineering Fracture Mechanics, Vol 140 (2015) pp. 106–126

Discussion of fracture paper #11 - Fracture processes and phase field modelling

A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, T.T. Nguyen, J. Yvonnet, Q.-Z. Zhu, M. Bornert, C. Chateau, Engineering Fracture Mechanics, Vol 139 (2015) pp. 18–39.

Discussion of fracture paper #10 Searching for the length scale of stress corrosion

Further study on crack growth model of buried pipelines exposed to concentrated carbonate-bicarbonate solution, B.T. Lu, Engineering Fracture Mechanics vol. 131 (2014) pp. 296-314. 

Discussion of fracture paper #9 - Crack tip modelling

Effect of a single soft interlayer on the crack driving force, M. Sistaninia and O. Kolednik, Engineering Fracture Mechanics, Vol. 130, 2014, pp. 21–41. 

Discussion of fracture paper #8 - Elastic follow-up

P.M. James: Re-derivation of plasticity interaction for combined loading under significant levels of elastic follow-up. Engineering Fracture Mechanics, Vol. 126, 2014, pp. 12–26.

Discussion of fracture paper #7 - Configurational force approach

K. Özenç, M. Kaliske, G. Lin, G. Bhashyam: Evaluation of energy contributions in elasto-plastic fracture: A review of the configurational force approach, Engineering Fracture Mechanics, 2014, Vol. 115, pp. 137-153.

Discussion of fracture paper #6 - Stress intensity factor for steep yield distribution

T. Yasuoka, Y. Mizutani, A. Todoroki: Applicable limit of the stress intensity factor for steep yield strength distribution, Engineering Fracture Mechanics, 2013, Vol. 110, pp. 1-11.

Discussion of fracture paper #5 - Yield ciriterion or failure criterion

Henrik Danielsson and Per Johan Gustafsson: A three dimensional plasticity model for perpendicular to grain cohesive fracture in wood, Engineering Fracture Mechanics Vol. 98 2013, pp.137–152.

Discussion of fracture paper #4 - Is paper ductile?

P. Mäkelä and S. Östlund: Cohesive crack modelling of thin sheet material exhibiting anisotropy, plasticity and large-scale damage evolution. Engineering Fracture Mechanics,Vol. 79, 2012 pp. 50-60.

Discussion of fracture paper #3 - Length scales in fracture

H. Krull and H. Yuan: Suggestions to the cohesive traction–separation law from atomistic simulations. Engineering Fracture Mechanics, Vol. 78, 2011, pp. 525-533.

Discussion of fracture paper #2 - The role of the T-stress

J.C. Sobotka, R.H. Dodds: Steady crack growth in a thin, ductile plate under small-scale yielding conditions: Three-dimensional modelling., Engineering Fracture Mechanics, Vol. 78, 2011, pp. 343-363; J.C. Sobotka, R.H. Dodds: T-stress effects on steady crack growth in a thin, ductile plate under small-scale yielding conditions: Three-dimensional modelling., Engineering Fracture Mechanics, Vol. 78, 2011, pp. 1182-1200. 

Discussion of fracture paper #1 - A contol volume model

Ehsan Barati, Younes Alizadeh, Jamshid Aghazadeh Mohandesi: J-integral evaluation of austenitic-martensitic functionally graded steel in plates weakened by U-notches, Engineering Fracture Mechanics, Vol. 77, Issue 16, 2010, pp. 3341-3358. 

A blog for discussing fracture papers

The aim of ESIS is not only to develop and extend knowledge in all aspects of structural integrity, 

but also to disseminate this knowledge world-wide by means of scientific publications and to educate young engineers and scientists. For these purposes, three Elsevier journals - Engineering Fracture Mechanics , Engineering Failure Analysis and  >> Read more

Subscribe to Comments for "Index of all discussions"

Recent comments

More comments

Syndicate

Subscribe to Syndicate