User login

Navigation

You are here

matthew.grasinger's blog

matthew.grasinger's picture

Thermal fluctuations (eventually) unfold nanoscale origami

We investigate the mechanics and stability of a nanoscale origami crease via a combination of equilibrium and nonequilibrium statistical mechanics. We identify an entropic torque on nanoscale origami creases, and find stability properties have a nontrivial dependence on bending stiffness, radii of curvature of its creases, ambient temperature, its thickness, and its interfacial energy.

matthew.grasinger's picture

Summer research opportunities in machine learning and computational mechanics at AFRL

The DoD HPC Modernization Program has high-performance computing internship opportunities at the Air Force Research Laboratory. These internships give undergraduate and graduate students the opportunity to perform scientific, computational research alongside AFRL researchers in support of the US Air Force’s mission.

matthew.grasinger's picture

Polymer networks which locally rotate to accommodate stresses, torques, and deformation

Dear colleagues,

I'm happy to share a new article with you Polymer networks which locally rotate to acommodate stresses, torques, and deformations to be published in JMPS.

 

Title: Polymer networks which locally rotate to acommodate stresses, torques, and deformations

Author: Matthew Grasinger

matthew.grasinger's picture

Statistical mechanics of a dielectric polymer chain in the force ensemble

Dear colleagues,

We invite you to see the preprint of our new paper "Statistical mechanics of a dielectric polymer chain in the force ensemble" that will appear in Journal of the Mechanics and Physics of Solids. Here we compute the electroelasticity of single polymer chains using both analytical approximations and novel MCMC techniques. Working in the fixed force ensemble facilitates the derivation of the analytical approximations, which are shown to agree well with the MCMC results. This work complements prior work on the statistical mechanics of dielectric polymers chains obtained in a different ensemble. (https://doi.org/10.1016/j.jmps.2021.104658).

matthew.grasinger's picture

Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity

Dear colleagues,
We invite you to see the preprint of our new paper "Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity" that will appear in PNAS. Here we present a molecular-to-continuum scale theory for the flexoelectric effect in elastomers. The theory unveils a mechanism for achieving giant flexoelectricity--which finds support in prior experimental results; it is then leveraged for designing elastomers for 1) piezoelectricity, 2) tuning the direction of flexoelectricity, and 3) flexoelectricity which is invariant with respect to spurious deformations (https://doi.org/10.1073/pnas.2102477118).

matthew.grasinger's picture

Nonlinear statistical mechanics drives intrinsic electrostriction and volumetric torque in polymer networks

Dear colleagues,

We invite you to see the preprint of our new paper "Nonlinear statistical mechanics drives intrinsic electrostriction and volumetric torque in polymer networks" that will appear in Physical Review E. Here we use a nonlinear statistical mechanics approach to the electroelasticity of dielectric polymer chains and obtain a two-way coupling between chain deformation and dielectric response. This two-way coupling leads to electrically induced stresses and volumetric torques within an elastomer network which can be leveraged to develop higher efficiency soft actuators, electroactive materials, and novel electromechanical mechanisms. (https://doi.org/10.1103/PhysRevE.103.042504).

matthew.grasinger's picture

Architected Elastomer Networks for Optimal Electromechanical Response

Dear Colleagues,

This is the preprint of an article on the design of elastomer networks for optimal electromechanical response that will appear in JMPS. We explore how various structural properties of an elastomer network (e.g. density of cross-links, fraction of loose-end monomers, orientation density of chains, etc.) affects both its bulk elastic and dielectric properties, and its performance as an actuator. (https://doi.org/10.1016/j.jmps.2020.104171).

 

Subscribe to RSS - matthew.grasinger's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate