User login

You are here

molecular dynamics

Jingjie Yeo's picture

Effects of oscillating pressure on desalination performance of transverse flow CNT membrane

https://doi.org/10.1016/j.desal.2018.03.029 In parallel with recent developments in carbon nanomaterials, there is growing interest in using these nanomaterials for desalination. To date, many studies have affirmed the potential of using such nanomaterials for constant pressure desalination operation. In this work, the performance of such membrane when subjected to oscillatory pressure at sub-nanosecond is investigated in detail.

Group Leader Position in Computational Materials Science

The Institute for General Material Properties of the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) is inviting applications for a group leader in the area of Computational Materials Science. The Materials Modeling Group conducts research into the elementary defects of the crystalline lattice and on how their organization and interaction influence the mechanical properties and failure of metallic materials.

Jingjie Yeo's picture

Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations

https://doi.org/10.1016/j.eml.2018.01.009 Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases.

mohsenzaeem's picture

Understanding Homogeneous Nucleation in Solidification of Aluminum by Molecular Dynamics Simulations (OPEN ACCESS)

Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics (MD) simulations utilizing the second nearest neighbor modified embedded atom method (MEAM) potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates.

Jingjie Yeo's picture

High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201704757/full Hydrogels are the focus of extensive research due to their potential use in fields including biomedical, pharmaceutical, biosensors, and cosmetics. However, the general weak mechanical properties of hydrogels limit their utility. Here, pristine silk fibroin (SF) hydrogels with excellent mechanical properties are generated via a binary-solvent-induced conformation transition (BSICT) strategy.

Open Postdoc & PhD positions in Computational Materials Science

In the next months, we have a couple of openings for Postdoctoral fellows and PhD students in Computational Materials Science. If you are interested and at the 2017 MRS Fall Meeting in Boston (Nov 25th - Dec. 2nd) , hit me up!

A.Tabarraei's picture

Ph.D. Position in Computational Solid Mechanics

Two PhD positions are available in the Department of Mechanical Engineering and Engineering Science at the University of North Carolina at Charlotte.
The research project is in the multiscale modeling of the stress corrosion cracking. Candidates should have a strong background in continuum mechanics, finite elements modeling and/or molecular dynamics simulations. Programming experience in Fortran or C++ is a big plus. The starting date for this position is January 2018 or August 2018. Interested candidates please send a detailed CV along with the name and contact info of three references to atabarra@uncc.edu.

keten's picture

Postdoctoral Position At Northwestern University

A postdoctoral associate position is available immediately at the Computational Nanodynamics Laboratory at Northwestern University with Prof. Sinan Keten. This research project focuses broadly on the atomistic and multi-scale modeling of biomolecular materials such as nanocellulose and their interfaces with polymers. A Ph.D. in a related field is required for this position. Expertise in atomistic and molecular modeling techniques (molecular dynamics, density functional theory, coarse-grained molecular simulations) is required. Additionally, a strong background in soft matter research (polymer science, biophysics, or related areas) is highly desired. Interested candidates should send a CV, a summary of research interests, contact information of three references, and three most relevant publications as a single pdf file to s-keten@northwestern.edu. Evaluations will begin immediately, and the start date is flexible.

Jingjie Yeo's picture

International Journal of Computational Materials Science and Engineering (IJCMSE)

As the Editorial Board member of IJCMSE, I enthusiastically welcome the high quality submissions from the community of iMechanica. The objective of the journal is the publication and wide electronic dissemination of innovative and consequential research in all aspects computational materials science and engineering, featuring the most advanced mathematical modeling and numerical methodology developments.

Jingjie Yeo's picture

Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene

http://dx.doi.org/10.1039/C7NR04455K Graphene has excellent mechanical, thermal and electrical properties. However, there are limitations in utilizing monolayers of graphene for mechanical engineering applications due to its atomic thickness and lack of bending rigidity. Synthesizing graphene aerogels or foams is one approach to utilize graphene in three-dimensional bulk forms. Recently, graphene with a gyroidal geometry has been proposed.

Pär Olsson's picture

Available PhD position at the Division of Mechanics at Lund University

The Division of Mechanics at Lund University, Sweden, invites applicants for a PhD position oriented towards multiscale modelling of grain boundaries in metals. The research program focuses on improving the understanding and modelling capabilities of impurity induced grain boundary embrittlement, with special emphasis fusion reactor materials, i.e. primarily tungsten.

Jaafar El-Awady's picture

Postdoc Positon in Atomic and Coarse-Grained Simulations of Epoxy Polymers (U.S. Citizenship or Green Card only)

Postdoc Positon in Atomic and Coarse-Grained Simulations of Epoxy Polymers 

(Grant Requirement: U.S. Citizenship or Green Card)

 

We are soliciting applications from outstanding candidates for a postdoctoral research position in the Computational & Experimental Materials Engineering Laboratory, at the Department of Mechanical Engineering, Johns Hopkins University. This will be a one year position renewable depending on performance.

 

Kmomeni's picture

PhD Position in Multiscale Modeling of Hierarchical Materials

A PhD position is open for summer or fall 2017 in Advanced Hierarchical Materials by Design Lab at Louisiana Tech University on multiscale modeling of hierarchical materials with an emphasis on nanocomposites. The candidates must have earned a M.Sc. degree in Mechanical Engineering or related fields and have a solid background in theoretical and computational mechanics, specifically continuum mechanics and finite element modeling, and need to have the knowledge of writing computer code (preferably using C/C++).

Kmomeni's picture

PhD Position in Multiscale Modeling of Hierarchical Materials

A PhD position is open for summer or fall 2017 in Advanced Hierarchical Materials by Design Lab at Louisiana Tech University on multiscale modeling of hierarchical materials with an emphasis on nanocomposites. The candidates must have earned a M.Sc. degree in Mechanical Engineering or related fields and have a solid background in theoretical and computational mechanics, specifically continuum mechanics and finite element modeling, and need to have the knowledge of w.riting computer code (preferably using C/C++).

Jingjie Yeo's picture

Free-standing graphene slit membrane for enhanced desalination

http://dx.doi.org/10.1016/j.carbon.2016.09.043 This study considers two novel ideas to further explore and enhance the graphene membrane for desalination. Firstly, while earlier molecular dynamics (MD) simulations studies have used frozen membranes, free-standing membrane is considered here. Since 2D membranes are usually embedded on porous support in the experimental reverse osmosis (RO) process, the free-standing membrane can more accurately model the behavior expected during operation.

Jingjie Yeo's picture

Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures

Newly published book chapter - http://link.springer.com/chapter/10.1007/978-3-319-31662-8_4 Aerogels are ultralight solids with nanoporous structure and are one of the world’s lightest materials available in the market. It is a dry gel, principally made up of 99.8 % of air and weighing just around three times that of air. The first aerogels were realized in 1931, when Kistler (J Phys Chem 36:52–64, 1932) attempted to remove liquid from a wet gel.

Jingjie Yeo's picture

Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures

Newly published book chapter - http://link.springer.com/chapter/10.1007/978-3-319-31662-8_4 Aerogels are ultralight solids with nanoporous structure and are one of the world’s lightest materials available in the market. It is a dry gel, principally made up of 99.8 % of air and weighing just around three times that of air. The first aerogels were realized in 1931, when Kistler (J Phys Chem 36:52–64, 1932) attempted to remove liquid from a wet gel.

Pages

Subscribe to RSS - molecular dynamics

Recent comments

More comments

Syndicate

Subscribe to Syndicate