Adrian S. J. Koh's blog

Adrian S. J. Koh's picture

One Research Fellow (Post-Doctoral) Position open in Singapore

We are looking for a highly-motivated research
fellow to work in the area of applied mechanics and materials.

The project is on energy harvesting using soft active materials. This is a joint effort between the Institute of High Performance Computing (A*STAR), and the National
University of Singapore.  The applicant
must hold a PhD degree, prior post-doctoral experience is not required. Relevant
experience in (1) experiments and/or (2) finite element modeling and simulation
is preferred.


Adrian S. J. Koh's picture

23rd International Workshop on Computational Mechanics of Materials (Singapore, Oct 2 - 5, 2013)

Dear Colleagues, Co-Workers and Friends,

It gives me great pleasure to announce that the 23rd International Workshop on Computational Mechanics of Materials (IWCMM23) will take place in Singapore, Oct 2-5, 2013.


Adrian S. J. Koh's picture

Journal Club Theme of August 2011: Energy Harvesting Using Soft Materials

Energy harvesting is the process of converting energy that will otherwise be dissipated into the ambient environment, into useful energy to do work.  I shall focus this discussion on motion-based energy harvesting.  Motion-based energy harvesting is the process of converting dissipated mechanical energy into electrical energy.  Sources of mechanical energy include the ocean waves, wind, human motion, vehicular traffic, and vibrations in buildings and bridges.  This source of energy is ubiquitous and pervasive, and yet, it is one of the least developed energy harvesting technology.


Adrian S. J. Koh's picture

Worldwide Electroactive Polymer (EAP) Newsletter - EAP's Best-Kept Secret

Let me present to you - the Worldwide EAP Newsletter (http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/WW-EAP-Newsletter.html).

This newsletter has been in existence since 1999.  It is meticulously maintained by its editor - Dr. Yoseph Bar-Cohen aka Yosi (of NASA's Jet Propulsion Lab), and published bienially over the past 10 years.  Over the years, it has published interesting new research, reports and expert comments on EAP technology, and of soft-active materials.  It is written in a clear and concise manner; it is an easy read even for people outside of this field.


Adrian S. J. Koh's picture

Maximal energy that can be converted by a Dielectric Elastomer Generator

Mechanical energy can be converted to electrical energy by using a dielectric elastomer generator.  The elastomer is susceptible to various modes of failure, including electrical breakdown, electromechanical instability, loss of tension, and rupture by stretch.  The modes of failure define a cycle of maximal energy that can be converted.  This cycle is represented on planes of work-conjugate coordinates, and may be used to guide the design of practical cycles.


Adrian S. J. Koh's picture

Size & Strain Rate MD Study on Metallic Nanowires

Thank you for your interest shown in my previously posted work.  Here's a post-print for an article of an extension to my previous work.  Extension in the sense that the MD simulation was performed on "larger" metallic nanowires (2.0 nm to 6.0 nm), and the behavior of gold (Au) nanowires were studied.  The mechanism behind strain-induced amorphization was explained and the phenomenon of multiple necking was observed, implying the presence of "localized" amorphization instead of a "globalized" one observed in shorter nanowires.


Adrian S. J. Koh's picture

Molecular Dynamics Simulation of Small Metallic Nanowires

Attached is a post-print of one of my journal papers submitted in 2005.  A brief description of my paper is as follows:


Syndicate content