Skip to main content

SIMULIA's blog

Using ABAQUS for reliability analysis by directional simulation

Submitted by SIMULIA on

Monte Carlo reliability calculations for high-reliability systems are very computationally expensive. Variance reduction techniques optimize this process greatly and directional simulation is one such technique. Directional simulation is particularly valuable for high reliability systems where the failure surface is highly curved or dislocated.

Novel Approach to Conducting Blast Load Analyses Using Abaqus/Explicit-CEL

Submitted by SIMULIA on

A new method is introduced for conducting blast load analyses using the new Coupled-Eulerian-Lagrangian (CEL) capability of Abaqus/Explicit. In the past, either a 1-D blast code or tabular data was used to determine a pressure vs. time curve that would be applied to the exterior surfaces that were assumed to interact with the blast wave. These pressure curves were generated using knowledge of the amount/type of explosive and line-of-sight distance away from the explosion.

Modeling the Creep Behavior of Torsional Springs

Submitted by SIMULIA on

A finite element model is developed to investigate the instantaneous as well as long-term (time-dependant) structural response of a pre-loaded torsional spring. Torsional springs belong to a class of spiral springs that are commonly made out of Elgiloy - an alloy of Cobalt, Chromium, Nickel and Iron. Elgiloy has very high yield strength, and is commonly used as a spring material in clocks.

Modeling and Simulation of Engraving and Gun Launch of a 40mm Sensor Grenade

Submitted by SIMULIA on

The U.S. Army Armament Research, Development and Engineering Center (ARDEC) at Picatinny Arsenal, NJ is developing an inert 40mm sensor grenade which houses an array of sensors and electronic components. This grenade is intended to be fired from a hand held launcher and relay sensory information back to the user. To accomplish this task, the internal electronic components must be structurally housed and guarded from impact induced g-levels.

Impact Analysis and Dynamic Response of a 40mm Sensor Grenade

Submitted by SIMULIA on

The Army is developing new grenades with sensors instead of explosives. A grid of 40-mm grenades will be fired from conventional M16 rifles. The projectiles must survive gun launch and impact. After impact, soldiers will get a real-time ‘picture’ of a local area. Signals from the onboard sensors will be processed on a hand-held computer that captures the activity within the

FE Analysis of Firearm Locking Systems

Submitted by SIMULIA on

In a firearm the firing cycle is a high-speed dynamic event, of short duration (a few milliseconds) and highly non-linear - large displacements, plasticity, contact - during which its components are subjected to pulse loads - high-pressure and temperature gas and impact between moving parts. In the design of any firearm choosing the locking (breech) system is the fundamental starting point as this will guarantee that the cartridge case is adequately supported to withstand the tremendous rearward thrust exerted by the powder gases.

Failure Analysis of a 105mm Fin Deployment Mechanism

Submitted by SIMULIA on

In order for artillery projectile guidance and control systems to meet precision performance requirements it is necessary to utilize fin stabilization rather than the conventional means of spin stabilization of artillery projectiles. Since the munitions are fired from a gun tube it is necessary for the fins to be stowed and secured during launch and then deploy once the projectile has left the muzzle of the weapon.

Determination of Critical Flaw Size in Gun Launched 40mm Grenade

Submitted by SIMULIA on

The inspection and screening of flaws in high explosive filled gun fired projectiles are crucial to ensure safety for soldiers using these items. In bore failure of structural components are sure to produce lethal consequences, therefore it is of great importance to determine what the maximum permissible crack size is for a given component coming off of the production floor. The analytical process to determine critical flaw size occurs in two stages. First, ABAQUS Explicit finite element analysis code is used to conduct interior ballistic simulation of a 40mm shape charge projectile.

Simulation of the Forming Process of Liquid Filled Packages Using Coupled Eulerian-Lagrangian Approach

Submitted by SIMULIA on

This study concerns simulation of the forming process of a carton-based package for liquid food (for example, milk or juice), and how the packaging material interacts with the fluid during the forming. The carton-based package is formed inside a filling machine while the fluid is being filled into the package. The carton-based package is thin with low bending stiffness and is thus deformed significantly at small loading. This implies that the forming of the package to a large extent depends on the dynamics of the fluid inside the package.

Design of Different Types of Corrugated Board Packages Using Finite Element Tools

Submitted by SIMULIA on

From a structural point of view, corrugated board would fit on the category of sandwich structures, which in sectors as aeronautics or construction are today commonly analysed using simulation tools that are based on the Finite Element Method.