User login

You are here

Testing VUMAT With Uniaxial Compression Simulation

Hi everyone, as I know so far all simple compression and tension test are treated as static loading problem and simulated using ABAQUS standard. However, if I want to test a new developed VUMAT using uniaxial compression simulation, is that means I must set up the compression simulation using all ABAQUS explicit option? In other words, am I gonna choose dynamic (explicit) option for compression step and mesh my model using explicit mesh? I tried to set up the compression test using dynamic (explicit) option but got very strange result. It seems that bulking always happens even I set contact properties between specimen and compression head as frictionless. But the result I expected is a deformed configuration which deform evenly in all direction, like the one we can obtain in ABAQUS standard using frictionless and pure elastic material properties. Is anyone has ideas or experiences in dealing with this kind of problem?  

Thank you. 

Frank Richter's picture

Hello,

I recommend you study the example input files provided for the example

1.3.16 Upsetting of a cylindrical billet: coupled temperature-displacement and adiabatic analysis

in the benchmark manual. First use standard commands. If this weird shape persists, the error must be within your VUMAT code.

Good luck

Frank
------------------------------------------
Ruhr-University
Bochum
Germany

Thanks for your comment Frank, I read the example you mentioned and found out that for a same compression test, an axisymmetric explicit model would give me the desired homogeneous compression shape, but a 2D explicit model would give the weird deformed shape just like the one I shown above. Also, I try to compare 2 simple compression simulation with with differet solver, one use static general step (standard solver), and the other one use dynamic explicit step (explicit solver), both simulation use same material properties defined by ABAQUS built in elasticity and plasticity model, the simulation results are shown below. It seems to me that the cause of weird deformed shape in compression simulation is not the type of material but the type of solver. However, there should not be such a large difference between these results right? Can you tell me what is the reason? If I must use 2D (not axisymmetric) explicit solver  in this case, what setting should I use in order to obtain the similiar result as the one from standard solver?

Thank you

Frank Richter's picture

 

Hello gnoij,

the picture
ABAQUS Standard result (wanted to achieve).jpg
shows that the lateral faces of the sample remain straight in the course of the deformation, i.e., the deformation proceeds friction-free. That means that a uniaxial state of stress should prevail. In that case the von Mises stress should equal the axial stress, and this should be homogeneous throughout the entire volume. This criterion holds both for cylindrical and square cross-section of the sample, and any constitutive behavior. This is contradicted in the picture. Did you generate it using standard commands only ?

The same holds for
Result From Standard Solver (mentioned in 3rd comment).jpg   
This is totally weird.

Looking at
ABAQUS Explicit result.jpg
I'd rather say that you are implementing 3d elements, not 2D.

There should be no qualitative difference between standard and explicit.

First restrict your simulations to strictly elastic materials.

You are lucky. I was teased by the term "Uniaxial Compression " in your topic. I devoted my own PhD thesis to it. I recommend you study the basics of the compression test. My PhD thesis is entitled
"Upsetting and Viscoelasticity of Vitreous SiO2: Experiments, Interpretation and Simulation"
and available for download at
http://opus.kobv.de/tuberlin/volltexte/2006/1179/

Pick chapters 3.1, 3.2, 6 and appendix B1.

If you are after the stress state in specimens of square cross-sections then honor Knein, a reference in my thesis. It is written in German though. Present-day knowledge is accumulated in books on "contact mechanics", e.g.:
K.L. Johnson: Contact Mechanics, Cambridge University Press; 1987

Post your input files or send them to me. State clearly which input file has generated which picture.

Frank

 

------------------------------------------
Ruhr-University
Bochum
Germany

Hello Frank,

You are right, by setting the simulations to be frictionless and no separation after contact, I could obtain a homogeneous deformation with standard solver without any problem. However, the nonhomogeneous and twisted deformation occur if I switch to explicit solver, even if other settings like material and interaction properties are preserved.

My undergraduate final year project is to conduct the uniaxial compression simulation of bulk metallic glass which stated in the thesis entitled "The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures", but so far I still could not set up the simulation, needless to say run the VUMAT testing. Inside the thesis a 3D uniaxial compression simulation is solved using ABAQUS/Explicit by assuming that there is no friction between the specimen and piston, and the simulation result should be a homogeneous deformation. However, I just can not figure out how to make a dynamic explicit compression simulation to be homogeneous, all I got is some weird and twisted deformation as shown in 2nd and 3rd picture. In fact, the input file named "3D compression INP - Explicit solver" is actually my simulation model to conduct a identical compression simulation as the one mentioned in the thesis.

The input files for the pictures are upload on the first comment, please feel free to tell me your opinions about the INP files. Besides that, the computation time is found to become much longer when explicit solver is used. Do you know what is the reason and how to overcome it?

Thanks and regards

 

Frank Richter's picture

 

Regarding the choice of an element type: in the pdf you provided they are using C3D8R resp. C3D8RT elements.

The specimen in the 3D simulation is not centered in your simulation. You observe a horizontal shift of the nodes on the central vertical line. Equivalently, the vertical shifts of the left edge and the right edge do not differ only in sign, but also in magnitude.
This also holds for the 2D simulation. In 2D Compression-Standard Solver (3rd picture) you see that the node defining the rigid die is aligned with element edges in the final configuration, but it is not in the initial configuration.

The twisted shape may result if it is not centered both horizontally and in the direction normal to the plane of the picture.

I am not familiar with generation of FEM models within CAE. I write my input files by hand which are the so-called "flattened" input files. Thus, all the "PickedSet" and "internal" stuff makes it a bit difficult for me to follow your coding. That's why I did not modify your input files.

You should, as a a first attempt:
1) change the element type
2) center the specimen
3) simulate only what you really need. Unless your boss insists drop the rigid dies and model them as a single horizontal line (2D) resp. plane for 3D, see my thesis.
Modeling the rigid dies is not needed. Looks nice, but if you want
to show them in contour plots you will lose resolution in the spatial
distribution over the specimen cross section. It is sufficient to model one eigth of the specimen as shown in Fig. 3 in that pdf, making use of symmetry considerations. The region of interest is thus only 2 mm x 2 mm x 4 mm. This will also reduce the simulation time. Pick one quarter of the cross-section (caution: divide measured force by four !) and only half of the height. Apply appropriate boundary conditions to restrict motion !
Once you incorporate thermal effects later this will also give you an opportunity to visualize internal thermal gradients from the specimen center to the surface as a contour plot (provided the gradient is large enough to be detectable). The Fig. 4a-d shows this gradient only on the surface.

Why do you want to model this process as 2D ? CPE4R elements do not feature the degree of freedom 6.

If you want to incorporate heat flow (p. 682 in the pdf), then refer to my thesis.

With which institution are you affiliated ? Is your boss one of R. Ekambaram, P. Thamburaja, H. Yang, Y. Li, N. Nikabdullah ?

Where do you get the VUMAT from ? Is the code reliable ? Did it get tested ?

 

------------------------------------------
Ruhr-University
Bochum
Germany

Hi Frank,

      Thank you very much for your concern and opinion. I am a undergraduate student from National University Malaysia and my supervisor is Prof N. Nikabdullah. Actually constructing the VUMAT is my final year project objective. The 3D compression simulation result is needed to compare with experiment result in the paper in order to verify whether my VUMAT is reliable. While the 2D compression simulation is actually planned to be used as a faster testing manner to test my VUMAT during the developing process.

      So far I have constructed an isothermal VUMAT based on the constitutive model discussed in the research paper. To be honest I don't think my VUMAT is reliable so far. In fact, I have created another blogs for the problems I encounter in the process to develop my VUMAT, here is the links in case you are interested

http://imechanica.org/node/10304

http://imechanica.org/node/10305

      I am trying to run the simulation based on your suggestion now and will inform you when I get the result. Thanks again for your advice.

Hi Frank,

      I have run the simulation base on your suggestions. I use a perfect elastic material first for testing (E=210GPa, v=0.3), the simulation boundary conditions are 3 symmetry BC on 3 mutual perpendicular node set, and a displacement BC on top of the specimen (geaometry set). Meshing element is standard C3D8R with default setting. Constant mass scaling of 5 is added on the pressing step to speed up the analysis. I run the simulation for about 2 hour, but the model seems to deform in a very unreasonable way. I think it is because I mess up with boundary coundary conditions. Can you give me some opinion regarding this problem and my simulation setting? 

P/S: The pictures of BC and deformed shape, and the INP file are uploaded on the 1st comment.  

Frank Richter's picture

I modified your simulation (there was an error in the material definition) and converted it into an Abaqus Standard static test. The code is appended underneath. All seems to be fine. The stress is homogeneous and the boundary conditions seem to be well-defined.

In the explicit simulation I also observe weird crumbling of the specimen. Unfortunately, I am not at all familiar with Abaqus Explicit.

You'd better spread the word regarding your problem.

Become a member of
http://tech.groups.yahoo.com/group/Abaqus/
Note that
1) this is a moderated list, your posting will actually be read by the moderator before it gets posted
2) it is not possible to attach any documents to postings in this list. Refer to your blog by a link or express your problem in text only.

You may also post your query related to the VUMAT there, but in a separate posting only.

Developing VUMAT codes is quite challenging. Is your code to perform any better than the one used in that paper ? Also try finding VUMAT codes using Google. Combine the search terms "subroutine VUMAT" with "in partial fulfillment", a typical phrase in Master's or PhD theses.

Focus on the 3D simulation. I wouldn't know how you can benefit from a 2D simulation. You have nothing to compare to. At best you will know if it runs without any programming error. And the 3D simulation does not take really that long before you see some result.

I will be offline from Tuesday to Friday, and then have no access to ABAQUS till June 01 probably.

-----------------------------------------------

*Heading
** Job name: 3D-Elastic Model name: 3D
** Generated by: Abaqus/CAE 6.10-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=specimen
*Node
      1, 0.00100000005, 0.00200000009, 0.00200000009
      2, 0.00100000005, 0.00150000001, 0.00200000009
      3, 0.00100000005, 0.00100000005, 0.00200000009
      4, 0.00100000005, 0.000500000024, 0.00200000009
      5, 0.00100000005,           0., 0.00200000009
      6, 0.00100000005, -0.000500000024, 0.00200000009
      7, 0.00100000005, -0.00100000005, 0.00200000009
      8, 0.00100000005, -0.00150000001, 0.00200000009
      9, 0.00100000005, -0.00200000009, 0.00200000009
     10, 0.00100000005, 0.00200000009, 0.00150000001
     11, 0.00100000005, 0.00150000001, 0.00150000001
     12, 0.00100000005, 0.00100000005, 0.00150000001
     13, 0.00100000005, 0.000500000024, 0.00150000001
     14, 0.00100000005,           0., 0.00150000001
     15, 0.00100000005, -0.000500000024, 0.00150000001
     16, 0.00100000005, -0.00100000005, 0.00150000001
     17, 0.00100000005, -0.00150000001, 0.00150000001
     18, 0.00100000005, -0.00200000009, 0.00150000001
     19, 0.00100000005, 0.00200000009, 0.00100000005
     20, 0.00100000005, 0.00150000001, 0.00100000005
     21, 0.00100000005, 0.00100000005, 0.00100000005
     22, 0.00100000005, 0.000500000024, 0.00100000005
     23, 0.00100000005,           0., 0.00100000005
     24, 0.00100000005, -0.000500000024, 0.00100000005
     25, 0.00100000005, -0.00100000005, 0.00100000005
     26, 0.00100000005, -0.00150000001, 0.00100000005
     27, 0.00100000005, -0.00200000009, 0.00100000005
     28, 0.00100000005, 0.00200000009, 0.000500000024
     29, 0.00100000005, 0.00150000001, 0.000500000024
     30, 0.00100000005, 0.00100000005, 0.000500000024
     31, 0.00100000005, 0.000500000024, 0.000500000024
     32, 0.00100000005,           0., 0.000500000024
     33, 0.00100000005, -0.000500000024, 0.000500000024
     34, 0.00100000005, -0.00100000005, 0.000500000024
     35, 0.00100000005, -0.00150000001, 0.000500000024
     36, 0.00100000005, -0.00200000009, 0.000500000024
     37, 0.00100000005, 0.00200000009,           0.
     38, 0.00100000005, 0.00150000001,           0.
     39, 0.00100000005, 0.00100000005,           0.
     40, 0.00100000005, 0.000500000024,           0.
     41, 0.00100000005,           0.,           0.
     42, 0.00100000005, -0.000500000024,           0.
     43, 0.00100000005, -0.00100000005,           0.
     44, 0.00100000005, -0.00150000001,           0.
     45, 0.00100000005, -0.00200000009,           0.
     46, 0.000500000024, 0.00200000009, 0.00200000009
     47, 0.000500000024, 0.00150000001, 0.00200000009
     48, 0.000500000024, 0.00100000005, 0.00200000009
     49, 0.000500000024, 0.000500000024, 0.00200000009
     50, 0.000500000024,           0., 0.00200000009
     51, 0.000500000024, -0.000500000024, 0.00200000009
     52, 0.000500000024, -0.00100000005, 0.00200000009
     53, 0.000500000024, -0.00150000001, 0.00200000009
     54, 0.000500000024, -0.00200000009, 0.00200000009
     55, 0.000500000024, 0.00200000009, 0.00150000001
     56, 0.000500000024, 0.00150000001, 0.00150000001
     57, 0.000500000024, 0.00100000005, 0.00150000001
     58, 0.000500000024, 0.000500000024, 0.00150000001
     59, 0.000500000024,           0., 0.00150000001
     60, 0.000500000024, -0.000500000024, 0.00150000001
     61, 0.000500000024, -0.00100000005, 0.00150000001
     62, 0.000500000024, -0.00150000001, 0.00150000001
     63, 0.000500000024, -0.00200000009, 0.00150000001
     64, 0.000500000024, 0.00200000009, 0.00100000005
     65, 0.000500000024, 0.00150000001, 0.00100000005
     66, 0.000500000024, 0.00100000005, 0.00100000005
     67, 0.000500000024, 0.000500000024, 0.00100000005
     68, 0.000500000024,           0., 0.00100000005
     69, 0.000500000024, -0.000500000024, 0.00100000005
     70, 0.000500000024, -0.00100000005, 0.00100000005
     71, 0.000500000024, -0.00150000001, 0.00100000005
     72, 0.000500000024, -0.00200000009, 0.00100000005
     73, 0.000500000024, 0.00200000009, 0.000500000024
     74, 0.000500000024, 0.00150000001, 0.000500000024
     75, 0.000500000024, 0.00100000005, 0.000500000024
     76, 0.000500000024, 0.000500000024, 0.000500000024
     77, 0.000500000024,           0., 0.000500000024
     78, 0.000500000024, -0.000500000024, 0.000500000024
     79, 0.000500000024, -0.00100000005, 0.000500000024
     80, 0.000500000024, -0.00150000001, 0.000500000024
     81, 0.000500000024, -0.00200000009, 0.000500000024
     82, 0.000500000024, 0.00200000009,           0.
     83, 0.000500000024, 0.00150000001,           0.
     84, 0.000500000024, 0.00100000005,           0.
     85, 0.000500000024, 0.000500000024,           0.
     86, 0.000500000024,           0.,           0.
     87, 0.000500000024, -0.000500000024,           0.
     88, 0.000500000024, -0.00100000005,           0.
     89, 0.000500000024, -0.00150000001,           0.
     90, 0.000500000024, -0.00200000009,           0.
     91,           0., 0.00200000009, 0.00200000009
     92,           0., 0.00150000001, 0.00200000009
     93,           0., 0.00100000005, 0.00200000009
     94,           0., 0.000500000024, 0.00200000009
     95,           0.,           0., 0.00200000009
     96,           0., -0.000500000024, 0.00200000009
     97,           0., -0.00100000005, 0.00200000009
     98,           0., -0.00150000001, 0.00200000009
     99,           0., -0.00200000009, 0.00200000009
    100,           0., 0.00200000009, 0.00150000001
    101,           0., 0.00150000001, 0.00150000001
    102,           0., 0.00100000005, 0.00150000001
    103,           0., 0.000500000024, 0.00150000001
    104,           0.,           0., 0.00150000001
    105,           0., -0.000500000024, 0.00150000001
    106,           0., -0.00100000005, 0.00150000001
    107,           0., -0.00150000001, 0.00150000001
    108,           0., -0.00200000009, 0.00150000001
    109,           0., 0.00200000009, 0.00100000005
    110,           0., 0.00150000001, 0.00100000005
    111,           0., 0.00100000005, 0.00100000005
    112,           0., 0.000500000024, 0.00100000005
    113,           0.,           0., 0.00100000005
    114,           0., -0.000500000024, 0.00100000005
    115,           0., -0.00100000005, 0.00100000005
    116,           0., -0.00150000001, 0.00100000005
    117,           0., -0.00200000009, 0.00100000005
    118,           0., 0.00200000009, 0.000500000024
    119,           0., 0.00150000001, 0.000500000024
    120,           0., 0.00100000005, 0.000500000024
    121,           0., 0.000500000024, 0.000500000024
    122,           0.,           0., 0.000500000024
    123,           0., -0.000500000024, 0.000500000024
    124,           0., -0.00100000005, 0.000500000024
    125,           0., -0.00150000001, 0.000500000024
    126,           0., -0.00200000009, 0.000500000024
    127,           0., 0.00200000009,           0.
    128,           0., 0.00150000001,           0.
    129,           0., 0.00100000005,           0.
    130,           0., 0.000500000024,           0.
    131,           0.,           0.,           0.
    132,           0., -0.000500000024,           0.
    133,           0., -0.00100000005,           0.
    134,           0., -0.00150000001,           0.
    135,           0., -0.00200000009,           0.
    136, -0.000500000024, 0.00200000009, 0.00200000009
    137, -0.000500000024, 0.00150000001, 0.00200000009
    138, -0.000500000024, 0.00100000005, 0.00200000009
    139, -0.000500000024, 0.000500000024, 0.00200000009
    140, -0.000500000024,           0., 0.00200000009
    141, -0.000500000024, -0.000500000024, 0.00200000009
    142, -0.000500000024, -0.00100000005, 0.00200000009
    143, -0.000500000024, -0.00150000001, 0.00200000009
    144, -0.000500000024, -0.00200000009, 0.00200000009
    145, -0.000500000024, 0.00200000009, 0.00150000001
    146, -0.000500000024, 0.00150000001, 0.00150000001
    147, -0.000500000024, 0.00100000005, 0.00150000001
    148, -0.000500000024, 0.000500000024, 0.00150000001
    149, -0.000500000024,           0., 0.00150000001
    150, -0.000500000024, -0.000500000024, 0.00150000001
    151, -0.000500000024, -0.00100000005, 0.00150000001
    152, -0.000500000024, -0.00150000001, 0.00150000001
    153, -0.000500000024, -0.00200000009, 0.00150000001
    154, -0.000500000024, 0.00200000009, 0.00100000005
    155, -0.000500000024, 0.00150000001, 0.00100000005
    156, -0.000500000024, 0.00100000005, 0.00100000005
    157, -0.000500000024, 0.000500000024, 0.00100000005
    158, -0.000500000024,           0., 0.00100000005
    159, -0.000500000024, -0.000500000024, 0.00100000005
    160, -0.000500000024, -0.00100000005, 0.00100000005
    161, -0.000500000024, -0.00150000001, 0.00100000005
    162, -0.000500000024, -0.00200000009, 0.00100000005
    163, -0.000500000024, 0.00200000009, 0.000500000024
    164, -0.000500000024, 0.00150000001, 0.000500000024
    165, -0.000500000024, 0.00100000005, 0.000500000024
    166, -0.000500000024, 0.000500000024, 0.000500000024
    167, -0.000500000024,           0., 0.000500000024
    168, -0.000500000024, -0.000500000024, 0.000500000024
    169, -0.000500000024, -0.00100000005, 0.000500000024
    170, -0.000500000024, -0.00150000001, 0.000500000024
    171, -0.000500000024, -0.00200000009, 0.000500000024
    172, -0.000500000024, 0.00200000009,           0.
    173, -0.000500000024, 0.00150000001,           0.
    174, -0.000500000024, 0.00100000005,           0.
    175, -0.000500000024, 0.000500000024,           0.
    176, -0.000500000024,           0.,           0.
    177, -0.000500000024, -0.000500000024,           0.
    178, -0.000500000024, -0.00100000005,           0.
    179, -0.000500000024, -0.00150000001,           0.
    180, -0.000500000024, -0.00200000009,           0.
    181, -0.00100000005, 0.00200000009, 0.00200000009
    182, -0.00100000005, 0.00150000001, 0.00200000009
    183, -0.00100000005, 0.00100000005, 0.00200000009
    184, -0.00100000005, 0.000500000024, 0.00200000009
    185, -0.00100000005,           0., 0.00200000009
    186, -0.00100000005, -0.000500000024, 0.00200000009
    187, -0.00100000005, -0.00100000005, 0.00200000009
    188, -0.00100000005, -0.00150000001, 0.00200000009
    189, -0.00100000005, -0.00200000009, 0.00200000009
    190, -0.00100000005, 0.00200000009, 0.00150000001
    191, -0.00100000005, 0.00150000001, 0.00150000001
    192, -0.00100000005, 0.00100000005, 0.00150000001
    193, -0.00100000005, 0.000500000024, 0.00150000001
    194, -0.00100000005,           0., 0.00150000001
    195, -0.00100000005, -0.000500000024, 0.00150000001
    196, -0.00100000005, -0.00100000005, 0.00150000001
    197, -0.00100000005, -0.00150000001, 0.00150000001
    198, -0.00100000005, -0.00200000009, 0.00150000001
    199, -0.00100000005, 0.00200000009, 0.00100000005
    200, -0.00100000005, 0.00150000001, 0.00100000005
    201, -0.00100000005, 0.00100000005, 0.00100000005
    202, -0.00100000005, 0.000500000024, 0.00100000005
    203, -0.00100000005,           0., 0.00100000005
    204, -0.00100000005, -0.000500000024, 0.00100000005
    205, -0.00100000005, -0.00100000005, 0.00100000005
    206, -0.00100000005, -0.00150000001, 0.00100000005
    207, -0.00100000005, -0.00200000009, 0.00100000005
    208, -0.00100000005, 0.00200000009, 0.000500000024
    209, -0.00100000005, 0.00150000001, 0.000500000024
    210, -0.00100000005, 0.00100000005, 0.000500000024
    211, -0.00100000005, 0.000500000024, 0.000500000024
    212, -0.00100000005,           0., 0.000500000024
    213, -0.00100000005, -0.000500000024, 0.000500000024
    214, -0.00100000005, -0.00100000005, 0.000500000024
    215, -0.00100000005, -0.00150000001, 0.000500000024
    216, -0.00100000005, -0.00200000009, 0.000500000024
    217, -0.00100000005, 0.00200000009,           0.
    218, -0.00100000005, 0.00150000001,           0.
    219, -0.00100000005, 0.00100000005,           0.
    220, -0.00100000005, 0.000500000024,           0.
    221, -0.00100000005,           0.,           0.
    222, -0.00100000005, -0.000500000024,           0.
    223, -0.00100000005, -0.00100000005,           0.
    224, -0.00100000005, -0.00150000001,           0.
    225, -0.00100000005, -0.00200000009,           0.
*Element, type=C3D8R,elset=block
  1,  46,  47,  56,  55,   1,   2,  11,  10
  2,  47,  48,  57,  56,   2,   3,  12,  11
  3,  48,  49,  58,  57,   3,   4,  13,  12
  4,  49,  50,  59,  58,   4,   5,  14,  13
  5,  50,  51,  60,  59,   5,   6,  15,  14
  6,  51,  52,  61,  60,   6,   7,  16,  15
  7,  52,  53,  62,  61,   7,   8,  17,  16
  8,  53,  54,  63,  62,   8,   9,  18,  17
  9,  55,  56,  65,  64,  10,  11,  20,  19
 10,  56,  57,  66,  65,  11,  12,  21,  20
 11,  57,  58,  67,  66,  12,  13,  22,  21
 12,  58,  59,  68,  67,  13,  14,  23,  22
 13,  59,  60,  69,  68,  14,  15,  24,  23
 14,  60,  61,  70,  69,  15,  16,  25,  24
 15,  61,  62,  71,  70,  16,  17,  26,  25
 16,  62,  63,  72,  71,  17,  18,  27,  26
 17,  64,  65,  74,  73,  19,  20,  29,  28
 18,  65,  66,  75,  74,  20,  21,  30,  29
 19,  66,  67,  76,  75,  21,  22,  31,  30
 20,  67,  68,  77,  76,  22,  23,  32,  31
 21,  68,  69,  78,  77,  23,  24,  33,  32
 22,  69,  70,  79,  78,  24,  25,  34,  33
 23,  70,  71,  80,  79,  25,  26,  35,  34
 24,  71,  72,  81,  80,  26,  27,  36,  35
 25,  73,  74,  83,  82,  28,  29,  38,  37
 26,  74,  75,  84,  83,  29,  30,  39,  38
 27,  75,  76,  85,  84,  30,  31,  40,  39
 28,  76,  77,  86,  85,  31,  32,  41,  40
 29,  77,  78,  87,  86,  32,  33,  42,  41
 30,  78,  79,  88,  87,  33,  34,  43,  42
 31,  79,  80,  89,  88,  34,  35,  44,  43
 32,  80,  81,  90,  89,  35,  36,  45,  44
 33,  91,  92, 101, 100,  46,  47,  56,  55
 34,  92,  93, 102, 101,  47,  48,  57,  56
 35,  93,  94, 103, 102,  48,  49,  58,  57
 36,  94,  95, 104, 103,  49,  50,  59,  58
 37,  95,  96, 105, 104,  50,  51,  60,  59
 38,  96,  97, 106, 105,  51,  52,  61,  60
 39,  97,  98, 107, 106,  52,  53,  62,  61
 40,  98,  99, 108, 107,  53,  54,  63,  62
 41, 100, 101, 110, 109,  55,  56,  65,  64
 42, 101, 102, 111, 110,  56,  57,  66,  65
 43, 102, 103, 112, 111,  57,  58,  67,  66
 44, 103, 104, 113, 112,  58,  59,  68,  67
 45, 104, 105, 114, 113,  59,  60,  69,  68
 46, 105, 106, 115, 114,  60,  61,  70,  69
 47, 106, 107, 116, 115,  61,  62,  71,  70
 48, 107, 108, 117, 116,  62,  63,  72,  71
 49, 109, 110, 119, 118,  64,  65,  74,  73
 50, 110, 111, 120, 119,  65,  66,  75,  74
 51, 111, 112, 121, 120,  66,  67,  76,  75
 52, 112, 113, 122, 121,  67,  68,  77,  76
 53, 113, 114, 123, 122,  68,  69,  78,  77
 54, 114, 115, 124, 123,  69,  70,  79,  78
 55, 115, 116, 125, 124,  70,  71,  80,  79
 56, 116, 117, 126, 125,  71,  72,  81,  80
 57, 118, 119, 128, 127,  73,  74,  83,  82
 58, 119, 120, 129, 128,  74,  75,  84,  83
 59, 120, 121, 130, 129,  75,  76,  85,  84
 60, 121, 122, 131, 130,  76,  77,  86,  85
 61, 122, 123, 132, 131,  77,  78,  87,  86
 62, 123, 124, 133, 132,  78,  79,  88,  87
 63, 124, 125, 134, 133,  79,  80,  89,  88
 64, 125, 126, 135, 134,  80,  81,  90,  89
 65, 136, 137, 146, 145,  91,  92, 101, 100
 66, 137, 138, 147, 146,  92,  93, 102, 101
 67, 138, 139, 148, 147,  93,  94, 103, 102
 68, 139, 140, 149, 148,  94,  95, 104, 103
 69, 140, 141, 150, 149,  95,  96, 105, 104
 70, 141, 142, 151, 150,  96,  97, 106, 105
 71, 142, 143, 152, 151,  97,  98, 107, 106
 72, 143, 144, 153, 152,  98,  99, 108, 107
 73, 145, 146, 155, 154, 100, 101, 110, 109
 74, 146, 147, 156, 155, 101, 102, 111, 110
 75, 147, 148, 157, 156, 102, 103, 112, 111
 76, 148, 149, 158, 157, 103, 104, 113, 112
 77, 149, 150, 159, 158, 104, 105, 114, 113
 78, 150, 151, 160, 159, 105, 106, 115, 114
 79, 151, 152, 161, 160, 106, 107, 116, 115
 80, 152, 153, 162, 161, 107, 108, 117, 116
 81, 154, 155, 164, 163, 109, 110, 119, 118
 82, 155, 156, 165, 164, 110, 111, 120, 119
 83, 156, 157, 166, 165, 111, 112, 121, 120
 84, 157, 158, 167, 166, 112, 113, 122, 121
 85, 158, 159, 168, 167, 113, 114, 123, 122
 86, 159, 160, 169, 168, 114, 115, 124, 123
 87, 160, 161, 170, 169, 115, 116, 125, 124
 88, 161, 162, 171, 170, 116, 117, 126, 125
 89, 163, 164, 173, 172, 118, 119, 128, 127
 90, 164, 165, 174, 173, 119, 120, 129, 128
 91, 165, 166, 175, 174, 120, 121, 130, 129
 92, 166, 167, 176, 175, 121, 122, 131, 130
 93, 167, 168, 177, 176, 122, 123, 132, 131
 94, 168, 169, 178, 177, 123, 124, 133, 132
 95, 169, 170, 179, 178, 124, 125, 134, 133
 96, 170, 171, 180, 179, 125, 126, 135, 134
 97, 181, 182, 191, 190, 136, 137, 146, 145
 98, 182, 183, 192, 191, 137, 138, 147, 146
 99, 183, 184, 193, 192, 138, 139, 148, 147
100, 184, 185, 194, 193, 139, 140, 149, 148
101, 185, 186, 195, 194, 140, 141, 150, 149
102, 186, 187, 196, 195, 141, 142, 151, 150
103, 187, 188, 197, 196, 142, 143, 152, 151
104, 188, 189, 198, 197, 143, 144, 153, 152
105, 190, 191, 200, 199, 145, 146, 155, 154
106, 191, 192, 201, 200, 146, 147, 156, 155
107, 192, 193, 202, 201, 147, 148, 157, 156
108, 193, 194, 203, 202, 148, 149, 158, 157
109, 194, 195, 204, 203, 149, 150, 159, 158
110, 195, 196, 205, 204, 150, 151, 160, 159
111, 196, 197, 206, 205, 151, 152, 161, 160
112, 197, 198, 207, 206, 152, 153, 162, 161
113, 199, 200, 209, 208, 154, 155, 164, 163
114, 200, 201, 210, 209, 155, 156, 165, 164
115, 201, 202, 211, 210, 156, 157, 166, 165
116, 202, 203, 212, 211, 157, 158, 167, 166
117, 203, 204, 213, 212, 158, 159, 168, 167
118, 204, 205, 214, 213, 159, 160, 169, 168
119, 205, 206, 215, 214, 160, 161, 170, 169
120, 206, 207, 216, 215, 161, 162, 171, 170
121, 208, 209, 218, 217, 163, 164, 173, 172
122, 209, 210, 219, 218, 164, 165, 174, 173
123, 210, 211, 220, 219, 165, 166, 175, 174
124, 211, 212, 221, 220, 166, 167, 176, 175
125, 212, 213, 222, 221, 167, 168, 177, 176
126, 213, 214, 223, 222, 168, 169, 178, 177
127, 214, 215, 224, 223, 169, 170, 179, 178
128, 215, 216, 225, 224, 170, 171, 180, 179
*Nset, nset=Set-Top, generate
   1,  217,    9
*Elset, elset=Set-Top, generate
   1,  121,    8
*Solid Section, elset=block, material=Spring
,
*Nset, nset=Set-X, generate
 181,  225,    1
*Nset, nset=Set-Y, generate
   9,  225,    9
*Nset, nset=Set-Z
  37,  38,  39,  40,  41,  42,  43,  44,  45,  82,  83,  84,  85,  86,  87,  88
  89,  90, 127, 128, 129, 130, 131, 132, 133, 134, 135, 172, 173, 174, 175, 176
 177, 178, 179, 180, 217, 218, 219, 220, 221, 222, 223, 224, 225
*End Part
**  
**
** ASSEMBLY
**
*Assembly, name=Assembly
**  
*Instance, name=specimen-1, part=specimen
          0.,           0.,       -0.001
*End Instance
**  
*End Assembly
*Amplitude, name=Amp-1
          0.,           0.,     7.142857,           1.
**
** MATERIALS
**
*Material, name=Spring
*Density
6114.,
*Elastic
 2.1e+11, 0.3
** Using constructed VUMAT
**Material, name="User Material"
**Density
**6114.,
**Depvar
**     10,
**User Material, constants=1
**432.,
**
** BOUNDARY CONDITIONS
**
** Name: BC-SymX Type: Symmetry/Antisymmetry/Encastre
*Boundary
specimen-1.Set-X, XSYMM
** Name: BC-SymY Type: Symmetry/Antisymmetry/Encastre
*Boundary
specimen-1.Set-Y, YSYMM
** Name: BC-SymZ Type: Symmetry/Antisymmetry/Encastre
*Boundary
specimen-1.Set-Z, ZSYMM
** ----------------------------------------------------------------
**
** STEP: Step-Pressing
**
*Step, name=Step-Pressing,inc=1000
*Static
0.00001,1.0,0.00000001,0.01
**Dynamic, Explicit
**, 7.14286
**Bulk Viscosity
**0.06, 1.2
** Mass Scaling: Semi-Automatic
**               Whole Model
**Fixed Mass Scaling, factor=5.
**
** BOUNDARY CONDITIONS
**
** Name: BC-1 Type: Displacement/Rotation
*Boundary, amplitude=Amp-1
specimen-1.Set-Top, 2, 2, -0.002
**
** OUTPUT REQUESTS
**
**Restart, write, number interval=1, time marks=NO
**
** FIELD OUTPUT: F-Output-1
**
*Output, field
*Node Output
A, RF, U, V
*Element Output, directions=YES
EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SVAVG
**
** HISTORY OUTPUT: H-Output-2
**
*Output, history
*Node Output, nset=specimen-1.Set-Top
RT,
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=PRESELECT
*End Step

------------------------------------------
Ruhr-University
Bochum
Germany

Subscribe to Comments for "Testing VUMAT With Uniaxial Compression Simulation"

Recent comments

More comments

Syndicate

Subscribe to Syndicate