By: Payam Soltani, D. D. Ganji, I. Mehdipour, A. Farshidianfar
Abstract
Based on the rippling deformations, a nonlinear continuum elastic model is developed to analyze the transverse vibration of singlewalled carbon nanotubes (SWCNTs) embedded on a Winkler elastic foundation. The nonlinear natural frequency has been derived analytically for typical boundary conditions using the perturbation method of multi-scales. The results indicate that the nonlinear resonant frequency due to the rippling is related to the stiffness of the foundation, the boundary conditions, the excitation load-to-damping ratio, and the diameter-to-length ratio. Moreover, the rippling instability of carbon nanotubes, as a structural instability, is introduced and the influences of several effective parameters on this kind of instability are widely discussed.