User login

Navigation

You are here

Effect of vacancy defects on generalized stacking fault energy of fcc metals

mohsenzaeem's picture

http://iopscience.iop.org/0953-8984/26/11/115404/

Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals.

MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

Comments

mohsenzaeem's picture

This article is chosen by IOP editors to be among IOPSELECT articles.  The selection was made based on the following criteria: *Substantial advances or significant breakthroughs *A high degree of novelty *Significant impact on future research

Subscribe to Comments for "Effect of vacancy defects on generalized stacking fault energy of fcc metals"

Recent comments

More comments

Syndicate

Subscribe to Syndicate