User login


You are here

Modified multiplicative decomposition model for growth: Beyond the initial stress-free state

chaofenglu's picture

The multiplicative decomposition model is widely employed for predicting residual stresses and morphologies of biological tissues due to growth. However, it relies on the assumption that the tissue is initially in a stress-free state, which conflicts with the observations that any growth state of a biological tissue is under a significant level of residual stresses that helps to maintain its ideal mechanical conditions. Recently, we propose a modified multiplicative decomposition model in which the initial state (or reference configuration) of a biological tissue is endowed with a residual stress instead of being stress-free. 

Releasing theoretically the initial residual stress, the initially stressed state is first transmitted into a virtual stress-free state, thus resulting in an initial elastic deformation. The initial virtual stress-free state subsequently grows to another counterpart with a growth deformation, and the latter is further integrated into its natural configuration of a real tissue with an excessive elastic deformation that ensures tissue compatibility. With this decomposition, the total deformation arising during growth may be expressed as the product of elastic deformation, growth deformation and initial elastic deformation, while the corresponding free energy density should depend on the initial residual stress and the total deformation. Three key issues including the explicit expression of the free energy density, the predetermination of the initial elastic deformation, and the initial residual stress are addressed.

The model bridges the gap between any two growth states of a biological tissue that is endowed with a certain level of residual stresses.

This work was recently published on Journal of the Mechanics and Physics of Solids 118(2018) 133-151. The paper is co-authored by Yangkun Du (Ph.D. student), Chaofeng Lü*,  Weiqiu Chen, and Michel Destrade. The full version of the paper may be accessed by the link

Funding supports from the National Natural Science Foundation of China through grant Nos. 11621062 and 11772295 are sincerely achknowledged. It was also partly supported by the Fundamental Research Funds for the Central Universities 2016XZZX001-05.


Subscribe to Comments for "Modified multiplicative decomposition model for growth: Beyond the initial stress-free state"

Recent comments

More comments


Subscribe to Syndicate