User login

Navigation

You are here

A phase field model for hydrogen-assisted fatigue

Emilio Martínez Pañeda's picture

Dear iMechanicians. I hope that you find the below work interesting - we have developed the first phase field formulation for hydrogen assisted fatigue. Fatigue crack nucleation and growth is predicted for arbitrary geometries, loading histories, and H contents. Virtual S–N curves are also obtained. You can check it here: https://doi.org/10.1016/j.ijfatigue.2021.106521

A. Golahmar, P.K. Kristensen, C.F. Niordson, E. Martínez-Pañeda. A phase field model for hydrogen-assisted fatigue. International Journal of Fatigue 154, 106521 (2021)

https://www.sciencedirect.com/science/article/pii/S0142112321003765

We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments.

 

Subscribe to Comments for "A phase field model for hydrogen-assisted fatigue"

Recent comments

More comments

Syndicate

Subscribe to Syndicate