User login

Navigation

You are here

Phase-field modeling of the interactions between an edge dislocation and an array of obstacles

Shuozhi Xu's picture

https://doi.org/10.1016/j.cma.2021.114426

Abstract

Obstacles, such as voids and precipitates, are prevalent in crystalline materials. They strengthen crystals by serving as barriers to dislocation glide. In this work, we develop a phase-field dislocation dynamics (PFDD) technique for investigating the interactions between dislocations and second-phase obstacles, which can be either voids or precipitates. The PFDD technique is constructed to account for elastic heterogeneity, elastic anisotropy, dissociation of the dislocation, and dislocation transmission across bicrystalline interfaces. Within the framework, we present a model for “pseudo-voids”, which are voids shearable by dislocations, in contrast to unphysical, unshearable voids in conventional phase-field dislocation formulations. We employ the PFDD technique to investigate the in-plane interactions between an edge dislocation and an array of nano-scale obstacles with different spacings. In this application, the interactions take place in glide planes of either a face-centered cubic (FCC) Cu or a body-centered cubic (BCC) Nb matrix, while the precipitates have a Cu1-xNbx composition, with x varying from 0.1 to 0.9. Our atomistic simulations find that the alloy precipitates can have an FCC, an amorphous, or a BCC phase, depending on the compositional ratio between Cu and Nb, i.e., value of x. Among all types of obstacles, the critical stresses for dislocation bypass are the highest for unshearable amorphous precipitates, followed by shearable crystalline precipitates, and then the pseudo-voids.

Subscribe to Comments for "Phase-field modeling of the interactions between an edge dislocation and an array of obstacles"

Recent comments

More comments

Syndicate

Subscribe to Syndicate
Error | iMechanica

Error

The website encountered an unexpected error. Please try again later.