The essence of mechanobiology is, probably, the interrelation between mechanical and biochemical factors. An exciting example of such phenomenon is signaling associated with the interaction between the cell and extracellular matrix (EM). While some purely biochemical pathways initiated in the area of contact of the cell and EM are known, there are interesting ideas how the mechanical forces, stresses and strains can be involved too. This view goes back to works of Donald Ingber's group in the 90s that showed how perturbations of the adhesion area as a whole and of an individual integrin result in deformation of the cell nucleus. Interestingly, a distinguished oncologist at Johns Hopkins, Donald Coffey, published similar experimental results about the same time, and he also demonstrated that the observed cytoskeleton/nucleus interaction is different in tumor cells. There are several separate pieces of the puzzle that have been resolved: mechanical forces are generated at focal adhesions, the cytoskeleton is involved, nucleus deforms, gene expression changes as a result of perturbation of the adhesions, however, the whole picture of the interrelated mechanical and biochemical factors has yet to be understood. We recently published some results on this topic in the Journal of Biomechanical Engineering (Jean et al., 2004 and 2005). I was glad to find an interest in the same problem from some participants of this website (e.g., N. Wang, Z. Suo, Long-distance propagation of forces in a cell, 2005 and P.R. LeDuc and R.M. Bellin, Nanoscale Intracellular Organization and Functional Architecture Mediating Cellular Behavior, 2006). This aspect of mechanotransduction is important for many areas beyond mechanics such as cancer, wound healing, cell adhesion and motility, effect of surface micro- and nanopatterning, etc.
Recent comments