Skip to main content

M. Shaat's blog

Physical and Mathematical Representations of Couple Stress Effects on Micro/Nanosolids

Submitted by M. Shaat on

In the present paper, for linear elastic materials, effects of couple stresses on micro/nanosolids are physically discussed and mathematically represented in the context of the classical, the modified and the consistent couple–stress theories. Then, an evaluation is provided showing the validity and the limit of applicability of each one of these theories. At first, the possible couple stress effects on mechanics of particles and on continuum mechanics are represented.

Nonlinear Size-Dependent Analysis of Elastic Tiny-Bodies

Submitted by M. Shaat on

Many researchers have studied the effect of surface energy on the
elastic behavior of nano-structural elements based on Gurtin and Murdoch surface
model. Many of them, however, assumed that the surface energy depends only on
the 2D symmetric infinitesimal surface strains and neglects the second-order
products of surface strains/displacement gradients. Moreover, there are some
researchers assumed that the surface energy is independent on infinitesimal
rotation tensor and neglected all rotation

Effect of Surface Energy on Mechanical Behaviour of Nano Structural Elements

Submitted by M. Shaat on

Extremely small size of nano-structures such as beams, sheets and
plates, which are commonly used as components in Nanoelectromechanical Systems
(NEMS), presents a significant challenge to the researchers of nano-mechanics.
Several studies have been developed on the mechanical behavior of nano-sized
bars, tubes, sheets and plates. The results of these studies show that the
elastic modulii of such nano-structural elements depend on their size.
Unfortunately, classical elasticity lacks an intrinsic length scale and thus

A first-order shear deformation finite element model for analysis of laminated composite and the equivalent FG plates

Submitted by M. Shaat on

In this paper, the first-order shear deformation plate (FSDT) model is exploited to investigate the mechanical behavior of laminated composite and functional graded plates. Three approaches are developed to transform the laminated composite plate, with stepped material properties, to an equivalent functionally graded (FG) plate with a continuous property function across the plate thickness. Such transformations are used to determine the details of a functional graded plate equivalent to the original laminated one. In addition it may provide an easy and efficient way to investigate the behavior of multilayer composite plates, with direct and less computational efforts. A comparative study has been developed to compare the effectiveness of the three proposed transformation procedures.