One possible design of stretchable integrated circuits consists of functional islands of stiff thin films on a polymer substrate. When such a structure is stretched, the substrate carries most of the deformation while the islands experience little strain. However, in practice, the island/substrate interface can never cohere perfectly. Existing experiments suggest that, interface debonding occurs if the island is larger than a certain size. I am now studying the critical size of stiff islands on stretchable polymer substrates due to thin film delamination, using finite element simulations. We show that the maximum energy release rate of interfacial cracking goes down as island size or substrate stiffness decreases. As a result, the critical island size can be enhanced if the substrate is chosen to be more compliant. An approximate formula is given to predict the energy release rate for the configuration of stiff islands on very compliant substrate.
Recent comments