Skip to main content

Mori_Tanaka effective Stiffiness/Compliance Formula for inclusions with similar shape

Submitted by everestar on

when all the inclusions with similar shape are embeded into the matrix, the 
 Mori_Tanaka effective Stiffiness/Compliance Tensor can be , respectively, given by

L ={∑cr(L0*+Lr)-1}-1-L0*

M={∑cr(M0*+Mr)-1}-1-M0* 

where,

L0*=L0(S0-1-I),

M0*=[(I-S0) -1-I]M0

In my opinion, similarity in shape means all the inclusions has the same Eshelby Tensor.

Then from the Mori Tanaka formula

 L =Nr=0 crLrT(Nn=0 cnTn)-1

Tr =[I+SrL0-1(Lr-L0)]-1

=[I+SoL0-1(Lr-L0)]-1 

= [I-So+SoL0-1Lr]-1

= [So(So-1-I)+SoL0-1Lr]-1

= [SoLo-1Lo(So-1-I)+SoL0-1Lr]-1

= {SoLo-1[Lo(So-1-I)+Lr]}-1

= {SoLo-1[Lo*+Lr]}-1

=[Lo*+Lr]-1Lo So-1

so

 L =Nr=0 crLrT(Nn=0 cnTn)-1

={Nr=0 crLr[Lo*+Lr]-1}Lo So-1{[Nn=0 cn[Lo*+Ln]-1Lo So-1 }-1

={Nr=0 crLr[Lo*+Lr]-1}Lo So-1SoLo -1{Nn=0 cn[Lo*+Ln]-1}-1

 ={Nr=0 crLr[Lo*+Lr]-1{Nn=0 cn[Lo*+Ln]-1}-1

Is the procedure right?

and how to make the following derivation?

Can anyone help me?