User login

Navigation

You are here

Stretchable Ferroelectric Nanoribbons with Wavy Configurations on Elastomeric Substrates

Applications of ferroelectric ceramics, ranging from components for sensors, memory devices, microelectromechanical systems and energy convertors, all involve planar and rigid layouts.  The brittle nature of such materials and their high temperature processing requirements limit applications to devices that involve only very small mechanical deformations and narrow classes of substrates.  Here, we report a strategy for integrating nanoribbons of one of the most widely used ferroelectric ceramics, lead zirconate titanate, in ‘wavy’ geometries, on soft, elastomeric supports to achieve reversible, linear elastic responses to largestrain deformations (i.e. stretchable properties), without any loss in ferroelectric or piezoelectric properties. Theoretical and computational analysis of the mechanics accounts for these characteristics and also shows that the amplitudes of the waves can be continuously tuned with an applied electric field, to achieve a vertical (normal) displacement range that is near one thousand times larger than is possible in conventional planar layouts.  The results suggest new design and application possibilities in piezoelectric devices.

This paper was recently published on ACS Nano, 2011,5(4):3326-3332. (http://pubs.acs.org/doi/abs/10.1021/nn200477q)

 

AttachmentSize
PDF icon ACSNano2011.pdf4.16 MB
Subscribe to Comments for "Stretchable Ferroelectric Nanoribbons with Wavy Configurations on Elastomeric Substrates"

Recent comments

More comments

Syndicate

Subscribe to Syndicate