User login

Navigation

You are here

User subroutine for compressive failure of composites

SIMULIA's picture

For high strength carbon fiber reinforced polymers, the design criteria are often specified by the compression strength of the composite materials component. This is due to the fact that the compression strength of unidirectional composites is as low as 50 to 60 percent of the tensile strength. One important compressive failure mode in composite is kink-band formation which for a great deal is governed by the waviness of the fibers and the yielding properties of the matrix material. Therefore, in order to make proper simulation of the failure modes in composites, it is necessary to take these effects into account. One approach is to model the actual fiber/matrix system using a micromechanical based finite element model. For realistic composite structures with a large number of fibers, approaches which will result in extremely large numerical models including a great deal of unwanted details. An alternative is to base the simulation on a smeared out composite model where the nonlinear properties of the constituents are taken into account. A finite element implementation of such a model is presented. The model is implemented as an Umat user subroutine in the commercial finite element program Abaqus and used to predict kink-band formation in composite materials.

Subscribe to Comments for "User subroutine for compressive failure of composites"

Recent comments

More comments

Syndicate

Subscribe to Syndicate