Skip to main content

Lemaitre damage material model

Submitted by TungPhan on

The Lemaitre damage material model was developed by Lemaitre for an isotropic linear elastic virgin material with stress-strain law as follows

 \begin{equation}

 \label{eq:22}

 \sigma_{ij}=(1-D)C_{ijkl}\epsilon_{kl} \quad D\in[0,1]

 \end{equation}

 where $D$ represents the extent of damage with the damage evolution law

\begin{equation}

\label{eq:23}

D(\bar{\epsilon})=1-(1-A)\epsilon_{D_{0}}\bar{\epsilon}^{-1}-Ae^{-B(\bar{\epsilon}-\epsilon_{D_{0}})}

\end{equation}

 where $A$ and $B$ are the characteristic parameters of the material, $\epsilon_{D_{0}}$ is the initial damage threshold strain and $\bar{\epsilon}$ is the effective strain defined by

\begin{equation}

\label{eq:24}

\bar{\epsilon}=\sqrt{\sum_{i=1}^{3}{\epsilon_{i}^{2}}H(\epsilon_{i})}

\end{equation}

with $H$ is the Heaviside function given by

\begin{equation}

\label{eq:25}

H(x)=\left\{ \begin{array}{11}

        $0$ & \textrm{if $x > 0$}\\

         1  & \textrm{if $x < 0$}

        \end{array} \right

\end{equation}

Sorry, here I am writting all equations by TEX and I will be very happy to get your related comments for this material model.

Thanks for your attention!