User login

Navigation

You are here

Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators

Using the micro-canonical ensemble, we investigate the oscillatory behaviors of some selected C60-nanotube oscillators by the classical molecular dynamics (MD) simulations method. The second-generation empirical bond-order potential and the van der Waals potential are used to describe bonding and nonbonding atomic interactions, respectively. In the process of simulation, two factors of the radius and vacancy defect of single-walled carbon nanotubes (SWCNTs) are discussed to investigate their effects on the oscillatory behaviors of C60-nanotube oscillators. The simulation results show that the energy dissipation of the C60-nanotube oscillator is sensitive to the radius and vacancy defect, and that the effect of the vacancy defect on the oscillatory behaviors of oscillator depends obviously on the radius of the outer tube. It is found that a single vacancy defect placed on the outer tube of the C60-(17, 0) nanotube oscillator can significantly reduce energy dissipation. For C60-(18, 0), C60-(19, 0) and C60-(11, 11) nanotube oscillators, however, the results show that an oscillator containing a vacancy defect is less stable than the one without defect.

 

Plysics Letter A    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVM-4VF56S0-8&_user=10&_coverDate=01%2F22%2F2009&_alid=865769472&_rdoc=6&_fmt=high&_orig=search&_cdi=5538&_docanchor=&view=c&_ct=255&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=df8860d926e5b1cfd423ba107b312e56

Subscribe to Comments for "Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators"

Recent comments

More comments

Syndicate

Subscribe to Syndicate