Composites; hybrid composites; nanocomposites; modelling; micromechanics; wind energy
Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis
3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay´reinforcement are carried out. Macro–micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments.
Hybrid and hierarchical nanoreinforced polymer composites
Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites