Skip to main content

finite torsion

Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under Finite Torsion

Submitted by arash_yavari on

In this paper we formulate the initial-boundary value problem of accreting circular cylindrical bars under finite torsion. It is assumed that the bar grows as a result of printing stress-free cylindrical layers on its boundary while it is under a time-dependent torque (or a time-dependent twist) and is free to deform axially. In a deforming body, accretion induces eigenetrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar.