elastomeric substrate
Mechanics of buckled carbon nanotubes on elastomeric substrates
We have studied the scaling of controlled nonlinear buckling processes in materials with dimensions in the molecular range (i.e., ~1 nm) through experimental and theoretical studies of buckling in individual single-wall carbon nanotubes on substrates of poly(dimethylsiloxane). The results show not only the ability to create and manipulate patterns of buckling at these molecular scales, but also, that analytical continuum mechanics theory can explain, quantitatively, all measurable aspects of this system.