Skip to main content

SIMULIA's blog

Multi-Physics Analysis of a Refractory Metal ACOperated High Temperature Heater with Abaqus

Submitted by SIMULIA on

Electrically operated high temperature furnaces and reactors are used in many industrial manufacturing processes such as sintering or single crystal growth in order to allow for the required process conditions. In view of their outstanding characteristics refractory metals are ideally suited as materials for the resistive heating elements. Nevertheless, significant and lifetime-limiting irreversible deformations of these elements can be frequently observed which are assumed to be caused by a combination of temperature expansion, electromagnetic forces, and high temperature creep effects.

Investigation of Candidate Features For Crack Detection in Fan and Turbine Blades and Disks

Submitted by SIMULIA on

Identi cation of fatigue cracks in turbo-machinery components is a vital but costly e ffort. This work focuses on nonlinearities in the response behavior resulting from the opening and closing of cracks that results in super-harmonic resonances due to harmonic excitations. Experimental results for a cracked cantilever beam are presented as well as the results from numerical simulations of an integrally bladed compressor disk FE model.

Collaborative engineering process for multidisciplinary optimization of a gas turbine component

Submitted by SIMULIA on

Today manufacturing companies are more and more often characterized by a growing product

and processes complexity. Projects needs the participation of a pool of companies that have to

Simulation of Multi-Pass Welds Using ABAQUS 2D Weld GUI and Comparison with Experimental Results

Submitted by SIMULIA on

The modelling of welds is desirable to predict the distortion of components during manufacture, the position and magnitude of peak residual stresses and to predict metallurgical effects in specific regions. Welds are a complex modelling problem requiring both thermal and structural solutions. This has lead to the development of several weld-specific simulation packages and codes for finite element analysis packages. This paper describes the application of the newly developed Abaqus 2D Weld Modeller to simulate the residual stress field in ferritic weld test specimens.

Isight-Abaqus Optimization of a Ring-Stiffened Cylinder

Submitted by SIMULIA on

Electric Boat’s design process involves evaluating the structural stability of ring-stiffened cylinder structures through finite element analyses to simulate a static pressure load. Each design revision of the cylinders must be evaluated to verify that the structure meets the required stress criteria for the static pressure load; any revision to geometry or material would require the design to be reevaluated. Additionally, it is critical that the weight of the structure is kept as light as possible while still satisfying all stress and deflection criteria.

“Drop-Test” FSI simulation with Abaqus and FlowVision based on the direct 2-way coupling approach

Submitted by SIMULIA on

The paper presents a numerical simulation of the drop test in a still water for the multi-component box structure. The complexity of the problem is in the strong fluid-structure interaction (FSI) between the box and the water free surface. The numerical simulation of the drop test is performed with two software tools: Abaqus and FlowVision through the direct coupling interface, which manipulates, on the Abaqus side the Lagrangian finite-element mesh and on the FlowVision side the Eulerian finite-volume mesh with sub grid geometry resolution.

Crash Prediction for Marine Engine Systems Presented at the 2008 Abaqus Users’ Conference

Submitted by SIMULIA on

Mercury Marine outboards, engines, and drives are designed to withstand indoor impact testing (called “logstrike”) that simulates a collision with an underwater object. This test is comprised of an outboard or sterndrive device mounted on a mock boat that collides with a simulated log.

Spring Orthosis Analysis – Finite element modeling and optimization of a composite material

Submitted by SIMULIA on

This paper covers finite element (FE) analysis and optimization of a spring orthosis, constructed from a pre-impregnated carbon-fibre epoxy composite material. The spring orthosis is one of the most advanced aids that are used in the orthopedist industry. The work has been performed in collaboration with Ortopedteknik, Borås Hospital, at FS Dynamics in Gothenburg. The purpose of the analyses was to find weaknesses of how the orthosis is built today and to give suggestions of how to change its properties and behaviour. The orthosis has two major interesting areas, the spring and the toe.

Simulation of Lumbar Spine Biomechanics Using Abaqus

Submitted by SIMULIA on

Biomechanics testing of the lumbar spine, using cadaveric specimens, has the advantage of using actual tissue, but has several disadvantages including variability between specimens and difficultly acquiring measures such as disc pressure, bone strain, and facet joint contact pressure. A simulation model addresses all of these disadvantages. The objective of this work is to develop a method to simulate the biomechanics of the lumbar spine. A process is currently being used to convert a CT scan of a lumbar spine into a simulation model.

Periprosthetic stress shielding in patello-femoral arthroplasty: a numerical analysis

Submitted by SIMULIA on

Total knee replacement gives proven good results for isolated patello-femoral osteoarthritis, but patello-femoral arthroplasty may be more appropriate because only the joint compartment is replaced. Although the femoral component of a patello-femoral prosthesis is smaller than in total knee arthroplasty, it is unknown whether strain-adaptive periprosthetic bone remodeling occurs following patello-femoral arthroplasty. The aim of the study was to evaluate and compare the stress shielding effect of prosthetic replacement with Finite Element (FE) modeling.