User login


You are here

On the effect of Lüders bands on the bending of steel tubes

In several practical applications hot-finished steel pipe that exhibits Lüders bands is bent to strains of 2–3%. Lüders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. This work investigates the influence of Lüders banding on the inelastic response and stability of tubes under rotation controlled pure bending. Part I presents the results of an experimental study involving tubes of several diameter-to-thickness ratios in the range of 33.2–14.7 and Lüders strains of 1.8–2.7%. In all cases the initial elastic regime terminates at a local moment maximum and the local nucleation of narrow angled Lüders bands of higher strain on the tension and compression sides of the tube. As the rotation continues the bands multiply and spread axially causing the affected zone to bend to a higher curvature while the rest of the tube is still at the curvature corresponding to the initial moment maximum. With further rotation of the ends the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes and/or short Lüders strains, the whole tube eventually is deformed to the higher curvature entering the usual hardening regime. Subsequently it continues to deform uniformly until the usual limit moment instability is reached. For high D/t tubes and/or materials with longer Lüders strains, the propagation of the larger curvature is interrupted by collapse when a critical length is Lüders deformed leaving behind part of the structure essentially undeformed. The higher the D/t and/or the longer the Lüders strain is, the shorter the critical length. 

Part II of this study presents a modeling framework that is shown to successfully simulate all aspects of the inhomogeneous bending of tubes associated with Lüders banding reported in Part I. The structure is discretized with solid finite elements using a mesh that is fine enough for Lüders bands to develop and evolve. The material is modeled as a finitely deforming, J2 type, elastic–plastic solid with an ‘‘up–down–up’’ response over the extent of the Lüders strain, followed by hardening. Regularization of the solution was accomplished by introducing a mild rate dependence of the material. Simulation of the rotation controlled bending experiments confirmed most of the experimental observations and revealed additional details of the localization. Thus, the initial uniform-curvature elastic regime terminates with the nucleation of localized banded deformation on the tensioned and compressed sides of the tube. The bands appear in pockets that propagate into the hitherto intact part of the structure while the moment remains essentially unchanged. The tube develops two curvature regimes; a relatively high curvature in the Lüders deformed section and a low curvature in the unaffected one. Simultaneously, the plasticized zone develops higher ovalization and wrinkles with a wavelength that corresponds to the periodicity of the banded pockets. For tubes with lower D/t and/or shorter Lüders strain the higher curvature eventually spreads to the whole structure at which point homogenous bending resumes. For tubes with higher D/t and/or longer Lüders strain the localized curvature, ovalization, and wrinkle amplitude are larger and cannot be sustained; the tube collapses prematurely leaving behind part of its length essentially undeformed. For every tube D/t there exists a threshold of Lüders strain separating the two types of behavior. This bounding value of Lüders strain was studied parametrically.


Hallai, J.F. and Kyriakides, S. (2011) "On the Effect of Lüders Bands on the Bending of Steel Tubes. Part I: Experiments", International Journal of Solids and Structures 24, 3275-3284.

Hallai, J.F. and Kyriakides, S. (2011) "On the Effect of Lüders Bands on the Bending of Steel Tubes. Part II: Analysis", International Journal of Solids and Structures 24, 3285-3298.


Ali Ghahremaninezhad's picture

Nice work

Subscribe to Comments for "On the effect of Lüders bands on the bending of steel tubes"

Recent comments

More comments


Subscribe to Syndicate