User login

Navigation

You are here

Abaqus UMAT implementation

Hi,

I have a thermo-mechanical constitutive model for polymer and want to implement it in ABAQUS through two user subroutines namely UMAT and UEXPAN but I dont know how to use them together. Also, in UEXPAN, I need to pass in the strain tensor as information but I dont see 'STRAN' variable in the list of variables passed in to UEXPAN in Abaqus documentation. Does anyone know answer to this?

Thanks,

Mandar

Frank Richter's picture

To start with get the file
http://imechanica.org/files/Writing User Subroutines with ABAQUS.pdf
it may show up as
http://imechanica.org/files/Writing%20User%20Subroutines%20with%20ABAQUS.pdf

------------------------------------------
Ruhr-University
Bochum
Germany

Hi Frank,

Thanks for your help. I have a very specific question now. I was studying the .pdf file mentioned in your reply, particularly UMAT for Neo-Hookean material. On slide number L6.46 they define material jacobian for this hyperelastic material C_ijkl. I read through ABAQUS Theory manual section 4.6.1 but I could not understand where the last two terms in the expression for C_ijkl come from. I see that they are related to the DDSDDE definition on slide number L6.50 by terms TRBBAR (which is trace of left Cauchy deformation tensor) and EK which corresponds to bulk modulus of the material. But the theory manual defines material jacobian by deviding the strain into deviatoric and volumetric parts (Eq. 4.6.1-12 in ABAQUS Theory manual). So my question is how both deviatoric and volumetric behaviors can be included in one entry of DDSDDE array by just adding the terms. This might be a silly question and the anwser might just be the rearrangement of the terms. But I am finding it difficult to see it. I hope you can help me on this issue.

Thanks for your help and time in advance.

Mandar

Hi, Mandar

I have the same question. According to  ABAQUS Theory manual section 4.6.1,  the material jacobian C_ijkl are consisted of deviatoric part C-s and volumetric part K, see the equation (4.6.1-12). However, based on these, i can not figure out the second to last term in the expression for C_ijkl of Neo-Hookean hyperelastic model on slide number L6.46.

So could you kindly tell me how you solve your problem?

Thank you.

zqctate

Hi zqctate,

 I still havent got a satisfactory answer to this question. I think ABAQUS needs to do a better job on documentation. Have you figured it out yet? Please let me know.

 Thanks,

Mandar

Frank Richter's picture

Hello

I am not familiar with this constitutive equation.

The code is used in the example manual, example
1.1.14 ANALYSIS OF AN AUTOMOTIVE BOOT SEAL

For a VUMAT implementation get
http://polymerfem.com/polymer_files/vumat_nh/vumat_nh.f

Frank

------------------------------------------
Ruhr-University
Bochum
Germany

I used to think that UEXPAN is a good way to implement thermal expasion cases. But after i tried. I would recommend you to integrate them into one UMAT subroutine. It could make your life easier.

You just need to modify your constitutive model by replacing your elactic strain with the total strain deducted by thermal strain.

 

I just finished coding UMAT for hyperelastic material and tested it on one element for uniaxial and simple shear boundary conditions. It works fine for one element. But, if I try to run a simulation for more than one element, ABAQUS exits with an error. The message says that the error can be found in message file if the file exists and obviously the .msg file does not exist. Does any one have solution to this problem? or where should I look for the kind of error I am encountering with?

Thanks in advance.

Mandar

Hi all,

Just a follow up question on the leading thread. My UMAT for hyperelastic material works fine if I use automatic time stepping provided by ABAQUS but if I use fixed time stepping it exits with an error message which says that FIXED TIME STEP IS TOO LARGE. I tried using fixed time stepping with time increment even smaller than the minimum increment size in autimatic time stepping but without any luck. Does anyone know why this occurs? I am just curious why fixed time increment wouldn't work.

Thanks for your help.

Mandar

Please I am currently having problem developing a UMAT for transformation-induced swelling material behavior.

I need help.

 

ABBA

Hello All,

I am new to creep modeling using Abaqus. I have been following a tutorial on creep modeling of pipe and modified the inputs based on my problem. I came across this error message while running the job with particular time step."Time increment required is less than the minimum specified"

When i reduced the step time, again a error was shown "Too many attempts made for this increment"

Is there any relation between the step time to be followed and the mesh size while doing creep analysis??

I had used 2 Steps for the analysis, (time in hours)

Step1. Pressure loading

 Time Period = 1

Incrementations:

 Max no: of increments =100

 Initial =1

 Minimum = 1e-5

 Maximum =1

Step 2: Creep

 Time Period = 70

Incrementations:

 Max no: of increments =100

 Initial =1

 Minimum = 1

 Maximum =70

Mesh Size is .001

Element type is C3D20R.

Please let me know your valuable suggestions.

Thanks for the help

try go to the General solution control, can be found under the step module -main menu- others.

 Set the I_A = 20 or more, which is default to be 5.

 

Here is a creep umat:

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,*
RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,*
TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,*
NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,*
DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)
C INCLUDE 'ABA_PARAM.INC'
C CHARACTER*80 MATERL
DIMENSION STRESS(NTENS),STATEV(NSTATV),
DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
PROPS(NPROPS),COORDS(3),DROT(3,3),
DFGRD0(3,3),DFGRD1(3,3)
DOUBLE PRECISION J0,J,J2,KSI,NN,N,V,MC
C ELASTIC PROPERTIES
EMOD1=PROPS(1)
EMOD2=PROPS(2)
ENU=PROPS(3)
EG=PROPS(4)
THETA=PROPS(5)
KSI=PROPS(6)
ESI=PROPS(7)
ENTA=PROPS(8)
N=PROPS(9)
E0=PROPS(10)
SIG0=PROPS(11)
V=PROPS(12)
M=PROPS(13)
T0=PROPS(14)
EBULK=1/(1.0-ENU**2*EMOD2/EMOD1)
C
C ELASTIC STIFFNESS
C
IF (KSTEP.EQ.1) THEN
DO K1=1,NTENSDO K2=1,NTENSDDSDDE(K2,K1)=0
END DO
ENDDO
Q11=EMOD1*EBULK
Q12=ENU*EMOD2*EBULK
Q21=ENU*EMOD2*EBULK
Q22=EMOD2*EBULK
Q66=EG
DDSDDE(1,1)=Q11*COS(THETA)**4.0
+2.0*(Q12+2*Q66)*SIN(THETA)**2.0*COS(THETA)**2.0 +Q22*SIN(THETA)**4.0
DDSDDE(1,2)=(Q11+Q22-
4*Q66)*SIN(THETA)**2.0*COS(THETA)**2.0+Q12*(SIN(THETA)**4.0+COS(THETA)*
*4.0)
DDSDDE(2,1)=DDSDDE(1,2)
DDSDDE(2,2)=Q11*SIN(THETA)**4.0
+2.0*(Q12+2*Q66)*SIN(THETA)**2.0*COS(THETA)**2.0 +Q22*COS(THETA)**4.0
DDSDDE(NTENS,1)=(Q11-Q12-2*Q66)*SIN(THETA)*COS(THETA)**3.0+ (Q12-
Q22+2*Q66)*SIN(THETA)**3.0*COS(THETA)
DDSDDE(1,NTENS)=DDSDDE(NTENS,1)
DDSDDE(NTENS,2)=(Q11-Q12-2*Q66)*SIN(THETA)**3.0*COS(THETA)+ (Q12-
Q22+2*Q66)*SIN(THETA)*COS(THETA)**3.0
DDSDDE(2,NTENS)=DDSDDE(NTENS,2)
DDSDDE(NTENS,NTENS)=(Q11+Q22-2*Q12-2*Q66)*SIN(THETA)**2*
*COS(THETA)**2.0+ Q66*(SIN(THETA)**4+COS(THETA)**4.0)
C
C1=DDSDDE(1,1)
C2=DDSDDE(1,2)
C3=DDSDDE(1,NTENS)
C4=DDSDDE(2,1)
C5=DDSDDE(2,2)
C6=DDSDDE(2,NTENS)
C7=DDSDDE(NTENS,1)
C8=DDSDDE(NTENS,2)
C9=DDSDDE(NTENS,NTENS)
C
C CALCULATE STRESS FROM ELASTIC STRAINS
C
DO K1=1,NTENSDO
K2=1,NTENSSTRESS(K2)=STRESS(K2)+DDSDDE(K2,K1)*DSTRAN(K1)
END DO
END DO
C
STATEV(1)=STATEV(1)+DSTRAN(1)
STATEV(2)=STATEV(2)+DSTRAN(2)
STATEV(3)=STATEV(3)+DSTRAN(3)
A1=STATEV(1)
A2=STATEV(2)
A3=STATEV(3)
D1=C1
D2=C5
D3=C2C
END IF
C
C CALCULATE CREEP STRESS
IF (KSTEP.EQ.2) THEN
S11=STRESS(1)-(STRESS(1)+STRESS(2)+STRESS(3))/3.D0S22=STRESS(2)-
(STRESS(1)+STRESS(2)+STRESS(3))/3.D0
S22=STRESS(2)-(STRESS(1)+STRESS(2)+STRESS(3))/3.D0S33=STRESS(3)-
(STRESS(1)+STRESS(2)+STRESS(3))/3.D0
S12=STRESS(NTENS)D11=COS(THETA)**2.D0D22=SIN(THETA)**2.D0
D12=COS(THETA)*SIN(THETA)
J0=D11*S11+D22*S22+2.D0*D12*S12
J=D11*(S11**2.D0+S12**2.D0)+D22*(S12**2.D0+S22**2.D0)+D12*S12*(S11+S22)
J2=.5*(S11**2.D0+S22**2.D0+S33**2.D0)+S12**2Q1=JJ0**
2Q2=J0**2TEMP1=(ESI4.D0*ENTA)*(STRESS(1)+STRESS(2))**2/9.D0
TEMP2=(KSI)*Q1
TEMP3=(ESI-ENTA)*Q2TEMP4=3.0*(J2-TEMP2-TEMP3+TEMP1)
PHI=SQRT(TEMP4)/(E0)
TA11=2.D0*S11*D11+2.D0*D12*S12
TA22=2.D0*S22*D22+2.D0*D12*S12
TA12=S12*(D11+D22)+D12*(S11+S22)
TB11=2.D0*J0*D11TB22=2.D0*J0*D22
TB12=2.D0*J0*D12
TONE11=TA11-TB11
TONE22=TA22-TB22
TONE12=TA12-TB12
TTWO11=2.D0*J0*(D11-1.D0/3.D0)
TTWO22=2.D0*J0*(D22-1.D0/3.D0)
TTWO12=2.D0*J0*D12
TAO11=S11-KSI*TONE11-(ESIENTA)*
TTWO11+2.D0*(ESI4.D0*ENTA)*(STRESS(1)+STRESS(2))/9.D0
TAO22=S22-KSI*TONE22-(ESIENTA)*
TTWO22+2.D0*(ESI4.D0*ENTA)*(STRESS(1)+STRESS(2))/9.D0
TAO12=S12-KSI*TONE12-(ESI-ENTA)*TTWO12
RSTRAN11=3.D0*PHI**(N-1.D0)*TAO11/(2.D0*E0*SIG0*100)
RSTRAN22=3.D0*PHI**(N-1.D0)*TAO22/(2.D0*E0*SIG0*100)
RSTRAN12=3.D0*PHI**(N-1.D0)*TAO12/(2.D0*E0*SIG0*100)DC
RSTRAN11=RSTRAN11*DTIMEDC
RSTRAN22=RSTRAN22*DTIMEDC
RSTRAN12=RSTRAN12*DTIME
STATEV(4)=DCRSTRAN11+STATEV(4)
STATEV(5)=DCRSTRAN22+STATEV(5)
STATEV(6)=DCRSTRAN12+STATEV(6)
C
C DAMAGE calculation
C
I=STRESS(1)+STRESS(2)+STRESS(3)
I0=D11*STRESS(1)+2*D12*STRESS(NTENS)+D22*STRESS(2)
RE1=J2+.25*J0**2.0-J
IF (RE1.LE.0) THEN
RE1=0-RE1
END IF
NN=.5*(I-I0)+SQRT(RE1)
IF (NN.LE.0) THEN
NN=0.0
END IF
IF (Q1.LE.0) THEN
Q1=J0**2-J
END IF
S=SQRT(Q1)
DELTA=(NN+0.35*S)/(E0)
STATEV(11)=(1-DELTA**V*TIME(2)/T0)**(1/(1+M))
RDASTRAN11=3.0*PHI**(N-1.0)*TAO11/(2.0*E0*SIG0*100/(STATEV(11)**N)
DDAMSTRAN11=RDASTRAN11*DTIME
DDAMSTRAN22=RDASTRAN22*DTIME
DDAMSTRAN12=RDASTRAN12*DTIME
STATEV(12)=DDAMSTRAN11+STATEV(12)
STATEV(13)=DDAMSTRAN22+STATEV(13)
STATEV(14)=DDAMSTRAN12+STATEV(14)
C
C CALCUALTE UPDATED STRESS
C
DS1=C1*(DSTRAN(1)-DCRSTRAN11)
DSTRESS11=C1*(DSTRAN(1)-DCRSTRAN11)+C2*(DSTRAN(2)-DCRSTRAN22)+
C3*(DSTRAN(NTENS)-DCRSTRAN12)
DSTRESS22=C4*(DSTRAN(1)-DCRSTRAN11)+C5*(DSTRAN(2)-DCRSTRAN22)+
C6*(DSTRAN(NTENS)-DCRSTRAN12)
DSTRESS12=C7*(DSTRAN(1)-DCRSTRAN11)+C8*(DSTRAN(2)-DCRSTRAN22)+
C9*(DSTRAN(NTENS)-DCRSTRAN12)
STRESS(1)=DSTRESS11+STRESS(1)
STRESS(2)=DSTRESS22+STRESS(2)
STRESS(NTENS)=DSTRESS12+STRESS(NTENS)
C
C CALCULATE UPDATED JACOBIAN
DO K1=1,NTENS
DO K2=1,NTENS
DDSDDE(K2,K1)=0
ENDDO
ENDDO
Q11=EMOD1*EBULK
Q12=ENU*EMOD2*EBULK
Q21=ENU*EMOD2*EBULK
Q22=EMOD2*EBULK
Q66=EG
DDSDDE(1,1)=Q11*COS(THETA)**4.0+2.0*(Q12+2*Q66)*SIN(THETA)**2.0*COS(TH
ETA)**2.0* +Q22*SIN(THETA)**4.0
DDSDDE(1,2)=(Q11+Q22-4*Q66)*SIN(THETA)**2.0*COS(THETA)**2.0*
+Q12*(SIN(THETA)**4.0+COS(THETA)**4.0)
DDSDDE(2,1)=DDSDDE(1,2)
DDSDDE(2,2)=Q11*SIN(THETA)**4.0
+2.0*(Q12+2*Q66)*SIN(THETA)**2.0*COS(THETA)**2.0* +Q22*COS(THETA)**4.0
DDSDDE(NTENS,1)=(Q11-Q12-2*Q66)*SIN(THETA)*COS(THETA)**3.0+* (Q12-
Q22+2*Q66)*SIN(THETA)**3.0*COS(THETA)
DDSDDE(1,NTENS)=DDSDDE(NTENS,1)
DDSDDE(NTENS,2)=(Q11-Q12-2*Q66)*SIN(THETA)**3.0*COS(THETA)* (Q12-
Q22+2*Q66)*SIN(THETA)*COS(THETA)**3.0
DDSDDE(2,NTENS)=DDSDDE(NTENS,2)
DDSDDE(NTENS,NTENS)=(Q11+Q22-2*Q12-2*Q66)*SIN(THETA)**2*
*COS(THETA)**2.0+* Q66*(SIN(THETA)**4+COS(THETA)**4.0)
RETURN
END
INPUT FILE FOR PRESSURE VESSEL
*Heading
** Job name: Job-1 Model name: Model-1
*Node
1, 0., 20., 0
.……
12445, 19.9938431, -20., 0.496222973
*Element, type=S8R,ELSET=CREEP
1, 1, 291, 399, 4, 4171, 4172, 4173, 4174
*Nset, nset=B1
3, 164, ……., 12445
Surface, type=ELEMENT, name=vessel
creep, SNEG
*shell SECTION,ELSET=CREEP,MATERIAL=com1
0.4
*TRANSVERSE SHEAR STIFFNESS
2230, 2230, 0
** MATERIALS-1
*MATERIAL,NAME=COM1
*USER MATERIAL,CONSTANTS=16,TYPE=MECHANICAL
44e4, 7.3e3, .284, 2.7e3,1.047, 0.57, 0.64, 0.1,
6.5, 46., 50., 10.6, 7.125, 12,2.7e3,2.7e3
*DEPVAR
14
*INITIALCONDITIONS,TYPE=SOLUTION
CREEP,0.0,0.0,0.0,0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0,0.0,0.0,0.0
*BoundaryB1, 2, 2
*STEP,INC=30
PRESCRIBED TENSILE STRESS
*STATIC
1.E-7,1.E-6
*Dsload
vessel, P, 0.5
*EL PRINT,FREQ=1
S,
SDV1,
SDV4
*END STEP
*STEP,INC=100000
CREEP STEP
*VISCO,CETOL=1E-4
1.E-6,10
** OUTPUT REQUESTS
*PRINT,FREQ=1,RESIDUAL=YES
*EL PRINT,FREQ=1
SDV
*OUTPUT,FIELD,FREQ =1
*ELEMENT OUTPUT
S,E,CE,
SDV
NODE OUTPUT
U
*END STEP

Hi all

 I have written an UMAT  to simulate pseudoelasticity effect ( With abaqus CAE) but I am against difficulties.

 

 Does somebody help me to tell me steps to follow i.e :

To create right steps and loadings

Subscribe to Comments for "Abaqus UMAT implementation"

More comments

Syndicate

Subscribe to Syndicate