Skip to main content

NONLINEAR BENDING OF STRAIGHT BEAMS

Submitted by kannanstkn on

 Can any one please help me out in Nonlinear analysis of beams using Direct iteration method or Newton Raphson.

Here i am producing some of algorithms from the book of J.N.Reddy,"An_Introduction_to_Nonlinear_Finite_Element_Analysis__2004".

I have a doubt in the term DW, whether that is the difference between transverse dispalcements of Consecutive Nodes  or the difference between transverse dispalcements of Node on Consecutive iterations.

 please help me . Thanks in Advance.

ELF1(i) = ELF1(i) + FX ∗ SFL(i) ∗ CNST

ELF2(I) = ELF2(I) + QX ∗ SFH(I) ∗ CNST

ELK11(i, j) = ELK11(i, j)+ AXX ∗ GDSFL(i) ∗ GDSFL(j) ∗ CNST

ELK22(I, J) = ELK22(I, J)+ DXX ∗ GDDSFH(I) ∗ GDDSFH(J) ∗ CNST

in the full integration loop, and

ELK12(i, J) = ELK12(i, J) + 0.5 ∗ AXX ∗DW∗ GDSFL(i) ∗ GDSFH(J) ∗ CNST 

ELK21(I, j) = ELK21(I, j) + AXX ∗DW∗ GDSFH(I) ∗ GDSFL(j) ∗ CNST

ELK22(I, J) = ELK22(I, J) + 0.5 ∗ AXX ∗DW ∗DW∗ GDSFH(I) ∗ GDSFH(J) ∗ CNST

in the reduced integration loop. Here,

SFL(i) = ψi, SFH(I) = φI ,GDSFH(I) = dφI/dx , GDDSFH(I) = d^2 φI/dx^2 , GDSFL(i) = dψi/dx

, and DW =(dw0/dx) for i, j = 1,2 and I, J = 1, 2, 3, 4.