**D****iscussion of fracture paper #23 - Paris' exponent m<2 and behaviour of short cracks**

I came across a very interesting paper in Engineering Fracture Mechanics about a year ago. It gives some new results of stochastic aspects of fatigue. The paper is: ”On the distribution and scatter of fatigue lives obtained

**D****iscussion of fracture paper #22 - Open access puts scientists in control of their own results**** **

The last ESIS blog about how surprisingly few scientists are willing/able to share their experimental data, received an unexpectedly large interest. Directly after the publication another iMechanica blogger took the same theme but he put the focus on results produced at numerical analyses that are presented with insufficient

**D****iscussion of fracture paper #21 - Only 6% of experimentalists want to disclose raw-data**** **

Long term availability of raw experimental data in experimental fracture mechanics, by Patrick Diehl, Ilyass Tabiai, Felix W. Baumann, Daniel Therriault and Martin Levesque, in Engineering Fracture Mechanics, 197 (2018) 21–26.

**D****iscussion of fracture paper #20 - Add stronger singluarities to improve numerical accuracy**** **

Evaluation of stress intensity factors under multiaxial and compressive conditions using low order displacement or stress field fitting, R. Andersson et al., in Engineering Fracture Mechanics, 189 (2018) 204–220.

**D****iscussion of fracture paper #19 - Fracture mechanical properties of graphene**** **

Growth speed of single edge pre-crack in graphene sheet under tension, Jun Hua et al., Engineering Fracture Mechanics 182 (2017) 337–355.

**D****iscussion of fracture paper #18 - A crack tip energy release rate caused by T-stress**** **

Zi-Cheng Jiang, Guo-Jin Tang, Xian-Fang Li, Effect of initial T-stress on stress intensity factor for a crack in a thin pre-stressed layer, Engineering Fracture Mechanics, pp. 19-27.

**D****iscussion of fracture paper #17 - ****What is the second most important quantity at fracture?**

Fracture assessment based on unified constraint parameter for pressurized pipes with circumferential surface cracks, M.Y. Mu, G.Z. Wang, F.Z. Xuan, S.T. Tu, Engineering Fracture Mechanics 175 (2017), 201–218

**D****iscussion of fracture paper #16 - What is wrong with pure mode I and II? A lot it seems**

An improved definition for mode I and mode II crack problems" by M.R. Ayatollahi, M. Zakeri in Engineering Fracture Mechanics 175 (2017) 235–246.

**Discussion of fracture paper #15 - Design for crack arrest**

Brittle crack propagation/arrest behaviour in steel plate – Part I: Model formulation” by Kazuki Shibanuma, Fuminori Yanagimoto, Tetsuya Namegawa, Katsuyuki Suzuki, Shuji Aihara in Engineering Fracture Mechanics, 162 (2016) 324-340.

**Discussion of fracture paper #14**** - How to understand the J-integral when multiple cracks are growing at different rates**

Fracture resistance enhancement of layered structures by multiple cracks, S. Goutianos and B.F. Sørensen, Engineering Fracture Mechanics, 151 (2016) 92-108.

**Discussion of fracture paper #13 - Cohesive properties at ductile tearing**

Cohesive zone modeling and calibration for mode I tearing of large ductile plates, P.B. Woelke, M.D. Shields, J.W. Hutchinson, Engineering Fracture Mechanics, Vol 147 (2015) pp. 293-305.

**Discussion of fracture paper #12**** - ****Crack paths and fracture process region autonomy**

Method for calculating G, G_I, and G_II to simulate crack growth in 2D, multiple-material structures, E.K. Oneida, M.C.H. van der Meulen, A.R. Ingraffea, Engineering Fracture Mechanics, Vol 140 (2015) pp. 106–126.

**Discussion of fracture paper ****#11 - Fracture processes and phase field modelling**

A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, T.T. Nguyen, J. Yvonnet, Q.-Z. Zhu, M. Bornert, C. Chateau, Engineering Fracture Mechanics, Vol 139 (2015) pp. 18–39.

**Discussion of fracture paper #10 ****- ****Searching for the length scale of stress corrosion**

Further study on crack growth model of buried pipelines exposed to concentrated carbonate-bicarbonate solution, B.T. Lu, Engineering Fracture Mechanics vol. 131 (2014) pp. 296-314.

**Discussion of fracture paper #9 - Crack tip modelling**

Effect of a single soft interlayer on the crack driving force, M. Sistaninia and O. Kolednik, Engineering Fracture Mechanics, Vol. 130, 2014, pp. 21–41.

**Discussion of fracture paper #8 - Elastic follow-up**

P.M. James: Re-derivation of plasticity interaction for combined loading under significant levels of elastic follow-up. Engineering Fracture Mechanics, Vol. 126, 2014, pp. 12–26.

**Discussion of fracture paper #7 - Configurational force approach**

K. Özenç, M. Kaliske, G. Lin, G. Bhashyam: Evaluation of energy contributions in elasto-plastic fracture: A review of the configurational force approach, Engineering Fracture Mechanics, 2014, Vol. 115, pp. 137-153.

**Discussion of fracture paper #6 - Stress intensity factor for steep yield distribution**

T. Yasuoka, Y. Mizutani, A. Todoroki: Applicable limit of the stress intensity factor for steep yield strength distribution, Engineering Fracture Mechanics, 2013, Vol. 110, pp. 1-11.

**Discussion of fracture paper #5 - Yield ciriterion or failure criterion**

Henrik Danielsson and Per Johan Gustafsson: A three dimensional plasticity model for perpendicular to grain cohesive fracture in wood, Engineering Fracture Mechanics Vol. 98 2013, pp.137–152.

**Discussion of fracture paper #4 - Is paper ductile?**

P. Mäkelä and S. Östlund: Cohesive crack modelling of thin sheet material exhibiting anisotropy, plasticity and large-scale damage evolution. Engineering Fracture Mechanics,Vol. 79, 2012 pp. 50-60.

**Discussion of fracture paper #3 - Length scales in fracture**

H. Krull and H. Yuan: Suggestions to the cohesive traction–separation law from atomistic simulations. Engineering Fracture Mechanics, Vol. 78, 2011, pp. 525-533.

**Discussion of fracture paper #2 - The role of the T-stress**

J.C. Sobotka, R.H. Dodds: Steady crack growth in a thin, ductile plate under small-scale yielding conditions: Three-dimensional modelling., Engineering Fracture Mechanics, Vol. 78, 2011, pp. 343-363; J.C. Sobotka, R.H. Dodds: T-stress effects on steady crack growth in a thin, ductile plate under small-scale yielding conditions: Three-dimensional modelling., Engineering Fracture Mechanics, Vol. 78, 2011, pp. 1182-1200.

**Discussion of fracture paper #1 - A contol volume model**

Ehsan Barati, Younes Alizadeh, Jamshid Aghazadeh Mohandesi: J-integral evaluation of austenitic-martensitic functionally graded steel in plates weakened by U-notches, Engineering Fracture Mechanics, Vol. 77, Issue 16, 2010, pp. 3341-3358.

**A blog for discussing fracture papers**

The aim of ESIS is not only to develop and extend knowledge in all aspects of structural integrity,

but also to disseminate this knowledge world-wide by means of scientific publications and to educate young engineers and scientists. For these purposes, three Elsevier journals - *Engineering Fracture Mechanics* , *Engineering Failure Analysis* and >> Read more

## Recent comments